用户名: 密码: 验证码:
固体氧化物燃料电池密封材料设计与性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)是一种高效、清洁、安静和可靠的电化学发电装置,适合作为分散、移动电源或大中型电站,在电力、运输及军事方面均具有广阔的应用前景。出于未来能源战略、环境保护考虑,世界各国一直致力于SOFC发电技术的研究和开发。然而,高温密封问题一直是制约平板式SOFC发展的主要技术难点之一。本论文以中温固体氧化物燃料电池(Intermediate Temperature Solid Oxide Fuel Cell,IT-SOFC)技术为背景,研究开发能够满足平板式IT-SOFC的密封要求的压缩式密封材料。
     本论文首先分析了平板式IT-SOFC密封的特殊性,针对平板式IT-SOFC密封中可能发生的界面泄漏和渗透泄漏,分别建立了一系列流体力学计算模型,对不同条件下气体的泄漏量进行了理论计算与分析。在此基础上,选择陶瓷密封材料作为研究对象,对其结构进行了设计,确定了以Al_2O_3微粉为主的原料体系和流延制备工艺。系统研究了Al_2O_3微粉种类、分散剂、粘结剂、增塑剂、真空除气工艺以及干燥制度等因素对材料流延成型制备的影响,优化了流延成型制备技术。研制了IT-SOFC密封性能测试平台,对Al_2O_3密封材料和添加Al或BaO-B_2O_3-SiO_2玻璃的Al_2O_3基复合密封材料的密封性能进行表征,系统研究了Al_2O_3粉体微观特征、外加载荷以及材料复合等因素对材料密封性能的影响。为了判断上述密封材料在IT-SOFC中的实用性,选择密封性能良好的密封材料进行了SOFC单电池测试。上述研究结果表明:
     (1)具有优良化学稳定性、绝缘性和化学相容性的陶瓷材料是平板式IT-SOFC密封材料的首要选择。理论计算表明,每厘米宽度陶瓷密封材料上氢气泄漏的质量流率必须小于7.35×10~(-8) g·s~(-1),从而要求陶瓷密封材料必须能够消除界面泄漏,将原料粒度分布的D50值控制在1~2μm范围以使绝大部分漏气通道的有效尺寸小于1μm,以及尽可能减小材料的有效孔隙率和增加材料中漏气通道的迂曲度。
     (2)采用优化的流延成型技术可以制备出表面平整、厚度均匀、柔韧性良好的Al_2O_3密封材料和Al_2O_3基复合密封材料。这些材料均具有较好的耐压能力,其变形能力能够满足IT-SOFC密封装配的需要。
     (3)Al_2O_3密封材料和Al_2O_3基复合密封材料在较小外加载荷下表现出较好的密封性能。所有密封材料的漏气率均随着外加载荷增加而下降,随通气压力的增加而增加。不同Al_2O_3密封材料性能之间的差异主要与这些材料的微观特征有关。
     (4)添加Al微粉可以改善Al_2O_3密封材料密封性能。Al在升温过程中的软化、变形以及伴随Al氧化生成Al_2O_3所产生的体积膨胀均可以减少材料中的漏气通道和降低材料的孔隙率。通过Al的反应键合,可以将数个Al_2O_3颗粒联结起来,在某种程度上也增加了漏气通道的迂曲度。
     (5)BaO-B_2O_3-SiO_2玻璃微粉的加入对Al_2O_3密封材料密封性能的影响较为复杂。添加BaO-B_2O_3-SiO_2玻璃微粉必须与能够产生有利的反应胶结效应相对应的外加载荷配合才能提高Al_2O_3密封材料的密封性能。
     (6)Al_2O_3密封材料的密封稳定性与材料的微结构稳定性有很大关系。部分Al_2O_3密封材料的漏气率随时间推移逐渐变大,与这些材料在某些区域出现新贯通孔有关。Al→Al_2O_3反应键合机制和BaO-B_2O_3-SiO_2玻璃的反应胶结作用均有助于密封稳定性的提高。
     (7)单电池性能测试结果表明,采用优化流延成型技术制备的AS2-69、AS2-A10、AS2-A20和AS4-A20密封材料均能够满足平板式IT-SOFC的密封需要。
Solid Oxide Fuel Cell (SOFC) is a highly efficient, clean, quiet and reliable electric power generation device, which can be used as distributed or mobile power sources or the large-scale power plant, and has extensive applications in the sectors of power generation, transportation and military. For the sake of future energy strategy and environment protection, the SOFC technology has been under development in many countries for years. However, one of the most significant challenges for the planar SOFC design is to realize the effective high temperature sealing. With the Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) in the background, novel compressive seals had been developed in the present study.
