用户名: 密码: 验证码:
基于神经网络辨识模型的质子交换膜燃料电池系统建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池被认为是发展最好的能源和未来最理想的氢能利用方式之一,因此,燃料电池发电技术的研究和开发成为目前全世界的研究热点。质子交换膜燃料电池(PEMFC)是继碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池和固体氧化物燃料电池之后发展起来的一种新型燃料电池。
     随着PEMFC技术的逐渐成熟和接近商业化,PEMFC系统的发电性能必须得到可靠有力的保证。输出电压是表征PEMFC性能最重要的参数。PEMFC工作温度对其性能有很大的影响。本文参考了国内外研究质子交换膜燃料电池的经验,利用公开文献和本所的实验数据,建立了PEMFC电堆的动态参数模型。在此参数模型的基础上,利用智能方法进行系统辨识,建立起电压和温度的辨识模型。最后基于该辨识模型,设计了智能控制器对PEMFC的输出电压和温度进行控制研究。本文的主要工作内容和成果包括:
     (1)建立了比较全面的PEMFC仿真模型。本文结合机理和经验的建模方法,吸收了前人对PEMFC输出特性模型的研究成果,将电堆的主要物理结构参数作为变量,建立起PEMFC仿真模型。所建立的动态模型包括双电层动态、流道动态和温度动态,是较以往的模型更全面更系统的PEMFC动态模型。然后利用Matlab/Simulink对该模型进行了仿真分析。仿真结果表明该仿真模型能够正确反映各种操作参数的动态变化,可以作为系统设计、分析和控制的有效工具。
     (2)应用径向基神经网络建立了PEMFC电压辨识模型。本文采用了一种改进的自适应最简结构算法对神经网络进行训练,使径向基神经网络在较短的时间内达到较高的精度。基于上述电压辨识模型,分别设计了基于正交最小二乘算法的模糊神经网络内模控制器和模糊PID控制器对PEMFC的输出电压进行控制,并对两种控制器进行了比较分析。PEMFC电压控制方案是将电流密度作为干扰量,采用调节阳极气体流量和阴极气体流量将输出电压控制在期望工作点。仿真结果表明,第一种控制器的控制效果更好一些。
     (3)应用自适应模糊神经网络建立了PEMFC温度辨识模型。基于上述温度辨识模型,设计了基于Rough集理论的自适应模糊神经网络控制器和基于BP神经网络的PID控制器对PEMFC的温度进行控制研究,并对两种控制器进行了比较分析。控制器的目的是保证质子交换膜燃料电池系统工作在一个合适的温度范围内,并尽可能的减少波动范围。仿真结果表明两种控制器都可以达到预期目的,但是在进入稳态时间、超调量等控制性能指标方面,基于Rough集理论的自适应模糊神经网络控制器都明显的比基于BP神经网络的PID控制器要好。
Proton exchange membrane fuel cell is considered as one of the best energy and a method of hydrogen use. So, research and development of fuel cell power technology has become a study hot.
     Proton exchange membrane fuel cell (PEMFC) is a new fuel cell that develops after the alkaline fuel cell, the phosphoric acid fuel cell, the molten carbonate fuel cell and the solid oxide fuel cell.
     As the PEMFC technology become more and more mature and commercialize, PEMFC system generate electricity performance must be strongly assurance. Output voltage is the most important parameter of PEMFC and operation temperature has vital influence on PEMFC performance. Based on PEMFC experimental and published data, we developed a PEMFC stack dynamic parameter model. Based on said parameter model, we obtain voltage identification model and temperature identification model. Based on identification models, PEMFC output voltage and temperature control problems are studied. The main achievements and contributions are summarized as follows:
     (1) Based on opened literatures and research results, using PEMFC stack major parameters as variables, combining mechanism model and experimental model, we develop a blocking parameter model of PEMFC which includes charge double layer capacitance dynamics submodel, cathode channel dynamics submodel, and stack temperature dynamics submodel. A great deal simulation results show that the model is enough to reflect the PEMFC stack performance.
     (2) We develop a PEMFC output voltage identification model based on RBF neural-network. Using an improved self-adaptive simplest structure algorithm train RBFNN, we get a high accuracy network with rather short time. With current density as disturber, the control systems control the output voltage at an expected operating point by adjust anode gas value and cathode gas value. We design an adaptive fuzzy neural-network controller and a fuzzy PID controller to have a control study on the PEMFC output voltage. Simulation results show that the two controllers both can stabilize the PEMFC’s output voltage in an expectant value. Compare the two controllers, the first one has better performance.
