用户名: 密码: 验证码:
基于西部太阳能烟囱热气流发电及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能烟囱发电技术是一种适宜大规模发电的热气流发电技术。我国特别是人烟稀少的西部地区具有发展大规模太阳能发电系统的优势:广袤的荒地、巨大的山体高差、丰富的太阳能资源和日较差资源。太阳能烟囱热气流利用系统在西部地区有极大的应用潜力。然而,太阳能烟囱发电技术能量转换效率低、投资大、安全可靠性难以保证,至今仍未建成商业性电站,其基础研究及应用模式都有待深入研究。因此,研究和开发综合成本低、运行维护方便、适合西部地域特征的太阳能热气流发电系统服务于西部能源与生态环境的改造具有巨大潜力和现实意义。
     本文主要研究了基于西部特征的太阳能烟囱发电技术,重点开展了以下两方面的研究。
     (1)建造了国内第一套小型太阳能烟囱发电实验原型,并展开了相应的实验及数值模拟的基础研究。
     设计并建造了一套集热棚直径10 m,烟囱高8 m的小型太阳能烟囱发电实验原型,并开展了实验研究。实验结果表明:在集热棚内,从入口向中部汇集过程中,空气温度逐渐升高,速度先减后增,在烟囱内,随着高度增加,空气温度略有降低;不同天气条件下,棚内空气温度较高,晴天、阴天温升可达到20 K和10 K以上,集热棚有较好的温室效应;在早上,烟囱口附近出现逆温层,而且逆温层持续时间随太阳辐射增强而变短,逆温层的出现将使得太阳能烟囱发电系统运行较为困难。太阳能烟囱热气流发电系统中的流动和换热模型解析以及模型应用尚待明确的问题主要集中在空气可压缩性问题、集热棚内对流换热系数确定、涡轮处压降因子确定、涡轮发电机组模拟及效率问题、商业化CFD软件自带浮升力模型模拟问题等。针对以上问题,本论文开展了三类太阳能烟囱发电系统的数值模拟方法。编写了SIMPLE类算法三维数值模型,用于对发电系统进行三维模拟,方便研究者自行调节。
     通过编写UDF定义流体密度和精确的浮升力项,对Fluent软件进行了二次开发,构建一套三维可压缩流浮升力模型,成功地克服了因商业化CFD软件自带浮升力模型假设过多的缺点而引起解的偏差较大的问题。编写了“1+1”维可压缩流数值模型,通过联合热网方程求解。该模型包括了主要的流动阻力、涡轮处的压降和温降、随高度而变的大气压力和温度、集热棚内空气的混合流(自然对流和强迫对流)等。该模型假设较少,基本上解决了现有模型应用中尚需明确的问题。
     通过将以上模型模拟的结果与实验数据或权威模型的计算结果比较,分别验证了以上模型。这些模型为后续的研究创造了条件。讨论了采用商业化CFD软件自带的浮升力模型——Boussinesq近似浮升力模型和全浮升力模型模拟大规模太阳能烟囱发电系统的准确性。结果表明:以高1500 m、直径160 m的大型烟囱为例,全浮升力模型和Boussinesq近似浮升力模型造成的发电量的偏差分别达到42%倍和33%倍。通过利用“1+1”维可压缩流数值模型进行计算,探讨了太阳辐射强度、结构参数对太阳能烟囱系统性能的影响规律。结果表明:太阳能烟囱系统的发电功率随太阳辐射强度、烟囱高度或棚直径的增加而增加。
     (2)基于分析西部地域特征,提出了几种不同的太阳能烟囱热气流利用模式,并对大规模漂浮烟囱的经济性进行了分析,探讨了大型太阳能烟囱对局部气候的影响。
     结合我国西部地域特点,提出了不同的太阳能热气流利用模式。首次提出了太阳能烟囱直接抽取地下水的概念,设计了太阳能烟囱直接抽取地下水模型,分析了在我国西北边远地区,利用中小规模太阳能烟囱热气流系统抽取地下水提供生活用水和农业灌溉用水的可行性和经济性,结果表明:中小规模太阳能烟囱热气流系统在电网输入困难且风力资源贫乏的偏远山区有很大的应用潜力。讨论了太阳能烟囱热气流抽水装置的额定驱动功率与服务人口规模和地下水源的关系。介绍了三类结合山体的复合式太阳能烟囱发电系统的特性,从效率、建造难度、成本、安全等方面研究和评价了这三类山体复合式烟囱发电系统。和同纬度的传统竖直烟囱系统相比,斜坡集热棚式系统的效率最高,45°倾角的斜坡集热棚式系统的效率提高了近40%,建造在15°倾角山脚上斜烟囱式和山洞烟囱式系统的效率提高了近20%。与高大山体结合的三类复合式发电系统可行性大、“烟囱”高、安全性好、投资较低,有效地解决了超高竖直烟囱带来的安全问题以及投资太大等问题。
     对大气风力作用下的漂浮烟囱进行了受力平衡分析,讨论了大气风力和净浮力对发电功率的影响规律。结果表明:大气风力越大或净浮力越小,烟囱偏角将越大,发电功率将越小。漂浮烟囱更适用于大风不频繁的地区,地面主风均速在3.5 m/s以下是比较适宜的条件。构建了一套经济学模型,估算了大规模漂浮烟囱发电系统的最低销售价格,表明了在考虑温室气体的减排效益且获得低利率贷款情况下,200 MW以上大规模漂浮烟囱发电系统的电力最低销售价格低于0.58元/kW·h,可与火力发电水平相当。
     对大型太阳能烟囱出口暖湿气流在高空冷大气中的对流和换热过程进行了数值模拟研究。首次提出了大型太阳能烟囱可能影响局部气候。进一步探讨了降水的可能性和降水强度随着烟囱结构参数、气象条件的变化规律,并讨论了降水机会增加而产生的环境、经济效益。结果表明:烟囱越高,相对湿度越大,或大气风速越小,降水的可能性和降水强度越大;水汽冷凝过程中释放出的潜热促进来流继续上升,从而增大降水面积。
     本论文的研究成果为太阳能烟囱电站在我国西部地区的实际建立和优化设计提供了一定的理论上的依据和指导。
Solar chimney power system (SCPS) is a thermal system that is suitable for large-scale power generation. There are vast desertified regions, high-fall mountains, abundant available solar radiation, and large diurnal temperature in Western China where SCPS has large potential of application. However, the energy conversation efficiency of SCPS is low, its investment is large, and its safety is not good. By now, any commercial power plant has been not built up. Further study on fundamental problems and application of SCPS can be performed. It is significant to develop cost-effectiveness SCPS adapting to the local topography in Western China to supply energy.
