用户名: 密码: 验证码:
电力变压器绝缘故障诊断技术及热状态参量预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变压器故障智能诊断技术是正确评估变压器绝缘状态的前提,而对变压器内部热状态的准确把握很大程度上决定了变压器的负载能力和使用寿命,也是变压器绝缘故障诊断技术的延伸与扩展。只有正确地评估变压器的绝缘状态,跟踪变压器的使用寿命,才能根据变压器的实际状态来作出正确的检修决策。论文从电力变压器故障智能诊断和内部热状态预测出发,对实现变压器状态检修这两个重要环节进行了深入研究,主要研究工作如下:
     ①针对常见的BP神经网络的方法进行电力变压器绝缘故障诊断方法,论文着重就其网络的选定、学习样本的建立、输入方式选择、学习过程的收敛性及算法改进等问题展开研究,建立了基于带动量项和变学习率的改进BP神经网络电力变压器故障诊断方法,分析和仿真结果表明经过改进的三层BP神经网络能够较好地实现油中溶解气体含量数据到故障类型的映射。
     ②在推广的多输入多输出的小波神经网络形式上建立电力变压器绝缘故障诊断模型,对其诊断结论与差异进行详细的数学机理分析,结果表明小波神经网络在识别变压器故障类型时表现出优于BP神经网络的收敛速度、分类性能和判正准确率。
     ③研究了遗传算法进化小波神经网络应用于电力变压器故障诊断,即将遗传算法与小波神经网络两者相互结合,使小波神经网络能更好地映射电力变压器故障类型与实际油中溶解气体参数之间的非线性关系,从而对电力变压器故障进行准确的分类识别。大量实验结果表明采用遗传算法进化小波神经网络更能深入挖掘变压器数据中有关故障信息,在故障模式识别中具有最高的辨识度,且对变压器多故障的识别诊断也有很好的效果。
     ④系统地分析变压器内部发热过程和温度分布规律,研究变压器稳态温度计算模型和暂态计算模型。基于变压器内部热过程和温度分布,类比传热学理论和基尔霍夫理论的相似性,提出了冷却方式为强迫油循环(OF)油浸式电力变压器的一种等效顶层油温预测热模型,结果表明提出的热模型较之IEEE推荐的顶层油温预测模型能更准确预测油浸式OF变压器顶层油温。
     ⑤注意变压器的各种负载状况、冷却方式等具体条件,基于变压器内部热过程和温度分布而充分考虑其非线性热阻和油粘性,提出冷却方式为强迫油循环(OF)的电力变压器绕组热点温度预测热模型,实验结果表明提出的绕组热点温度热模型预测的温度能很好地反应油浸式OF变压器热动态特征且与实测值的误差明显偏小,完全在允许范围之内。
Intelligent fault diagnosis technology of power transformer is the premise of correct assessment of insulation state, and accurate grasp of internal heat state of power transformer determines the load capacity and service life in a large extent which also is the extension and expansion of insulation fault diagnosis. Meanwhile, only after correctly assessing insulation state of power transformer, tracking the service life, we can make the right maintenance decisions based on the actual state of power transformer. As a whole view of intelligent fault diagnosis and internal thermal state prediction of power transformer, this paper had an in-depth study on these two vital areas, and the main research works of this dissertation are shown as follows:
     ①Usually, a neural network method based on BP algorithm was employed to solve this problem, meanwhile, we mainly focused on network selecting, study samples building, input modes choosing, convergence of training process and algorithm modifying etc. Finally, this dissertation proposed a neural network based on modified BP algorithm, i.e. momentum coefficient and alter-learning coefficient, then analysis and simulation results show that three-layers neural network based on modified algorithm can build clear mapping between gases-dissolved-in-oil and fault types of power transformers.
     ②This dissertation presented a novel insulation faults diagnosis model of power transformers based on expanded multi-input and multi-output wavelet neural network. After analyzing the diagnostic results differences and its mathematic mechanism, we can draw some conclusions that the proposing wavelet neural networks approaches prevail the traditional BP neural network on convergence speed, classifying ability and diagnostic accuracy.