     In this dissertation, firstly, the uniqueness of the sealing for the planar IT-SOFC was analyzed; a series of hydromechanical models aiming at the interface leak and the infiltration leak were established; and the gas leak rates under various conditions were calculated according to the models and the influencing factors were discussed. According to the above results, ceramic sealing materials were selected as the subject of study and the microstructure of the seal was designed; accordingly, Al_2O_3 fine powder was chosen as the baseline material for the seals prepared by the tape casting process. The effect of Al_2O_3 powders, dispersant, binder, plasticizer as well as deairing and drying procedures on the tape casting process were systematically investigated, and hence, the tape casting process was optimized accordingly. With a sealing assessment facility developed in house, the effectiveness of the seals prepared with Al_2O_3 and Al_2O_3-based composites with addition of Al or BaO-B_2O_3-SiO_2 glass fine powders were evaluated against the Al_2O_3 powder characteristics, compressive stresses and the addition of Al and BaO-B_2O_3-SiO_2 particles. In order to demonstrate the applicability to the IT-SOFC, single cell tests with the developed seals were conducted. The major results obtained are described as follow:
     (1) Materials with high chemical stability, insulativity and chemical compatibility in the IT-SOFC environment are preferred the sealing application. The theoretic calculations indicated that a hydrogen leak rate of the ceramic seals per centimeter must be less than 7.35×10~(-8) g·s~(-1).Therefore, the interface leak should be eliminated, the D50 value of the ceramic raw materials should be in range of 1~2μm to keep the effective leak path less than 1μm, and the effective porosity of the seals should decrease and the tortuosity of leak path should increase as possible.
     (2) The optimized tape casting process is a correct choice for fabricating the Al_2O_3 and Al_2O_3-based composite seals with smooth surfaces, uniform thickness and excellent flexibility. These seals all have acceptable compressive strength, and their deformability is adequate to satisfy the need for IT-SOFC sealing assembly.
     (3) Satisfactory sealing effect is offered with the Al_2O_3 and Al_2O_3-based composite seals under slight applied loads. The leak rate of the seals decreases with increasing the compressive stress and decreasing the gauge pressure. The difference in sealing effectiveness between seals prepared with various Al_2O_3 powders is mainly correlated to their powder characteristics.
     (4) The addition of Al fine powders can significantly improve the sealing properties of the Al_2O_3 seals. The softening and deformation of Al particles upon heating and the volume expansion (28%) associated with Al oxidation can reduce the leak path and porosity of the seals. The reaction bonding generated from Al oxidation is expected to cluster individual Al_2O_3 particles, effectively increasing the tortuosity the leak paths.
     (5) The influence of the BaO-B_2O_3-SiO_2 glass fine powder addition on the Al_2O_3 seals is complex. The sealing effectiveness can be enhanced under compressive stresses that are causing the advantageous reaction cementation.
     (6) The sealing stability of the Al_2O_3 seals is closely related to the stability of their microstructures. The leak rate increases with time in some Al_2O_3 seals can be attributed to the occurrence of new leak paths due to localized microstructure instability. The reaction bonding from the Al oxidation and reaction cementation from the BaO-B_2O_3-SiO_2O glass can improve the stability of the seals.
     (7) Single cell tests with tape cast AS2-69, AS2-A10, AS2-A20 and AS4-A20 seals have confirmed the applicability of the developed seals to planar IT-SOFCs.
引文
[1]江泽民.对中国能源问题的思考.上海交通大学学报,2008,42(3):345-359.
    [2] Murray E P, Tsai T, Barnett A. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400:649-651.