     The dissertation is studying SCPS and its application in Western China and divided into the following two sections.
     The first section: A testing prototype of SCPS is built and the experimental and theoretical investigations of SCPS are performed.
     A testing prototype of SCPS is designed and built in China, which has a collector 10 m in diameter and a chimney 8 m high. Experimental investigation of SCPS is performed. The results show that the temperature of air increases along a radius from the inlet to the outlet, the velocity of air firstly decreases and then increases, the temperature of air decreases with heights in the chimney, the temperature rise in the collector reaches more than 20 K in a sunny day and 10 K in a cloudy day, a temperature inversion occurs around the chimney outlet in the morning and its duration decreases with higher solar radiation, and temperature inversion will block the operation of SCPS.
     The problems of the models modeling the flow and heat transfer in SCPS include compressibility, convective heat transfer between the flow and the ground, pressure drop coefficient, turbine efficiency, simulation using commercial computational fluid dynamics (CFD) software. As for the above problems, three numerical simulation models are developed to simulate the flow and heat transfer in SCPS. A 3D code is written in C based on SIMPLE algorithm. This code written can be free adjusted by the researcher. The CFD programme Fluent is re-developed by introducing functions of accurate density and buoyancy, which improves the inaccuracy of simulation using the buoyancy models automatically included in CFD programmes where some crucial assumptions are made. A‘1+1’dimensional compressible flow code is written by Matlab. In the model, natural and forced convection effects is considered for convection between the air flow and the ground and that between the air flow and the collector roof, flow resistance in the collector and chimney, and the pressure drop and temperature drop at the turbines are included, the ambient pressure and temperature changes with heights. This model has few assumptions and is more realistic, which solves the above problems of other models modeling the flow and heat transfer in SCPS.
     All the modes are validated by the comparisons of the simulation and the measurements or the calculation using the authoritative model. The deviation of the simulated results using the re-developed buoyancy model and the results using the buoyancy models (i.e. Full buoyancy model and Boussinesq model) automatically included in CFD programmes in a proposed 1500 m high solar chimney is estimated. The results show that Full buoyancy model and Boussinesq model give 42% and 33% times more power respectively than our model. Then, the influence of different solar radiations and dimensions on the power output are analyzed by using the‘1+1’dimensional compressible flow code, respectively. The results show that the power capacity of SCPS increases with the increase in solar radiation, chimney height, or collector diameter.
     The second section: Adapting to the special topography in Western China, various solar chimney thermal systems are proposed, economic analysis of large scale SCPS and its influence on local climate are performed, respectively.
     A concept of solar chimney groundwater pumping is first proposed and the solar chimney groundwater pumping system (SCGPS) is designed. The feasibility and economics of the use of small and mediumsmall scale SCGPS for driving to pump groundwater for drinking and agricultural use are discussed. The results show that the small and mediumsmall scale SCGPS has large potential at the remote villages where grid electricity is not reached and wind is plain. The relation of driving power capacity of SCGPS and its service scope and the depth of groundwater is investigated. The performances of three combined power systems with mountains are investigated. The performances of the three combined power systems with high mountains are analyzed by comparing their efficiency, building difficulty, investment, safety and the likes. The efficiency of the sloped collector system is the highest. The efficiency of the sloped collector system with 45°inclination mountain-side is about 40% more than, and the efficiencies of the sloped chimney system and tunnel chimney system with 15°inclination mountain foot are about 20% more than the classical system at the same latitude. It’s concluded that compared to the classical reinforced concrete SCPS, the three combined power systems with high mountains are more available and has potential of reaching high height for‘chimney’, good safety and low investment..
     Force equilibrium of floating solar chimney is established. The influence of wind velocity and net buoyancy of chimney on the power capacity of large scale floating solar chimney power system (FSCPS) are discussed. The analyses show that the optimal condition for floating solar chimney power system is that annual wind velocity is below 3.5 m/s at the ground level. Economic analyses of FSCPS are performed by using the developed economic model including the carbon credits. The results show that the minimum electricity price of more than 200 MW FSCPS under financial incentive of soft loan is less than 0.58 yuan/kWh, which is competitive with coal-fired plant.