     ③Combining genetic algorithm and wavelet neural network, this dissertation set up an effective fault diagnostic method of power transformers, i.e. genetic algorithm evolving wavelet neural network, which can reflect the nonlinear relationship between gases-dissolved-in-oil and fault types of power transformers. What’s more, employing genetic algorithm is order to let wavelet neural network deal with all information obtained better and classify the faults types more accurately. A number of examples show that the method proposed also has good classifying capability for single-fault and multiple-fault samples of power transformers as well as the highest faults diagnostic accuracy.
     ④After the systematic analysis of interior heating process and temperature distribution of power transformers, this dissertation then placed the focus on the steady state and transient state temperature prediction models. Based on the fundamental heat transfer theory and interior heating process of power transformers, and drawed an analogy between the heat transmission theory and Kirchhoff’s law, this dissertation presents a thermal-electric analogous dynamic top oil temperature prediction thermal model of an oil-immersed power transformers which cooling model is OF. A lot of experimental waveforms and analysis show that the proposed model is able to yield better results than IEEE thermal model on predicting the top oil temperature of power transformers in OF cooling model.
     ⑤Considering all kinds of loading status, cooling mode etc, then fully regarding nonlinear thermal resistance and oil viscosity based on interior heating process and temperature distribution, this dissertation built a dynamic hot spot temperature model for OF cooling model power transformers. Plenty of experimental curves proved the predicting temperature can totally reflect the prediction thermal characters of oil-immersed power transformers in OF cooling model, on the other hand, the errors between the measurable values and prediction results are fully within the scope of the permit.
引文
[1]路长柏.电力变压器绝缘技术[M].哈尔滨:哈尔滨工业大学出版社, 1997.
    [2]徐文.电力变压器故障诊断技术研究[D].博士学位论文,南京:东南大学, 1997.
    [3]程志华,章剑光.状态检修技术及其辅助分析系统的应用[J].电网技术, 2003, Vol.27, No.7: 16-18, 24.
    [4]陈卫中. 35kV及以上主变压器状态检修的探讨[J].浙江电力, 1999, No.5: 40-42.
    [5]严璋.高电压绝缘技术[M].北京:中国电力出版社, 2002.
    [6]电力工业部.电力设备预防性试验规程[M],北京:中国电力出版社, 1997.
    [7]松蒲虔士等.电力设备の运行中绝缘诊断技术[M].日本电气学会技术报告, 1992.
    [8]孙才新,陈伟根,李俭,廖瑞金编著.电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社, 2003.
    [9]陈伟根.大容量高电压变压器油中气体色谱在线监测原理及方法的研究[D].重庆大学硕士学位论文, 1993.
    [10]操敦奎.变压器油中气体分析诊断与故障检查.北京:中国电力出版社, 2005.
    [11] Fallou B, Viale F, Davies, et al. Application of physical-Chemical Methods of Analysis to the Study of Deterioration in the Insulation of Electrical Apparatus [C]. GIGRE, Paris, France, 1970: Rep.15-07.
    [12] International Electrotechnical Commission. Interpretation of the Analysis of Gases in Transformers and Other Oil-filled Electrical Equipment in Service[M]. IEC publication 599, 1978.
    [13]操敦奎.变压器油中气体分析与诊断[M].武汉:湖北新生报印刷厂, 1987.
    [14] Duval M. Dissolved Gases Analysis: It Can Save Your Transformer[M]. IEEE Electrical Insulation Magazine. 1989, 5(6):22-27.
    [15] Electrical Cooperative Research Association[J], Conservation and Control of Oil-insulation Components by Diagnosis of Gas in Oil. Publication 36, 1980.
    [16] Church J O, et al. Analyze Incipient Faults with Dissolved-Gas Nomograph[J]. Electrical World, 1987, 10: 40-44.