     (3) PEMFC temperature control problem is studied. We develop a PEMFC temperature identification model based on fuzzy-neural network. Based on said temperature identification model, we design an adaptive fuzzy neural-network controller and a neural-network PID controller to have a control study on PEMFC temperature. The objective of the controller is to ensure the PEMFC system work in a proper temperature extent, and reduce fluctuate range as large as possible. The simulation results of the identification models show that the models can reflect PEMFC’s characteristics correctly and the first controller has higher performance.
引文
[1] 2007-2008年中国燃料电池行业分析及投资咨询报告,中国投资资讯网,2007,8
    [2] http://www.ocn.com.cn/reports/2006184ranliaodianchi.htm
    [3] http://www.china5e.com/news/newpower/200710/200710260203.html
    [4] http://www.china5e.com/news/newpower/200710/200710260059.html
    [5] http://www.newenergy.org.cn/html/2007-10/20071025_14610.html
    [6] http://www.newenergy.org.cn/html/2006-9/2006914_11828.html
    [7] http://www.newenergy.org.cn/html/2007-7/2007720_14047.html
    [8] http://www.newenergy.org.cn/html/2006-6/200669_10364.html
    [9] Bemardi, D. M., Verbrugge, M. W.. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte[J]. AIChE Journal, 1991, 37:1151-1163
    [10] Bemardi, D. M., Verbrugge, M. W.. A mathematical model of the solid-polymer-electrolyte fuel cell [J]. Journal of The Electrochemical Society, 1992,139:2477-2491
    [11] Spring, T. E., Zawodzinski, T. A., Gottesfeld, S. Polymer electrolyte fuel cell model [J]. Journal of The Electrochemical Society, 1991, 138(8): 2334-2342
    [12] Bernardi, D. M.. Water-balance calculations for solid polymer electrolyte fuel cells [J]. Journal of The Electrochemical Society, 1990, 137(9): 3344-3358
    [13] Fuller, T. F., Newman, J.. Water and thermal management in solid polymer electrolyte fuel cells [J]. Journal of The Electrochemical Society, 1993, 140(5):1218-1224
    [14] Baschuk, J.J., Li, X. G.. Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J]. Journal of Power Sources, 2000, 86:181-196
    [15] Gurau, V., Barbir, F., Liu, hongtan.. An analytical solution of half-cell model of PEM fuel cells [J]. Journal of The Electrochemical Society, 2000, 147(8):2468-2481
    [16] Nguyen, T. V., White, R. E.. A water and heat management model for proton exchange membrane fuel cells [J]. Journal of The Electrochemical Society, 1993, 140(8):2178-2186
    [17] Yi, J. S., Nguyen, T. V.. An along the channel model ofr proton exchange membrane fuel cells [J]. Journal of The Electrochemical Society, 1998,145(4):1149-1159
    [18] Gurau, V., Liu, H. T., Kakac, S.. Two-dimensional model for proton exchange membrane fuel cells [J]. AIChE Journal, 1998, 44(11): 2410-2422
    [19] Singh, D., Lu, D. M., Djilali, N.. A two-dimensional analysis of mass transport in proton exchange membrane fuel cells [J]. International Journal of Engineering Science, 1999, 37: 431-442
    [20] Dannenberg, K.. Mathematical model of the PEMFC [J]. Applied Electrochemistry, 2000, 30: 1377-1386
    [21] Um, S., Wang, C. Y., Chen, K. S.. Computational fluid dynamics modeling of proton exchange membrane fuel cells [J]. Journal of The Electrochemical Society, 2000, 147(12): 4485-4493
    [22]葛善海,衣宝廉,徐洪峰.质子交换膜燃料电池水传递模型[J].化工学报,1999, 50(1):39-48
    [23]葛善海.质子交换膜燃料电池数学模型及新型储能电池的研究[D].中国科学院大连化学物理研究所燃料电池工程中心,2002
    [24] Dutta,S., Shimpalee, S., Van, Z. W.. Three-dimensional numerical simulation of straight channel PEM fuel cells [J]. Journal of Applied Electrochemistry, 2000, 30: 135-146