     Flow and heat transfer of the plume from the gigantic chimney in the cross-section atmosphere are simulated. Viewpoint that the gigantic solar chimney is likely to affect the local climate is presented. The influences of chimney height, relative humidity, and wind velocity on the potential precipitation area and precipitation strength are analyzed. Environmental and economic benefits of increasing chance of precipitation around the large scale FSCPS are analyzed. It is concluded that higher chimney, bigger relative humidity of atmosphere, bigger velocity of wind increased the potential precipitation area and precipitation strength. In addition, latent heat produced in condensation process helps rise of plume by heating the plume.
     The investigation in this dissertation would provide the theoretical basis for the design and construction of solar chimney power plant in Western China, to some extent.
引文
[1] Service R F. Is It Time to Shoot for the Sun. Science, 2005, 309: 548-551
    [2] Gullison R E, et al. Tropical forests and climate policy. Science, 2007, 316: 985-986
    [3] IPCC (Intergovernmental Panel on Climate Change Working Group) 2001 Climate Change 2001: Impacts, Adaptation and Vulnerability IPCC Working Group 2, 2001
    [4] Kerr R A. Gloabal Warming is changing the world. Science, 2007, 316: 188-190
    [5] Rosenzweig C, Parry M L. Potential impact of climate-change on world food-supply. Nature, 1994, 367: 133-138
    [6] Lobell D B, Field C B. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letter, 2007, 2: 1-7
    [7] Kalaugher L. Carbon dioxide increase causes air pollution deaths http://environmentalresearchweb.org/cws/article/research/32401. 2008-1-11
    [8] Kerr R A. Climate Change: Is Battered Arctic Sea Ice Down For the Count? Science, 2007, 318: 33-34
    [9]联合国.联合国气候变化框架公约的京都议定书, 1998. http://www.un.org/chinese/climatechange/docs/kpchinese.pdf
    [10] Stern N. The Economics of Climate Change: The Stern Review. Cambridge, UK: Cambridge University Press, 2007
    [11] Nordhaus W. Critical Assumptions in the Stern Review on Climate Change. Science, 2007, 317: 201-202
    [12] Intergovernmental Panel on Climate Change (IPCC). IPCC Fourth Assessment Report (AR4): Climate Change 2007. http://www.ipcc.ch
    [13]中华人民共和国国民经济和社会发展第十一个五年规划纲要. http://kj.cqit.edu.cn/Accessory/20075512324676.pdf, 2008
    [14] Lester B. Sustainable science: Offsets: Worth the price of emission? Science, 2007, 318: 37
    [15] Bock B R, Rhudy R G, Herzog H J. CO2 storage and sink enhancements: Developing comparable economics. http://sequestration.mit.edu/pdf/ghgt6_paper_H4-1.pdf, 2007-10-16
    [16] Service R F. Is it time to shoot for the sun? Science, 2005, 309: 548-551
    [17]张建锋.太阳能烟囱温度场流动场数值模拟研究.硕士学位论文.华中科技大学, 2003
    [18]贾文瑞,徐青,王燕玲,张健民,张宏洋. 21世纪中国能源、环境与石油工业发展.北京:石油工业出版社, 2002
    [19]中华人民共和国国家统计局.中国统计年鉴2006.北京:中国统计出版社, 2007
    [20]潘垣,辜承林,周理兵等.太阳能热气流发电及其对我国能源与环境的深远影响.世界科技研究与发展, 2005, 25(4): 7-12
    [21]马胜红.实施风力发电、生物质直燃发电、光伏发电溢出成本全网分摊的可行性分析.中国能源, 2005, 27 (10):5-13,45
    [22] Schlaich J. The solar chimney: Electricity from the sun. Stuttgart, Germany: Edition Axel Menges, 1995
    [23] Dennis C. Solar energy: Radiation nation. Nature, 2006, 443: 23-24
    [24] Woody T. Tower of power. In: the 31 best business ideas in the world. Business 2.0. 2006, 7: 94-102
    [25] Papageorgiou C D. Floating solar chimney: The Link towards a Solar Future. In Proc. ISES 2005 Solar World Congress Conference, Orlando, Florida, USA, August 2005
    [26] Günther H. hundert Jahren l - Die künftige Energieversorgung der Welt, Kosmos, Gesellschaft der Naturfreunde. Stuttgart: Franckh'sche Verlagshandlung, 1931
    [27] Pasumarthi N, Sherif S A. Experimental and theoretical performance of a demonstration solar chimney model - Part I: mathematical model development. International Journal of Energy Research, 1998, 22: 277-288
    [28] Haaf W, Friedrich K, Mayr G, Schlaich J. Solar chimneys, part I: principle and construction of the pilot plant in Manzanares. Int. J. Solar Energy, 1983, 2: 3-20
    [29] Haaf W. Part II: Preliminary test results from the Manzanares pilot plant. International Journal of Solar Energy, 1984, 2: 141-161
    [30] Enviromission. Solar mission project: clean green continuous energy. http://www.enviromission.com.au/solar-mission-project/solar-mission.htm
    [31] Lodhi M A K. Application of helio-aero-gravity concept in producing energy and suppressing pollution. Energy Conversion & Management, 1999, (3): 407-421
    [32]黄国华,施玉川.斜坡太阳能热气流发电的可行性分析.太阳能, 2005, (4): 46-47
    [33]世界最高楼迪拜塔工期推迟可能成烂尾楼. http://news.sohu.com/20080307/n255587992.shtml
    [34]蒋复初,吴锡浩,王书兵,傅建利.中国气候雪线空间分布特征.地质力学学报, 2002, 8(4): 289-296
    [35]侯小刚.隧道式烟囱太阳热风发电系统.太阳能, 2005, (1): 41-42
    [36] Bilgen E, Rheault J. Solar chimney power plants for high latitudes. Solar Energy, 2005, 79: 449-458
    [37]王一平,方振雷,朱丽,杨智勇,王俊红,韩立君.太阳能烟囱综合利用海水系统的初步研究.太阳能学报, 2006, 27: 382-387
    [38]王一平,王俊红,朱丽,杨智勇,方振雷.太阳能烟囱发电和海水淡化综合系统的初步研究.太阳能学报, 2006, 27: 731-736
    [39]朱丽,王俊红,王一平,杨智勇,方振雷.结合水力发电利用太阳能烟囱技术强化海水淡化初探.天津大学学报, 2006, (5): 575-580
    [40] Kashiwa B A, Kashiwa C B. The solar cyclone: A solar chimney for harvesting atmospheric water. Energy, 2007, in press, doi:10.1016/j.energy.2007.06.003.