    [17] ZhangY, et al. An artificial neutral network approach to transformer fault diagnosis[J]. IEEE Transactions on Power Delivery, 1996, 11(4):18-23.
    [18]徐文,王大忠,周泽存等.结合遗传算法的人工神经网络在电力变压器故障诊断中的应用[J].中国电机工程学报, 1997, 17(2): 109-112.
    [19]高宁.基于模糊数学和神经网络的变电设备绝缘诊断技术的研究[D].西安交通大学硕士论文, 1997.
    [20]应鸿,李天云,张宇辉.变压器故障诊断的神经网络法[J].东北电力学院学报, 1996, 16(4):54-58.
    [21]李天云,应鸿,党德玉.基于局部特征量的神经网络方法在变压器故障诊断中的应用[J].电网技术, 1996, 20(11): 51-58.
    [22]王财胜,孙才新,廖瑞金.变压器色谱监测中的BPNN故障诊断法[J].中国电机工程学报,1997, 17 (5): 323-325.
    [23]钱政,罗承沐等.范例推理结合神经网络诊断变压器故障[J].高电压技术, 2000, 26(4): 4-8.
    [24]钱政,高文胜,尚勇等.基于范例推理的变压器油中气体分析综合诊断[J].电工技术学报, 2000, 15(5): 42-47.
    [25]钱政,严璋,钱嵘等.结合多元统计分析的神经网络在变压器故障者诊断中的应用[J].变压器, 2000, 37(4): 32-35.
    [26]臧宏志,胡玉华,俞晓冬.基于径向基的集成神经网络在变压器故障诊断中的应用[J].电力系统及其自动化学报, 2003, 15(1): 51-53.
    [27]梁永春,李彦明.改进型组合RBF神经网络的变压器故障诊断[J].高电压技术, 2005, 31(9): 31-33.
    [28]高宁,高文胜,严璋.基于模糊理论和自适应网络的油中气体分析诊断[J].高电压技术, 1997, 23(4): 22-25.
    [29]金明,吴新振,邓忠.基于Kohonen网络的电力变压器故障诊断方法[J].变压器, 1997,34(8): 28-30.
    [30]李洪兴,汪培壮.模糊数学[M].北京,国防工业出版社. 1994.
    [31]姚敏.计算机模糊信息处理技术[M].上海,上海科学技术文献出版社. 1999.
    [32]陈守煜.工程模糊集理论与应用[M].北京,国防工业出版社. 1998.
    [33]张鸣柳.模糊数学在电力变压器内部故障诊断中的应用研究[D].重庆大学硕士学位论文. 1997.
    [34]徐文,王大忠等.基于模糊理论的变压器故障诊断专家系统[J].电力系统自动化. 1995, 19(6): 32-37.
    [35]郭俊峰.基于模糊多层聚类的电力变压器DGA绝缘故障诊断专家系统研究[D].重庆大学硕士学位论文. 1999.
    [36]何跃英,江荣汉.基于模糊理论的电力设备故障诊断专家系统[J].电工技术学报. 1994, 9(1): 43-46.
    [37] Hong-Tzer Yang, Chiung-Chou Liao, Jeng-Hong Chou. Fuzzy Learning Vector Quantization Networks for Power Transformer Condition Assessment[J]. IEEE Transactions on Dielectricsand Electrical Insulation, 2001, 8(1): 143-149.
    [38]杨莉,尚勇,周跃峰,严璋.基于概率推理和模糊数学的变压器综合故障诊断模型[J].中国电机工程学报, 2000, 20(7): 19-23.
    [39]李俭,孙才新,陈伟根等.基于灰色聚类分析的充油电力变压器绝缘故障诊断的研究[J].电工技术学报, 2002, 17(4): 80-83.
    [40]孙才新,郭俊峰,郑海平等.基于行为的变压器油色谱分析模糊诊断专家系统研究[J].电工技术学报, 2001, 16(3): 49-52,66.