    [25] Costamagna, P.. Transport phenomena in polymeric membrane fuel cells[J]. Chemical Engineering Science, 2001, 56(2): 323-332
    [26]刘志祥,毛宗强,王诚.质子交换膜燃料电池模型研究现状[J],电池, 2004, 34(1):56-58
    [27] Kornyshev. A.A. Characteristic length of fuel and oxygen consumption in feed channels of polymer electrolyte fuel cells[J]. Electrochimica Acta, 2001,46: 4389- 4395
    [28] Yi, J.S., Nguyen, T.V., Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors[J]. Journal of The Electrochemical Society, 1999,146: 38-45
    [29] Bevers. W?hr. D. M. Yasuda. K. etc, Simulation of a polymer electrolyte fuel cell electrode[J]. J. Appl. Electrochem, 27(1997):1254-1264
    [30] Verbrugge. M.W. Hill. R.F. Ion and solvent transport in ion-exchange membrane[J]. Journal of Electrochemical Society, 137(1990):886-893
    [31] Xie, G., Okada, T., Water transport behavior in 117 membrane[J]. J.Electrochem.Soc, 142(1995):3057-3062
    [32] Nguyen. T. V., Vanderborgh. N.. The rate of isothermal hydration of polyperfluorosulfonic acid membranes[J]. J. Membr. Sci, 143(1998) 235-248
    [33] Andrew.R, Xianguo.L, Mathematical modeling of proton exchange membrane fuel cells[J]. Journal of Power Sources, 102 (2001) 82-96
    [34] Berning. T., Lu. D.M., Djilali. N.. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell[J]. Journal of Power Sources, 106 (2002) 284-294
    [35] Amphlett, J. C., Baumert, R. M., Mann, R. F., etc. Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell II: Empirical model development[J]. Journal of The Electrochemical Society, 1995, 142(1): 9-15
    [36] Jiang, R. Z., Deryn, C.. Voltage-time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge [J], Journal of Power Sources, 2001, 92: 193-198
    [37]张颖颖.质子交换膜燃料电池家庭热电联供系统的仿真分析和控制设计控制研究[D].上海交通大学博士论文,上海交通大学,2006
    [38] Pukrushpan, J.T., Stefanopoulou, A.G., Huei, P., etc.. Modeling and control for PEM fuel cell stack system[C]. Proceeding of the American Control Conference, Anchorage, AK, May 8-10, 2002, 3117-3122
    [39] Iwan. L.C., Stengel. R.F.. The Application of Neural Networks to Fuel Processors for Fuel Cell Vehicles, Proceeding of 37th IEEE Conference on Decision & Control Tampa, Florida USA, 1998, 1585-1590
    [40] Ro, K., Rahman, S.. Control of grid-connected fuel cell plants for enhancement of power system stability, Renewable Energy, 2003, 28(3), 397-407
    [41] Heideck, G., Purmann, M., Styczynski, Z.. Micro-computer control for a fuel cell test bench for residential use. Journal of Power Sources, 2004, 127(1-2):319-324
    [42] Song,J.G., Zhang,C.N., Sun,F.C., etc, Structure and Control Strategies of Fuel Cell Vehicle. Journal of Beijing Institute of Technology, 2004, 13(1):63-66
    [43] Kim. Y. H., Kim, S. S.. An electrical modeling and fuzzy logic control of a fuel cell. IEEE Transactions on Energy Conversion, 1999, 14(2):239-244
    [44] Caux. S., Lachaize. J., Fadel. M., etc. Modeling and control of a fuel cell system and storage elements in transport applications, J. of Power Control, 2005, 15(1-2), 481-491
    [45] Schumacher. J. O., Gemmar P., Denne M., et c. Control of miniature pro ton exchange membrane fuel cells based on fuzzy logic, J. of Power Sources, 2004,129(2), 143-151
    [46] Golbert. J., Lewin. D. R.. Model-based control of fuel cells:(1) Regulatory control, J. of Power Sources, 2004, 135(1-2), 135-151
    [47]卫东.质子交换膜燃料电池电堆的建模与控制研究[D].上海交通大学博士论文,上海交通大学,2004
    [48]薛定宇,陈阳泉.系统仿真技术与应用[M].北京:清华大学出版社, 2002
    [49]田玉冬,朱新坚,曹广益.质子交换膜燃料电池的建模与控制[J].电池,2004,34(4):301-303.
    [50] LEE, J.H., LALK, T.R.. Modeling fuel cell stack system[J]. J Power Sources, 1998, 73(2): 229-241.