    [41] Papageorgiou C D. Floating Solar Chimney.WO2004/085846 A1/07-10-2004
    [42] Papageorgiou C D. External Wind Effects on Floating Solar Chimney. In: IASTED Proceedings of Power and Energy Systems, EuroPES 2004, Conference, Rhodes, Greece, July 2004, 159-163
    [43] Papageorgiou C D. Optimum Design for Solar Power Stations with Floating Solar Chimneys. In: proceedings of ISES Asia Pacific Solar Energy Conference, Kwangju, Korea, October 2004, 763-772
    [44] Papageorgiou C D. Turbines and Generators for Floating Solar Chimney Power Stations. 2007 In: proceedings of the IASTED Conference on European Power and Energy Systems, Rhodes, Greece June 2006, 26-28
    [45] Communication with Dr Denis D. 2007
    [46] Beerbaum S, Weinrebe G. Solar thermal power generation in India-a techno-economic analysis. Renewable Energy. 2000, 21(2): 153-174
    [47]杨家宽,李劲,肖波等.太阳能烟囱发电新技术.太阳能学报, 2003, (4): 565-570
    [48] Wired News. Solar Tower of Power Finds Home. San Francisco, CA: Wired News, 2005. http://www.wired.com/news/technology/0,1282,66694,00.html
    [49] James F. EnviroMission's Solar Tower Of Power, March, 2006. http://energy.seekingalpha.com/article/14935,
    [50] Office of Navajo and Hopi Indian relocation申明, 2006-11-7
    [51] Technical agreement about floating solar chimney power plant, 2008
    [52] Schlaich J, Bergermann R, Schiel W, Weinrebe G. Design of Commercial Solar Updraft Tower Systems-Utilization of Solar Induced Convective Flows for Power Generation. Journal of Solar Energy Engineering, 2005, 127: 117-124
    [53] Krisst R J K. Energy transfer system. Alternative Source Energy, 1983, 63: 8-11
    [54] Kulunk H. A prototype solar convection chimney operated under Izmit conditions, in: Proceedings of the 7th Miami International Conference on Alternative Energy Sources, Veiroglu TN (ed.), 1985, vol. 162
    [55]杨家宽,张建锋,李进军等.太阳能烟囱发电装置建造和实验研究.中国太阳能学会2003年学术年会论文集.上海:上海交通大学出版社, 2003
    [56] Ferreira A G, Maia C B, Cortez M F B, Valle R M. Technical feasibility assessment of a solar chimney for food drying. Solar Energy, 2008, 82: 198-205.
    [57] Mullet L B. The solar chimney overall efficiency, design and performance. International Journal of Ambient Energy, 1987, 8 (1): 35-40
    [58] Yan M Q, Sherif S A, Kridli G T, et a1. Thermo-fluids analysis of solar chimneys. Ind Apphc nuid Mech, ASMEFED-2, 1991: 125-130.