    [41]章政.基于遗传编程的电力变压器绝缘故障诊断模型研究[D].上海交通大学博士学位论文, 2007.
    [42] Huang Y. C., Yang H. T., Developing a new transformer fault diagnosis system through evolutionary fuzzy logic[J]. IEEE Transactions on Power System, 1997, 12(2): 761-767.
    [43] Yang H. T., Liao C. C., Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers[J]. IEEE Transactions on Power Delivery, 1999, 14(4): 1342-1350.
    [44] Su Q., Lai L.L., Austin P., A fuzzy dissolved gas analysis method for diagnosis of multiple incipient faults in a transformer[J]. IEEE Transactions on Power System, 2000, 15(2): 593-598.
    [45]张鸣柳,孙才新.变压器油中气体色谱分析中以模糊综合评断进行故障诊断的研究[J].电工技术学报, 1998, 13(1):51-54.
    [46] Syed M. I., Wu, T., Ledwich G.. A novel fuzzy logic approach to transformer fault diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2000, 7(2):177-186.
    [47]张冠军,钱政等.变压器绝缘诊断中的模糊ISODATA法[J].高电压技术. 1999, 25(1): 1-3.
    [48]宋斌,于萍,廖冬梅等.变压器故障诊断中溶解气体的模糊聚类分析[J].高电压技术, 2001, 27(3): 69-71.
    [49]王子健,何俊佳,尹小根.基于改进模糊ISODATA算法的变压器故障诊断[J].高压电器, 2006, 42(1): 11-13.
    [50]孙才新,郭俊峰,廖瑞金等.变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究[J].中国电机工程学报, 2001, 21(2): 37-41.
    [51]尹朝庆,尹浩.人工智能与专家系统[M].北京:中国水利水电出版社, 2002.
    [52] C.E. Riese, J.D. Stuart. TOGA-An Expert System for Transformer Fault Diagnosis, Artificial Intelligence Application in Chemistry[J]. American Chemical Society Ed., 1986: 25-30.
    [53]章子君.诊断变压器内部故障的专家系统[J].中国电力. 1994, 27(5): 48-51.
    [54]刁颐民.电力变压器试验和运行中的故障诊断的专家系统[J].高电压技术. 1991, 17(2): 32-36.
    [55]宋斌,于萍等.变压器油状态检测的专家系统及应用研究[J].变压器. 1998, 35(12): 27-30.
    [56] C.E.Lin. An expert system for transformer fault diagnosis using dissolved gas analysis[J]. IEEE Transactions on Power Delivery, 1993, 8(1): 231-238.
    [57]周建华,胡敏强等.基于思维模式融合故障诊断的专家系统与神经网络[J].电工技术学报. 1999, 14(2): 1-4,29.
    [58] Maizun BintiAhmad, Zulkefli bin Yaacob. Dissolved Gas Analysis Using Expert System[J]. Student Conference on Research and Development Proceedings. 2002: 313-316.
    [59] Zhengyuan Wang, Yilu Liu, Paul J. Griffin. Acombined ANN and Expert System Tool for Transformer Fault Diagnosis[J]. IEEE Transactions on Power Delivery. 1998. 13(4):1224-1229.
    [60]束洪春,孙向飞,司大军.电力变压器故障诊断专家系统知识库建立和维护的粗糙集方法[J].中国电机工程学报, 2002, 22(2): 31-35.
    [61]邓聚龙.灰色系统[M].北京:国防工业出版社. 1985.
    [62]邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社. 1993.
    [63] Deng Julong. Introduction to Grey Theory[J]. The Journal of Grey System. 1989, 1(1): 1-24.
    [64] Liu Sifeng, Lin Yi. An Introduction to Grey System: Foundations[J]. Methodologys and Applications, Slippery Rock. IIGSS Academic Publisher. 1998.
    [65]傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社. 1992.
    [66] Liu sifeng, Zhu Yongda. Grey-econometrics Combined Model[J]. The Journal of Grey System. 1996, 8(1): 103-110.