    [3] James L, Andrew D. Fuel cell Systems Explained. West Sussex: John Wiley & Sons, Ltd, 2000.
    [4] Minh N Q, Takahashi T. Science and Technology of Ceramic Fuel Cells. Amsterdam: Elsevier Science B.V., 1995
    [5] Cacciola G,Antonucci V,Freni S. Technology up date and new strategies on fuel cells. Journal of Power Sources, 2001, 100:67-79.
    [6] Joon K. Fuel cell—a 21st century power system. Journal of Power Sources, 1998, 71:12-18.
    [7] Baentsch F. Liberalisation—challenges and opportunities for fuel cells. Journal of Power Sources, 2000, 86:84-89.
    [8] Minh N Q. Ceramic fuel cell. Journal of American Ceramic Society, 1993, 76:563-568.
    [9] Nguyen Q M. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174:271-277.
    [10] Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152-153:405-410.
    [11]李箭.固体氧化物燃料电池:发展现状与关键技术.功能材料与器件学报,2007,13(6):683-690.
    [12] Singhal S C. Advance in Solid Oxide Fuel Cell Technology. Solid State Ionics, 2000, 135:305-313.
    [13] Acres G K. Recent advances in fuel cell technology and its applications. Journal of Power Sources, 2001, 100:60-66.
    [14] Yamamoto O. Solid Oxide Fuel Cells: Fundamental Aspects and prospects. Electrochimica Acta, 2000, 45:2423-2435.
    [15] Li Jian,Yang Xinmin,Pu Jian. Future development of solid oxide fuel cell. Battery,2006, 36(5):396-397.
    [16] Singhal S C, Kendall K (Eds.). High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Oxford, UK, Elsevier, 2003.
    [17] Mcnical B D,Rand D J,Williams K R. Fuel cells for transportation purposes- yes or no. Journal of Power Sources, 2001, 100:47-59.
    [18] Staniforth J, Kendall K. Biogas Powering a Small Tubular Solid Oxide Fuel cell. Journal of Power Sources, 1998, 71:275-277.
    [19] Van Herle J, Membrez Y, Bucheli O. Biogas as a fuel source for SOFC Co-generation. Journal of Power Sources, 2004,127:300-312.
    [20] Solid Energy Conversion Alliance (SECA)资料,2004.
    [21] Gardner F J, Day M J, Brandon N P, et al. SOFC technology development at Rolls-Royce. Journal of Power Sources, 2000, 86:122-129.
    [22] Singh P, Minh N Q. Solid oxide fuel cell: Technology Status. International journal of Applied Ceramic Technology, 2004, 1(1):5-15.
    [23] George R A. Status of tubular SOFC field unit demonstrations. Journal of Power Sources, 2000, 86:134-139.
    [24] Taniguchi S, Kadowaki M, Yasuo T, et al. Improvement of Thermal Cycle Characteristics of a Planar type Solid Oxide Fuel Cell by Using Ceramic Fiber as Sealing Material. Journal of Power Sources, 2000, 90:163-169.
    [25] Huijsmans J P, vanBerkel P F, Christie G M. Inetmediate temperature SOFC—a promise for the 21 century. Journal of Power Sources, 1998, 71:107-110.
    [26]朴金花,孙克宁,张乃庆,等.固体氧化物燃料电池密封材料的研究进展.人工晶体学报,2004,33:910-912.
    [27]谢德明,童少平,楼白杨,等.玻璃类平板式SOFC封接材料的研究进展.电源技术,2005,29(11):709-712.
    [28]朱庆山,彭练,黄文来,等.固体氧化物燃料电池密封材料的研究现状与发展趋势.无机材料学报,2006,21(2):284-290.
    [29]桑绍柏,李炜,蒲健,等.平板式SOFC用密封材料研究进展.电源技术,2006,30(11):871-875.
    [30]韩敏芳,王琦. SOFC封接材料和封接技术.世界科技研究与发展, 2006, 28(5):36-42.
    [31]谢德明,童少平,吴芳芳. SOFC封接材料及技术的研究进展.电池,2006, 36(4):319-321.
    [32] Jeffrey W F. Sealants for Solid Oxide Fuel Cells. Journal of Power Sources, 2005, 147:46-57.