    [59] Padki M M, Sherif S A. A mathematical model for solar chimneyslA J. Proceedings of 1992 International Renewable Energy Conference. Amman, Jordan, 1992, 289-294
    [60] Pasumarthi N, Sherif S A. Experimental and theoretical performance of a demonstration solar chimney model-Part II: experimental and theoretical results and economic analysis. International Journal of Energy Research, 1998, 22: 443-461
    [61] Kreetz H. Theoretische Untersuchungen und Auslegung eines temporaren Wasserspeichers fur das Aufwindkraftwerk. Diplomarbeit. Energie und Verfahrenstechnik der TU Berlin, 1997
    [62] Padki M M, Sherif S A. On a simple analytical model for solar chimneys. International Journal of Energy Research, 1999, 23: 345-349
    [63] Bernardes MA dos S, Valle R M, Cortez M F. Numerical analysis of natural laminar convection in a radial solar heater. International Journal of Thermal Science, 1999,38: 42-50
    [64] Gannon A J, Von Backstr?m T W. Solar chimney cycle analysis with system loss and solar collector performance. Journal of Solar Energy Engineering, 2000, 122: 133-137
    [65] Von Backstr?m T W, Bernhardt A, Gannon A J. Pressure Drop in Solar Power Plant Chimneys. Journal of Solar Energy Engineering, 2000, 122: 134-137
    [66] Von Backstr?m T W, Gannon A J. Solar chimney turbine characteristics. Solar Energy, 2003, 76: 235-241
    [67] Gannon A J, Von Backstr?m T W. Solar Chimney Turbine Performance. Journal of Solar Energy Engineering, 2003, 125: 101-106
    [68] Von Backstr?m T W, Gannon A J. Compressible Flow Through Solar Power Plant Chimneys. Journal of Solar Energy Engineering, 2000, 122: 138-145
    [69] Kirstein C F, Von Backstr?m T W. Flow through a solar chimney power plant collector-to-chimney transition section. Journal of Solar Energy Engineering, 2006, 128: 312-317
    [70] Von Backstr?m T W, Fluri T P. Maximum fluid power condition in solar chimney power plants - An analytical approach. Solar Energy, 2006, 80: 1417-1423
    [71] Fluri T P, Von Backstr?m T W. Comparison of modelling approaches and layouts for solar chimney turbines. Solar Energy, 2007, in press, doi:10.1016/j.solener.2007.07.006
    [72] Bernardes M A dos S, Vob A, Weinrebe G. Thermal and technical analyzes of solar chimneys. Solar Energy, 2003, 75: 511-524
    [73] Bernardes M A dos S. Technische, ?konomische und ?kologische Analyse von Aufwindkraftwerken, PhD Thesis, IER, Univ. Stuttgart, Germany, 2004.
    [74] Pretorius J P, Kr?ger D G.. Critical evaluation of solar chimney power plant performance. Solar Energy, 2006, 80: 535-544
    [75] Pretorius J P, Kr?ger D G. Solar chimney power plant performance. Journal of Solar Energy Engineering, 2006, 128: 302-311
    [76] Pretorius J P. Solar Tower Power Plant Performance Characteristics, Master Thesis, Dep. of Mech. Eng., Univ. of Stellenbosch, South Africa, 2004
    [77] Pretorius J P. Optimization and Control of a Large-Scale Solar Chimney Power Plant. PhD Thesis, Dep. of Mechanical Eng., Univ. of Stellenbosch, South Africa, 2006.
    [78] Ninic N. Available energy of the air in solar chimneys and the possibility of itsground-level concentration. Solar Energy, 2006, 80: 804-811
    [79] Onyango F N, Ochieng R M. The potential of solar chimney for application in rural areas of developing countries, Fuel, 2006, 85: 2561-2566
    [80] Sawka M. Solar Chimney-Untersuchungen zur Strukturintegrit?t des Stahlbetonturms. Bergische Universit?t Wuppertal, 2004.
    [81] Harte R, Van Zijl G P A G. Structural stability of concrete wind turbines and solar chimney towers exposed to dynamic wind action. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95: 1079-1096
    [82] Denantes F, Bilgen E. Counter-rotating turbines for solar chimney power plants, Renewable Energy, 2006, 31: 1873-1891
    [83] Bonnelle D. Solar Chimney, water spraying Energy Tower, and linked renewable energy conversion devices: presentation, criticism and proposals. Doctoral thesis, University Claude Bernard-Lyon 1, France, July, 2004. Registration Number: 129-2004