    [67] Deng Julong. Essential Models for Grey Orcsatin Control[J]. The Journal of Grey System. 1990,2(1): 1-10.
    [68]郑海平,孙才新,李俭等.诊断电力变压器故障的一种灰色关联度分析模式及方法[J].中国电机工程学报, 2001, 21(10): 106-109.
    [69]孙才新,李俭,邓海平等.基于灰色面积关联度分析的电力变压器绝缘故障诊断方法[J].电网技术, 2002, 26(7): 24-29.
    [70]李俭,孙才新,陈伟根等.基于灰色聚类分析的充油电力变压器绝缘故障诊断的研究[J].电工技术学报, 2000,17(4): 80-83.
    [71]王大忠,徐文,周泽存等.模糊理论、专家系统及人工神经网络在电力变压器故障诊断中的应用—基于油中溶解气体进行分析诊断[J].中国电机工程学报, 1996, 16(5): 349-353.
    [72]高宁.基于模糊数学和神经网络的变电设备绝缘诊断技术的研究[D].西安交通大学博士学位论文, 1997.
    [73]关杰林,徐国禹.模糊神经网络在变压器故障诊断中的应用[J].重庆大学学报, 1997, 20(6): 73-79.
    [74] Tomsovic K, Tapper M, Ingvarsson T. A Fuzzy Information Approach to Integration DifferentTransformer Diagnostic Method[J]. IEEE Transactions on Power Delivery, 1993,8(3): 1638-1646.
    [75]高文胜.基于油中溶解气体分析的电力变压器绝缘故障诊断方法[D].西安交通大学博士学位论文, 1998.
    [76] IEEE Guide for Loading Mineral Oil Immersed Transformers[S]. IEEE Std. C57.91. 1995.
    [77] B. C. Lesieutre, W. H. Hagman, J. K. Kirtltey Jr. An improved transformer top oil temperature model for use in an on-line monitoring and diagnostic system[J]. IEEE Transactions on Power Delivery, 1997, 12(1): 249-256.
    [78] D.J. Tylavsky, Q. He, G. A. McCulla, and J. R. Hunt. Sources of error in substation distribution transformer dynamic thermal modeling[J]. IEEE Transactions on Power Delivery, 2000, 15(1): 178-185.
    [79] G. Swift, T. S. Molinski, and W. Lehn. A fundamental approach to transformer thermal modeling– part I: theory and equivalent circuit[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 171-175.
    [80] G. Swift, T. S. Molinski, and W. Lehn. A fundamental approach to transformer thermal modeling– part II: field verification[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 176-180.
    [81] GB/T 15164-1994油浸式电力变压器负载导则,国家技术监督局, 1994.
    [82] M.K.Pradhan and T.S.Ramu. Prediction of Hottest Spot Temperature(HST) in Power and Station Tranformers[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1275-1283.
    [83] Hasse Nordman,Niclas Rafsback,and Dejan Susa. Temperature Responses to Step Changes in the Load Current of Power Transformers[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1110-1117.
    [84] Dejan Susa, Matti Lehtonen and Hasse Nordman. Dynamic Thermal Modelling of Power Transformers[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 197-204.
    [85] Dejan Susa, Matti Lehtonen. Dynamic Thermal Modelling of Power Transformers:Further Development-Part II[J]. IEEE Transactions on Power Delivery, 2006, 21(4): 1971-1980.
    [86] Zoran Radakovic and Kurt Feser. A New Method for the Calculation of the Hot-Spot Temperature in Power Transformers With ONAN Cooling[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1284-1292.
    [87] DL/T 722—2000变压器油中溶解气体和判断导则[S].中华人民共和国国家经济贸易委员会, 2000.
    [88] Guide for the interpretation of gases generated in oil immersed transformers[S]. ANSI/IEEE, 1994.
    [89]彭宁云.基于DGA技术的变压器故障智能诊断系统研究[D].西安交通大学博士学位论文, 1999.