    [33]谢德明,童少平,邵海波.平板式SOFC封接材料性能测试的研究进展.浙江工业大学学报,2006,34(3):323-326.
    [34] Chou Y S, Stevenson J W. Long-term thermal cycling of phlogopite mica-based compressive seals for solid oxide fuel cells. Journal of Power Sources, 2005, 140(2):340-345.
    [35] Simner S P, Stevenson J W. Compressive mica seals for SOFC applications. Journal of Power Sources, 2001, 102 (1–2):310-316.
    [36] Shiru L, Kening S, Naiqing Z, et al, Comparison of infiltrated-ceramic fiber paper and mica base compressive seals for planar solid oxide fuel cells. Journal of Power Sources, 2007, 168:447-452.
    [37] Chou Y S, Stevenson J W, Chick L A. Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells. Journal of Power Sources, 2002, 112(1):130-136.
    [38]郑锐,王绍荣,聂怀文,等. SiO2-CaO-Al2O3-B2O3微晶釉在平板式中温固体氧化物燃料电池密封中的应用.硅酸盐学报,2004,32(3):294-298.
    [39]郑锐,聂怀文,王大千,等. SiO2-CaO-B2O3-Al2O3微晶玻璃在平板式IT-SOFC中密封性能的研究,无机材料学报,2004,19(1):37-43.
    [40]彭练,朱庆山,谢朝晖,等.中温SOFC密封玻璃热稳定性研究.无机材料学报,2006,21(4):867-872.
    [41]张义煌,董永来,江义,等.薄膜型中温固体氧化物燃料电池(SOFC)研制及性能考察.电化学,2000,6(1):78-83.
    [42]韩敏芳,王忠利,王琦,等.固体氧化物燃料电池高温封接材料的研究.真空电子技术,2005,4:8-10.
    [43]王琦,韩敏芳,蒋先锋,等.平板式固体氧化物燃料电池的封接.真空电子技术, 2006(4):26-30.
    [44]刘超前,吕喆,刘志国,等.固体氧化物燃料电池玻璃态封接材料.电源技术,2005,29(9):574-577.
    [45]乐士儒,朴金花,陈新冰,等.阳极支撑型IT-SOFC密封材料SrO-La2O3-Al2O3-B2O3-SiO2微晶玻璃的研究.功能材料, 2006 , 37(8) :1256-1258.
    [46]桑绍柏,李炜,蒲健,等.平板式IT-SOFC用Al2O3基压密封材料研究.无机材料学报,2008,23(4):841-846.
    [47] Shaobai Sang, Wei Li, Jian Pu, et al, Novel compressive Al2O3-based seals for IT-SOFC applications,Journal of Power Sources, 2008,177:77-82.
    [48] Ley K L, Krumpelt M, Kumar R, et al. Glass-ceramic Sealants for Solid Oxide Fuel Cells: PartⅠ. Physical Properties. Journal of Materials Research, 1996,11(6):1489-1493.
    [49] Lahl N, Singh K, Singheisser L, Hilpert K. Crystallization kinetics in AO-Al2O3-SiO2-B2O3 Glass (A=Ba,Ca,Mg). Journal of Materials science, 2000, 35(12):3089-3096
    [50] Sohn S-B, Choi S-Y, Gyeung H K, Song H S. Stable Sealing Glass for Planar Solid Oxide Fuel Cell. Journal of Non-crystalline Solids, 2002, 297(2-3):103-112.
    [51] Lara C,Pascual M J,Prado M O,et al. Sintering of glasses in the system RO-Al2O3-BaO-SiO2 (R=Ca, Mg, Zn) studied by hot-stage microscopy. Solid State Ionics, 2004, 170 (3-4):201-208.
    [52] Lara C,Pascual M J,Durán A. Glass-forming ability, sinterability and thermal properties in the systems RO–BaO–SiO2 (R = Mg, Zn). Journal of Non-Crystalline Solids, 2004, 348: 149-155.
    [53] Larsen P H, Poulsen F W, Berg R W. The Influence of SiO2 Addition to MgO-Al2O3-P2O5 Glass. Journal of Non-crystalline Solids, 1999, 244:16-24.