    [84] Pastohr H, Kornadt O, Gurlebeck K. Numerical and analytical calculations of the temperature and flow field in the upwind power plant. International Journal of Energy Research, 2004, 28: 495-510
    [85] Schwarz G, Knauss H. Str?mungstechnische Auslegung des Aufwindkraftwerks Manzanares (Aerodynamic design of the solar chimney power plant in Manzanares), Techical report, Institut für Aerodynamik, Unversit?t Stuttgart, 1981, in German
    [86] Koonsrisuk A, Chitsomboon T. Dynamic similarity in solar chimney modeling. Solar Energy, 2007, 81: 1439-1446
    [87] Schlaich J, Bergermann R, Schiel W, Weinrebe G. Sustainable Electricity Generation with Solar Updraft Towers. Structural Engineering International, 2004, 3
    [88] Fluri T P, Pretorius J P, van Dyk, Von Backstr?m T W, Kr?ger D G, van zijl G P A G. Cost analysis of Solar Chimney Power Plants. In Proc. EuroSun conf., Glasgow, UK, 2006
    [89] Ketlogetswe C, Fiszdon J K, Seabe O O. Solar chimney power generation project - The case for Botswana. Renewable and Sustainable Energy Reviews, 2007, in press, doi:10.1016/j.rser.2007.03.009
    [90] Lautenschlaqer H, Haaf W, Schlaich J. New results from the solar chimney prototype and conclustions for large power plants. Commissioin of the EuropeanCommunities, Europen, 1985:231-235
    [91] Louis T. Optiminzing collector efficiency of a solar chimney power plant. IEEE 1985: 219-222
    [92] Robert R. Spanish solar chimney nears completion. MPS Review. 1981, (6):21-23
    [93] Robert R. Solar prototype development in Span show great promise. MPS Review. 1982, (2): 21-23
    [94] Robert R. Hot air starts to rise through Span’s solar chimney. Electrical Review. 1982, 210(15): 26-27
    [95] Papageorgiou C D. Floating solar chimney technology: a solar proposal for China. In Proc. ISES 2007 Solar World Congress Conference, Beijing, China, 2007, pp: 172-176
    [96] Bernardes M A dos S, Von Backstr?m T W, Kr?ger D G. Critical evaluation of heat transfer coefficients applicable to solar chimney power plant collectors. In Proc. ISES 2007 Solar World Congress Conference, Beijing, China, 2007, pp: 1706-1713
    [97] Dai Y J, Huang H B, Wang R Z. Case study of solar chimney power plants in Northwestern regions of China. Renewable Energy, 2003, 28: 1295-1304
    [98]代彦军,黄海宾,王如竹.太阳能热风发电技术应用于宁夏地区的研究.太阳能学报, 2003, 24: 408-412
    [99]葛新石,叶宏.太阳烟囱发电系统及其固有的热力学不完善性分析.太阳能学报, 2004, 25: 263-268
    [100] Wei J, Wang F H, Zhao L. Research on the best slope gradient of slope solar induced convective flows power generation system. In Proc. ISES 2007 Solar World Congress Conference, Beijing, China, 2007, pp: 1795-1799
    [101]沈洪嘉.高效太阳能热气流发电系统的可行性分析.中国建设动态(阳光能源), 2006, (1):72-74
    [102] Ming T Z, Liu W, Xu G L, Xiong Y B, Guan X H, Pan Y. Analytical and numerical investigation of the solar chimney Numerical simulation of the solar chimney power plant systems coupled with turbine. Renewable Energy 2008, 33: 897-905
    [103] Ming T Z, Liu W, Xu, G L. Analytical and numerical investigation of the solar chimney power plant systems. International Journal of Energy Research, 2006, 10: 1002-1191
    [104]明廷臻,刘伟,许国良,杨昆.太阳能热气流电站系统的热力学分析.华中科技大学学报(自然科学版), 2005, 33: 1-4
    [105]刘伟,明廷臻,杨昆等. MW级太阳能热气流电站传热和流动特性研究.华中科技大学学报(自然科学版), 2005, 33: 5-7
    [106]明廷臻,刘伟,许国良,范爱武.太阳能热气流电站系统研究.工程热物理学报, 2006, 27: 505-507
    [107]卫军,刘展科,潘垣等.超高太阳能烟囱的结构建造的可行性分析.全国结构计算理论与工程应用学术会议论文集, 2003, pp: 198-201
    [108]卫军,谈颋,周锡武,张晓霞.超高太阳能烟囱结构可靠度计算分析.广州城市职业学院学报, 2007, 1: 80-86
    [109] Zhou X P, Yang J K, Xiao B, et al. Experimental study of the temperature field in a solar chimney power setup. Applied Thermal Engineering, 2007, 27: 2044-2050
    [110] Zhou X P, Yang J K, Xiao B, et al. Simulation of a pilot solar chimney power equipment. Renewable Energy, 2007, 32: 1637-1644
    [111] Zhou X P, Yang J K, Xiao B, et al. Special Climate around a Commercial Solar Chimney Power Plant. Journal of Energy Engineering, Transaction of ASCE, 2008, 134: 6-14.