    [90]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社, 2003.
    [91] Kreinovich V, Sirisaengtaksin O, Cabren S. Waveket neural networks are asymptotically optimal approximators for functions of one variable. [C]. Florida, USA: Proceeding of IEEE ICNN’. 1994.1: 299-304.
    [92] Wald L.. Definitions and terms of reference in data fusion[M]. International Archives of Photogrammetry and Remote Sensing, 1999. 32(7): 3-4.
    [93] Wald, L.. Some terms of reference in data fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999. 37(3): 1190-1193.
    [94] Hall, D.L. and J. Llinas. An introduction to multi-sensor data fusion[J]. Proceedings of the IEEE, 1997. 85(1): 6-23.
    [95]康耀红.数据融合理论与应用[M].西安:西安电子科技大学出版社, 1997.
    [96]沈雪芹,丁宇新.小波变换与小波神经元的选择[J].河北工业大学学报, 1996, 25(2): 83-88.
    [97]王岭,焦李成.区间估计的FWNN及其区间估计学习算法[J].电子学报, 1998, 26(4): 41-45.
    [98]何振亚,李文化,蔚承建.用于信号逼近的自适应时延小波神经网络[J].电子科学学刊, 1998, 20(5): 604-610.
    [99]张西宁.连续参数小波网络在机械状态预报中的应用[J].西安交通大学学报, 1999, 33(3): 86-89.
    [100] Q. Zhang. Using wavelet network in nonparametric estimation[J]. IEEE transactions on Neural Networks, 1997, 8(2): 227-236.
    [101]沈德明,高门.小波网络在振动信号时间序列预报中的应用[J].振动测试与诊断, 2000, 20(3): 186-189.
    [102]陈惠涛,黄文虎.基于小波网络的时间序列预报及其应用[J].机械强度, 1999, 21(1): 1-3.
    [103]王群仙,陈增强,袁著祉.基于小波网络的非线性系统建模与控制[J].控制与决策. 1999, 14(4): 359-363.
    [104]江涌.刘磊,蔡文生等.小波神经网络用于原子半径的研究[J].中国科技大学学报. 1998, 28(6): 644-650.
    [105]何强,黄生,毛士艺等.用于信号逼近和分类的自适应周期小波神经网络[J].信号处理. 2000, 16(1): 42-45.
    [106] W. Qian, P. Clarke. Wavelet-based neural network with fuzzy-logic adaptively for nuclear image restoration[J]. Proceedings of IEEE. 1996, 84(10): 1458-1473.
    [107]马维祯,殷瑞祥.子波分析与子波变换[M].广州:华南理工大学出版社, 1996.
    [108]赵学智,陈统坚,陈文戈.奇异性信号检测时小波基的选择[J].华南理工大学学报, 2000, 28(10): 75-80.
    [109]崔锦泰.小波分析导论[M].西安:西安交通大学出版社, 1995.
    [110]秦前清,杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社, 1995.
    [111]虞和济,陈长征,张省等.基于神经网络的智能诊断[M].北京:冶金工业出版社, 2000.
    [112]吕伟杰.小波网络与多模型自适应控制理论的研究[D].天津大学博士毕业论文, 2002.
    [113] Mallat S. G. Multifrequency channel decompositions of images and wavelet models[J]. IEEE Transactions on ASSP, 1989, 37(12): 2091-2110.
    [114]高协平.小波参数化与小波神经网络研究[D].湖南大学博士学位论文, 2003.
    [115] Zhang Q, Benveniste A. Wavelet networks[J].IEEE Transactions. on Neural Networks, 1992,3(6): 889-898.
    [116] Pati Y C, Krishnaprasad P S. Analysis and synthesis of feedforward neural networks using discrete affine wavelet[J]. IEEE Transactions on Neural Networks,1993,4(1): 73-75.