    [54] Larsen P H, James P F, Chemical stability of MgO/CaO/Cr2O3-Al2O3-B2O3-phosphate glasses in solid oxide fuel cell environment. Journal of Materials Science, 1998, 33(10);2499-2507.
    [55] Sohn S B, Choi S Y, Kim G H, et al. Suitable glass-ceramic sealant for planar Solid-Oxide Fuel Cells. Journal of American Ceramic Society, 2004, 87 (2):254-260.
    [56] Yang Z, Stevenson J W, Meinhardt K D. Chemical interactions of barium–calcium–aluminosilicate based sealing glasses with oxidation resistantalloys. Solid State Ionics, 2003, 160(3–4):213-225.
    [57] Eichler K, Solow G, Otschik P, Schaffrath W. BAS (BaO-Al2O3-SiO2) glass for High Temprature Applications. Journal of the European Ceramic Society, 1999, 19:1101-1104.
    [58] Shiang-Po Hwang, Jenn-Ming Wu. Effect of Composition on Microstructural Development in MgO-Al2O3-SiO2 Glass-ceramics. Journal of the American Ceramic Society, 2001, 84(5):1108-1112.
    [59] Zheng R, Wang S R, Nie H W, Wen T L. SiO2–CaO–B2O3–Al2O3 ceramic glaze as sealant for planar IT-SOFC. Journal of. Power Sources, 2004, 128(2):165-172.
    [60] Esposito L, Bellosi A. Interfacial characteristics in ceramic joining with glass interlayers. Ceramic Engineering and Science Proceedings, 2002, 23(3):793-800.
    [61] Wen T L, Wang D, Chen M, Tu H, et al. Material research for planar SOFC stack. Solid State Ionics, 2002, 148(3–4):513-519.
    [62] Haanappel V A C, Shemet V, Vinke C, et al. Evaluation of the suitability of various glass sealant-alloy combinations under SOFC stack conditions. Journal of materials science, 2005, 40:1583-1592.
    [63] Haanappel V A C, Shemet V, Vinke I C, Quadakkers W J. A novel method to evaluate the suitability of glass sealant–alloy combinations under SOFC stack conditions. Journal of Power Sources, 2005, 141 (1):102-107.
    [64] Nielsen K A, Solvang M, Poulsen F W, Larsen P H. Evaluation of sodium aluminosilicate glass composite seal with magnesia filter. Ceramic Engineering and Science Proceedings, 2004, 25(3):309-314.
    [65] Jiang S P, Christiansen L, Hughan B, Foger K. Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3 cathodes. Journal of Materials Science Letter, 2001, 20(8):695-697.
    [66] Weil K S, Hardy J S. Development of a compliant seal for use in planar solid oxide fuel cells. Ceramic Engineering and Science Proceedings, 2004, 25(3):321-326.
    [67] Nishiura H, Suzuki R O, Ono K. Experimental phase diagram in the Ag-Cu2O-CuO system. Journal of American Ceramic Society, 1998, 81(8):2181-2187.
    [68] Erskine K M, Meier A M. Pilgrim S M, Brazing perovskite ceramics withsilver/copper oxide braze alloys. Journal of Materials Science, 2002, 37:1705-1709.
    [69] Weil K S, Paxton D M. Development of an oxidation resistant ceramic-to-met al braze for use in YSZ-based electrochemical devise. Ceramic Engineering and Science Proceedings, 2002, 23 (3):785-792.
    [70] Weil K S, Coyle C A. Darsell J T, et al. Hardy, Effects of thermal cycling and thermal aging on the hermeticity and strength of silver–copper oxide air-brazed seals. Journal of Power Sources , 2005, 152:97-104.
    [71] Duquette J, Petric A. Silver wire seal design for planar solid oxide fuel cell stack. Journal of Power Sources, 2004, 137 (1):71-75.
    [72] Chou Y S, Stevenson J W. Phlogopite mica-based compressive seals for solid oxide fuel cells: effect of mica thickness. Journal of Power Sources , 2003, 124 (2):473-478.