    [112] Zhou X P, Yang J K. Temperature field of solar collector and application potential of solar chimney power systems in China. Journal of the Institute of Energy, 2008, 81: 25-30
    [113] Zhou X P, Yang J K, Wang F, Xiao B. Economic analysis of floating solar chimney power plant. Renewable & Sustainable Energy Reviews, 2008. In press
    [114]周新平,杨家宽,肖波等.太阳能烟囱发电装置的CFD模拟.可再生能源, 2005, (4): 8-11
    [115]周新平,杨家宽,肖波等.太阳能烟囱发电系统内流场的CFD模拟研究.热力发电, 2006, (3): 23-26
    [116]周新平,杨家宽,肖波等.太阳能烟囱发电系统的新构想.可再生能源, 2006, (4): 8-11
    [117]杨家宽,李进军,张建锋等.太阳能烟囱发电装置温度场和流场的数值模拟研究.中国太阳能学会2003年学术年会论文集.上海:上海交通大学出版社, 2003
    [118]杨家宽,肖波,李劲等.地下水抽取装置.实用新型发专利,专利号: ZL 032372663
    [119]国家自然科学基金委网站. http://www.nsfc.gov.cn
    [120]潘垣,许国良,卫军,刘伟,李保峰.太阳能驱动气流发电装置.国家发明专利,公开号: CN1632308, 2004-12-06
    [121]龙新峰.太阳能烟囱式热力发电技术进展.广东电力, 2004, 17: 1-5
    [122]毛宏举,李戬洪.烟囱性状对太阳能烟囱发电系统效率的影响.可再生能源, 2006, (5): 12-15
    [123]毛宏举,李戬洪.集热棚对太阳能烟囱发电系统效率的影响.可再生能源, 2006, (6): 6-9
    [124]卢峰,张华,姚秀平,黄惠兰.太阳能热风发电技术研究进展.中国电力, 2006, 39: 24-27
    [125]言慧.太阳能烟囱发电——太阳能利用的新葩.上海大中型电机, 2004, (1): 1-2
    [126]徐立译.清洁廉价的太阳能烟囱发电站.国际技术经济导报, 1999, (6): 20-25
    [127]马悦,孙奉仲,史月涛,王乃华,黄新元.太阳能烟囱发电站模型的分析与研究.能源工程, 2007, (2): 30-33
    [128]何云,刘滔,唐润生.太阳能烟囱技术应用研究.中国建设动态(阳光能源), 2007, (2): 62-64
    [129]张楚华.大型太阳能烟囱发电站热力分析与计算.可再生能源, 2007, 25: 3-6
    [130]彭维,明廷臻,刘伟,许国良.太阳能热气流发电系统流道优化研究.华中科技大学学报(自然科学版), 2007, 35: 80-82
    [131]张华,张静敏,黄惠兰,卢峰.太阳能热风发电系统的空气集热器试验装置的研制.上海理工大学学报, 2007, 29: 383-390
    [132]卢峰,张华,姚秀平,黄惠兰.太阳能热风发电系统集热器热物理模型及分析.可再生能源2007, (2): 7-9
    [133]朱丽.实现太阳能烟囱经济综合利用海水的系统性研究.天津大学博士论文. 2005年2月
    [134] Pereira M C, Mendes J F, Horta P, Korovessis N. Final design of an advanced solar dryer for salt recovery from brine effluent of an MED desalination plant. Desalination, 2007, 211: 222-231
    [135] Fluent Inc. Fluent 6 User Guide, Lebanon, New Hampshire, USA, 2001
    [136] AEA Technology. CFX 5.6 User Guide, Harewell, UK, 2003
    [137] Bernal-Agustín J L, Dufo-López R. Economical and environmental analysis of grid connected photovoltaic systems in Spain. Renewable Energy, 2006, 31: 1107-1128
    [138]格拉兹曼(Glassman A J).涡轮设计与应用.北京:国防工业出版社, 1982
    [139] Ghosal M K, Tiwari G N, Das D K, Pandey K P. Modeling and comparative thermal performance of ground air collector and earth air heat exchanger for heating of greenhouse, Energy Buildings, 2005, 37: 613-621
    [140] Jain D, Tiwari G N. Modeling and optimal design of ground air collector for heating in controlled environment greenhouse, Energy Conversation and Management, 2003, 44: 1357-1372
    [141]陶文铨.数值传热学(第2版).西安:西安交通大学出版社, 2001
    [142]陶文铨.计算流体力学与传热学.北京:中国建筑工业出版社, 1991
    [143]帕坦卡S V著,张政译.传热与流体流动的数值计算.北京:科学出版社, 1984
    [144]陶文铨.数值传热学.西安:西安交通大学出版社, 1988
    [145] Hamdy I F, Fikry M A. Passive solar ventilation. Renewable Energy, 1998, 14(1): 381-386
    [146]王启杰.对流传热传质分析.西安:西安交通大学出版社, 1991
    [147]阿巴兹V S等编.对流换热.北京:高等教育出版社, 1992
    [148]倪浩清等.工程湍流流动传热及传质的数值模拟.北京:中国水利水电出版社, 1996
    [149]陶文铨.计算传热学的近代进展.北京:科学出版社, 2000
    [150]郭宽良等.计算传热学.北京:中国科学技术出版社, 1988
    [151]皮茨D,西索姆L著,葛新石等译.传热学.北京:科学出版社, 2002
    [152]张宁,李光正.一种改进的SIMPLE算法.华中科技大学学报(城市科学版), 2002, 19(2): 28-31
    [153]姜国栋,王良璧.复杂区域有限差分交错网格与同位网格比较.兰州铁道学院学报, 1998, 17(3): 41-46
    [154]刘继平,聂建虎,严俊杰等.复杂区域流动换热问题的一种新的网格处理方法.西安交通大学学报, 1999, 33(5): 30-32
    [155]严泽想,陶智.非交错网格求解传热及流体流动.推进技术, 1997, 18(5): 73-77
    [156]牛禄,程惠尔.求解不可压N-S方程的完全压力校正方法.上海交通大学学报, 2001, 35(8): 1209-1211
    [157]邓保庆,吴文权.同位网格上不可压流动的反欠松弛压力修正算法.工程热物理学报, 2002, 23(5): 605-607
    [158]聂建虎,李增耀,陶文铨等.周期性三对角阵方法与反复迭代法的比较.西安交通大学学报, 2000, 34(7): 21-25
    [159]朱松林,朱方元.三维复杂区域对流换热问题的控制方程及计算.航空动力学报, 1998, 13(3): 267-271
    [160]朱松林,陆瑞松.三维封闭方腔自然对流换热的数值模拟.武汉交通科技大学学报, 1996, 20( 5): 533-537
    [161]符松,翟志强.三维分区算法在复杂多连域湍流问题中的应用.计算力学学报, 2002, 19(1): 20-25
    [162]刘星,王秋旺,陶文铨.边界条件对对流扩散方程数值稳定性的影响.工程热物理学报, 2001, 22(6): 729-732
    [163]王世萍等.三维多通道稳态流场和温度场的数值计算与实验.西安电子科技大学学报, 1994, 21(2): 148-156
    [164] Ong K S, Chow C C. Performance of a solar chimney. Soler Energy, 2003, 74: 1-17