    [117] Zhang Jun, Walter G, Miao Y,et al. Wavelet neural networkss for function learning[J]. IEEE Transactions on Signal Process,1995,43(6): 1485-1497.
    [118]赵学智.广义自适应小波分析及其在机械测试信号处理中的应用[D].华南理工大学博士毕业论文, 2001.
    [119]高大启.有教师的线性基本函数前向三层神经网络结构研究[J].电路与系统学报, 1997, 2(3): 31-37.
    [120]丁晓群,孙军,袁宇波等.基于BP网络的故障诊断方法的改进[J].电网技术, 1998, 22(11): 62-63.
    [121]周志华,尹旭日,陈兆乾等.神经网络在电力变压器运行状态检测中的应用[J].自动化学报, 2002, 28(2): 301-305.
    [122]葛培明.改进的遗传算法及其在工程优化中的应用[D].西南交通大学博士毕业论文, 2006.
    [123]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社, 2003.
    [124] Michalewicz Z. Genetic algorithms + data structures=evolution programs (3rd rev. and extended ed.).[M] New York: Springer– Verlag, 1996.
    [125] Holland, J. H. Adaptation in natural and artificial systems[M]. Ann Arbor, Michigan: University of Michigan Press, 1975.
    [126]李敏强,寇纪淞等.遗传算法的基本理论与应用.北京:科学出版社, 2003.
    [127]杨凡,赵建民.一种改进的自适应遗传算法在指纹图像分割中的应用[J].计算机科学, 2004, 31(11): 230-232.
    [128]曾红.电力变压器的温度动态计算模型及寿命预测和负载能力计算[D].电力工业部电力科学研究院博士学位论文[D], 2000.
    [129]凌愍等.变压器运行规程中对“负载导则”的应用[M].电力工业部电力科学研究院技术报告, 1994.
    [130]徐树铨.电力变压器运行[M].北京:水利电力出版社, 1993.
    [131] W. H. Tang, Q. H. Wu and Z. J. Richardson. Equivalent heat circuit based power transformer thermal model[J]. IEE Pro-Electr. Power Appl.. 2002, 149(2): 87-92.
    [132] Tang, W. H., He, S., et al. A particle swarm optimiser with passive congregation approach to thermal modelling for power transformers[C]. The 2005 IEEE Congress on Evolutionary Computation. 2005, 3: 2745-2751.
    [133] IEEE Task Force to Develop a Loading Guide. Progress Report on a Guide for Loading Oil-Immersed Power Transformers Rated in Excess of 100 MVA[J]. IEEE Transactions on Power Apparatus and Systems. 1981, 100(8): 4020-4032.
    [134] Incropera F.P., DeWitt D.P.. Fundamental of Heat and Mass Transformer[M], 4th ed., John Wiley & Sons, 1996: 886.
    [135] Rice W. Chester. Free and Forced Convection of Heat in Gases and Liquides– II[J]. Physical Review. 1923, 21.
    [136] King W.J. The basic Laws and Data of Heat Transmission, Mechanical Engineering[M]. Mar.-Aug., 1932: 191.
    [137] Karsai K., Kerenyi D., and Kiss L. Large Power Transformers[M]. Elesevier Science Publishers, 1987: 607.
    [138] Grubb R.L., Hudis M., and Traut A. R. A Transformer Thermal Duct study of various Insulating Fluids[J]. IEEE Transactions on Power Apparatus and Systems. 1981, 100(2): 466-473.
    [139] Electrical Transmission and Distribution Reference Book[M]. Westinghouse, East Pittsburgh, PA, 1950.
    [140] Jyh-shing Roger Jang, Eiji Mizutani. Levenberg-Marquardt method for ANFIS learning[C]. Fuzzy Information Processing Society, Biennial Conference of the North American. 1996: 87-91.
    [141] W. H. Tang, Q. H. Wu, Z. J. Richardson. A simplified transformer thermal model based on thermal-electric analogy[J]. IEEE Transactions on Power Delivery. 2004, 19(3): 1112-1119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700