    [73] Chou Y S, Stevenson J W. Thermal cycling and degradation mechanisms of compressive mica-based seals for solid oxide fuel cells. Journal of Power Sources, 2002, 112(2):376-383.
    [74] Chou Y S, Stevenson J W, Chick L A. Novel compressive mica seals with met allic interlayers for solid oxide fuel cell applications. Journal of American Ceramic Society, 2003, 86(6):1003-1007.
    [75] Chou Y S, Stevenson J W. Mid-term stability of novel mica-based compressive seals for solid oxide fuel cells. Journal of Power Sources, 2003, 115(2):274-278.
    [76] Bram M, Reckers S, Drinovac P, et al. Deformation behavior and leakage test of alternate sealing materials for SOFC stack. Journal of Power Sources, 2004, 138(1–2):111-119.
    [77] Chou Y S, Stevenson J W. Novel infiltrated phlogopite mica compressive seals for solid oxide fuel cells. Journal of Power Sources, 2004, 135(1–2):72-78.
    [78] Raj N Singh, High temperature seals for solid oxide fuel cells (SOFC). Ceramic Engineering and Science Proceedings, 2004, 25(3):299-307.
    [79] Raj N Singh, S S Parihar, Layered composite seals for solid oxide fuel cells (SOFC). Ceramic Engineering and Science Proceedings, 2005, 26(4):247-255.
    [80] Shiru L, Kening S, Naiqing Z, et al, Novel compressive seals for solid oxide fuelcells. Journal of Power Sources, 2006, 161:901-906.
    [81] Nielsen K A, Solvang M, Nielsen S L, et al, Glass composite seals for SOFC application. Journal of the European Ceramic Society , 2007, 27:1817-1822.
    [82] Smeacetto F, Salvo M, Ferraris M, et al, Glass–ceramic seal to join Crofer 22 APU alloy to YSZ ceramic in planar SOFCs. Journal of the European Ceramic Society, 2008, 28(1): 61-68.
    [83] Jae Chun Lee, Hyuk Chon Kwon, Young Pil Kwon, Porous ceramic fiber glass matrix composites for solid oxide fuel cell seals. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 300:150-153.
    [84] Lewinsohn C A, Elangovan S. Development of amorphous, non-oxide seals for solid oxide fuel cells. Ceramic Engineering and Science Proceedings, 2003, 24 (3):317-322.
    [85] Lewinsohn C A, Elangovan S, Quist S M. Durable seal materials for planar solid oxide fuel cells. Ceramic Engineering and Science Proceedings, 2004, 25(3):315-320.
    [86] Bloom I D, Ley K L. Compliant sealants for solid oxide fuel cells and other ceramics. US Patent, No.5453331, Sept. 26, 1995.
    [87] Singh R. self-healing seals for SOFCs. American Ceramic Society Bulletin, 2006, 85(2):13-18.
    [88] Koeppel B J, Weil K S. Finite element analysis of the bonded compliant seal design-a new sealing concept for use in planar solid oxide fuel cells. Ceramic Engineering and Science Proceedings, 2005; 26(4):227-237.
    [89]高学平编.高等流体力学.天津:天津大学出版社, 2005.
    [90]埃蒙斯(Emmons,H.W.)著.气体动力学基本原理.北京:科学出版社,1988.
    [91]吴其芬,陈伟芳著.高温稀薄气体热化学非平衡流动的DSMC方法.长沙:国防科技大学出版社,1999,P1-5.
    [92]李椿,章立源,钱尚武编.热学.北京:人民教育出版社,1978.
    [93]刘晓旭,胡勇,朱斌等.气体低速非达西渗流机理及渗流特征研究.特种油气藏,2006,13(6):43-46.
    [94]陈代殉.渗流气体滑脱现象与渗透率变化的关系.力学学报,2002,34(1):96-100.
    [95] [美]乔治·埃姆·卡尼亚达克斯,埃里·柏斯考克著,中国科学院过程工程研究所多相反应重点实验室多相复杂系统与多尺度方法课题组译.微流动:基础与模拟.北京:化学工业出版社, 2006.