    [165] Duffie J A, Beckman W A. Solar Engineering of Thermal Processes. New York: Wiley Interscience, 1991
    [166] Rosenberg N J, Blad B L, Verma S. B. Microclimate: The biological environment. 2nd edn. John Wiley & Sons, 1983
    [167]周淑贞,张如一,张超.气象与气候学(第二版).北京:高等教育出版社, 1984
    [168]赵汉中.流体力学.武汉:华中科技大学出版社, 2005
    [169] Oliveski R D C et al. Natural convection in a tank of oil: experimental validation of a numerical code with prescribed boundary condition. Experimental Thermal and Fluid Science, 2005, 29: 671-680
    [170]赵济,陈传康.中国地理.高等教育出版社1999
    [171]国家林业局.第二次全国荒漠化、沙化土地监测结果. 2002-01-28
    [172] http://karws.gso.uri.edu/DustClub/PPTs%20from%20workshop/ZhangKebin.ppt
    [173]郭大本.世界资源性缺水现状及危害.黑龙江水专学报. 2007, 34: 105-110
    [174]朱尔明,赵广和.中国水利发展战略研究.北京:中国水利水电出版社, 2002
    [175]第三届世界水论坛会议资料.参考消息, 2003-03-06 (4)
    [176]我国被列为严重缺水国家.地理教育, 1998, (6): 22
    [177]赵勇,裴源生,陈一鸣.我国城市缺水研究.水科学进展. 2006, 17: 389-394
    [178]任建德,吴晋,李铁钢,石改桃.农村水利改革中对水井资产评估与水费测算的探讨.西北水资源与水工程. 2002, 13: 57-59
    [179]韩子夜,武毅,杨进生,叶成明.西部严重缺水地区地下水勘查技术方法体系研究.水文地质工程地质, 2007 (2): 81-86
    [180] Duffie J A, Beckman W A. Solar Engineering of Thermal Processes. New York: Wiley Interscience, 1991
    [181]陈志军.我国月晴空指数模型探讨.南京气象学院学报, 2005, 28:649-656
    [182] Holman. Heat Transfer, 9th edn.Boston: McGraw-Hill Book Company, 2002
    [183] White F. Fluid Mechanics, 5th edn. New York: McGraw-Hill, 1999
    [184]徐至钧.高塔基础设计与计算.北京:中国石化出版社, 2002
    [185] Talavera D L, Nofuentes G, Aguilera J, Fuentes M. Tables for the estimation of the internal rate of returnof photovoltaic grid-connected systems. Renewable and Sustainable Energy Reviews, 2007, 11: 447-466
    [186] U. S. Energy Information Administration. 2006. http://www.eia.doe.gov/cneaf/electricity/page/co2_report/co2report.html#electric
    [187] PointCarbon. Accessed at: http://www.pointcarbon.com/. 2007-10-03
    [188] Conversion rate for yuan and Euro. http://www.99199.com.cn/forex/1949/. 2007-10-3
    [189] Trieb F. Competitive solar thermal power stations until 2010 - the challenge of market introduction. Renewable Energy, 2000, 19: 163-171
    [190]虞和锡.工程经济学.北京:中国计划出版社, 2002
    [191] Olivier J R, Harmsa T M, Esterhuyse D J. Technical and economic evaluation of the utilization of solar energy at South Africa’s SANAE IV base in Antarctica. Renewable Energy, 2008, 33: 1073-1084
    [192] Chandrasekar B, Kandpal T C. Effect of financial and fiscal incentives on the effective capital cost of solar energy technologies to the user. Solar Energy, 2005, 78: 147-156
    [193]中国人民银行.人民币贷款利率表. http://www.boc.cn/cn/common/rmbcredit.jsp?category=ROOT%3E%D6%D0%D0%D0%D7%DC%D0%D0%3E%D0%D0%C7%E9%B7%D6%CE%F6%CA%D2%3E%B4%E6%BF%EE%A1%A2%B4%FB%BF%EE%C0%FB%C2%CA&ratecolumn=2. 2007-12-21
    [194]中华人民共和国可再生能源法. 2006-01-01
    [195]国家发改委.可再生能源发电价格和费用分摊管理试行办法
    [196]水电成本优势突出. http://www.imhb.cn/Channel/content/2007/200707/20070704/323002.html
    [197] Reiquam H. An atmospheric transport and accumulation model for airsheds. Atmospheric Environment, 1970, 4: 233-247
    [198] Mouzakis F N, Bergeles G. Pollutant dispersion over a triangular ridge: a numerical study. Atmospheric Environment, 1991, 25A (12): 371-379
    [199] Mahjoub S N, Mhiri H, Palec G L, Bourno P. Experimental and numerical analysis of pollutant dispersion from a chimney. Atmospheric Environment, 2005, 39: 1727-1738
    [200] K?nig C S, Mokhtarzadeh-Dehghan M R. Numerical study of buoyant plumes from a multi-flue chimney released into an atmospheric boundary layer. Atmospheric Environment, 2002, 36: 3951-3962
    [201]郭静,阮宜纶.大气污染控制工程.北京:化学工业出版社, 2001
    [202]海尔F K.气候与沙漠化.北京:气象出版社, 1988
    [203]中国科学院兰州冰川冻土研究所沙漠研究室.中国沙漠概论.北京:科学出版社, 1974
    [204]马世威,马玉明,姚洪林,王林和,姚云峰.沙漠学.内蒙古,呼和浩特:内蒙古人民出版社, 1998年12月, pp: 196
    [205]朱俊凤,朱震达等.中国沙漠化防治.北京:中国林业出版社, 1999
    [206]沙漠从这里绿了——库布其沙漠采访记. http://news.xinhuanet.com/environment/2008-01/31/content_7534302.htm, 2008-01-31
    [207]徐叔鹰.中学地理辞典.西安:西安交通大学出版社, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700