    [96]贝尔(J. Bear)著,李竞生,陈崇希译.多孔介质流体动力学.北京:中国建筑工业出版社,1983.
    [97]顾慰慈编著.渗流计算原理及应用.北京:中国建材工业出版社, 2000.
    [98]史海明.颗粒堆积多孔介质渗流特性的研究.沈阳:东北大学,硕士学位论文,2005.
    [99] F. A. L. Dullien著,范玉平,赵东伟等译.现代渗流物理学.北京:石油工业出版社,2001.
    [100] [奥]薛定谔(A.E.Scheideggcr)著,王鸿勋等译.多孔介质中的渗流物理.北京:石油工业出版社,1982.
    [101]科林斯(Colins R. E.)著,陈钟祥,吴望一译.流体通过多孔材料的流动.北京:石油工业出版社,1984,P3-4.
    [102] Loyalka S and Hamoodi S. Poiseuille flow of a rarefied gas in cylindrical tube: Solution of linearzed Boltmann equation. Physis of Fluids A, 1990, 2(11): 2061-2065.
    [103]孔祥言编著.高等渗流力学.合肥:中国科学技术大学出版社,1999,P21-22.
    [104] [苏]B.A彼雷,JI.C毕秋克著,沈锡华译,李永克校.密封系统材料学导论.北京:机械工业出版社,1990.
    [105]徐灏编.密封.北京:冶金工业出版社,1999.
    [106]蔡仁良,顾伯勤,宋鹏云编著.过程装备密封技术.北京:化学工业出版社,2002.
    [107] [德]海因茨K.米勒,[英]伯纳德S.纳乌著,程传庆译.流体密封技术:原理与应用.北京:机械工业出版社,2002.
    [108] Gotoh K, Masuda H, Higashitani K. Powder Technology Handbook (Second Edition). New York:Marcel Dekker, Inc.,1997,P305-311.
    [109]应宗荣主编.材料成形原理与工艺.哈尔滨:哈尔滨工业大学出版社,2004,P446-460.
    [110] Mistler R E. Tape casting: past, present, potential. Journal of American Ceramic Society Bulletin, 1998, 77(10):82-86.
    [111] Anderson E M, Marra R A and Mister R E. Tape casting reactive aluminas. Journal of American Ceramic Society Bulletion,1997, 76 (7):45-50
    [112] Mistler R E and Twiname E R. Tape casting theory and practice. Westerville: The American Ceramic Society, 2000
    [113] Mahdjoub H, Roy P, Filiatre C. et al. The effect of the slurry formulation upon the morphology of spray-dried yttria stabilised zirconia particles. Journal of the European Ceramic Society, 2003, 23: 1637-1648.
    [114] Sushumna I, Gupta R K, Ruchenstein E. Effective dispersants for concentrated, nonaqueous suspensions. Journal of Material Research, 1992, 7(10):2884-2893.
    [115]顾惕人,朱瑶,李外郎,等编.表面化学.北京:科学出版社,1994, 395-408.
    [116] Lee B I and Rives J P. Dispersion of Alumina powders in Nonaqueous Media. Colloids and Surfaces, 1991, 56:25-43.
    [117] Gary L Messing, Mazdiyasni K S, McCauley J W, et al. Advances in Ceramics Volume 21 Ceramic Powder Science. Westerville, Ohio: The American Ceramic Society, Inc., 1987.
    [118] Chou Y S, Stevenson J W, Singh P. Thermal cycle stability of a novel glass–mica composite seal for solid oxide fuel cells: Effect of glass volume fraction and stresses. Journal of Power Sources. 2005, 152:168-174.
    [119]吴林高,缪俊发,张瑞,等著.渗流力学.上海:上海科学技术文献出版社,1996.
    [120] Smeacetto F, Salvo M, Ferraris M, et al, Glass and composite seals for the joining of YSZ to metallic interconnect in solid oxide fuel cells. Journal of the European Ceramic Society, 2008, 28(3): 611-616.
    [121] Sung R. C, Narottam P B, Anita G. Mechanical and microstructural characterization of boron nitride nanotubes-reinforced SOFC seal glass composite. Materials Science and Engineering: A, 2007, 460-461: 509-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700