    [51] Muller, E. A. StefanopoulouEric, A. G.. Analysis, Modeling, and Validation for the Thermal Dynamics of a Polymer Electrolyte Membrane Fuel Cell Sytems[C] Third international conference on fuel cell science, engineering and technology, May 23-25, Ypsilanti, Michigan, USA.
    [52] Pukrushpan, J.T., Huei, P., Stefanopoulou, A.G.. Control-oriented modeling and analysis for automotive fuel cell systems[J]. IFAC, Control Engineering Practice,2005
    [53] Larminie, james; Dicks, Andrew. Fuel cell systems explained (2nd edition) [M]. John Wiley&Sons.2003
    [54] Hirschenhofer, J.H., Stauffer, D.B., Engleman, R.R., etc. Fuel cell handbook[M], Fourth edition . Parasons Corporation Reading, PA 19607, 1998.
    [55] Mann, R.F. Amphlett, J. C., Hopper, M.A.I., et.al.. Development and application of a generalized steady-state electrochemical model for a PEM fuel cell[J]. Journal of Power Sources, 2000, 86(1-2):173-180
    [56] Amphlett, J.C., Baumert, R.M., Mann, R.F., et. al.. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development[J]. Journal of the Electrochemical Society, 1995, 142(1):1-8
    [57] Jeferson M.C., Farret, f.A., Vladimir, A., etc. Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells[J]. IEEE Transactions on Energy Conversion, 2005,20(1):211-218
    [58] Lee, C.C.. Fuzzy logic in control systems: fuzzy logic controller. Part 1[J]. IEEE Trans on Systems. Man and Cybern, 1990, SMC-20(2): 404-418
    [59]黄洪钟,赵正佳,姚新胜等.遗传算法原理、实现及其在机械工程中的应用研究与展望[J].机械设计,2000(3),3:1-7
    [60] Hajela, P., Lin, C.Y., Genetic search strategies in multi-criterion optimal design[J]. Structural Optimization, 1992,5(4):99-107
    [61]张海峰,候明等,千瓦级质子交换膜燃料电池[J].电源技术,2003,第27卷第四期,pp.348-350
    [62]黄强,黄洪钟.基于知识的具有关键设备的生产调度问题遗传编码方法与算法研究[J].西南交通大学学报,1999,34(2):185-189
    [63] Holland, J.H.. Adaptation in Natural and Artificial Systems[D]. Ann Arbor: Univ. of Michigan Press, 1975
    [64] Schaudolph, N.N., Belew, R.K.. Dynamic parameter encoding for genetic algorithms[J]. Machine Learning, 1992 (6) 9-21
    [65] Goldberg, D.J.. Genetic Algorithm in Search, Optimization and Machine Learning[M] Addison Wesley, 1989
    [66]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].出版社:人民邮电出版社出版日期:2001年2月
    [67]何大阔,李延强.基于单纯形算子的混合遗传算法[J].信息与控制,2001,30(3):276-278
    [68] http://baike.baidu.com/view/471090.html
    [69]曹志松,朴英。基于混合遗传算法的航空发动机PID控制参数寻优[J].航空动力学报2007,9, 22(9):1588-1592
    [70] http://www.newenergy.org.cn/html/2006-3/200639_7899.html
    [71] Pukrushpan, J.T.. Modelling and control of fuel cell systems and fuel processors[D]. The university of Michigan, Ann Arbor, Michigan,2003.
    [72] Pukrushpan, J.T., Stefanopoulou, A.G., Huei, P.. Control of fuel cell power systems: principles, modeling, analysis and feedback design [M], Springer, 2004
    [73] Biyikoglu, A.. Review of proton exchange membrane fuel cell models[J]. International Journal of Hydrogen Energy, 2005, 30:1181-1212
    [74] Lum, K.W., McGuirk, J.J.. Three-dimensional model of a complete polymer electrolyte membrane fuel cell- model formulation, validation and parametric studies[J]. Journal of Power Sources, 2005, 143(1): 103- 124
    [75] Wang. L., Husar. A., Zhou T., etc.. A parametric study of PEM fuel cell performance[J]. Int J Hydrogen Energy, 2003, 28(11):1263-1272
    [76] Kaytakoglu, S., Akyalcm, Levent.. Optimization of parametric performance of a PEMFC[J]. International Journal of Hydrogen Energy, 2007, 32: 4418-4423
    [77] Brian, C., Ned, Di., Systematic parameter estimation for PEM fuel cell models[J]. Journal of Power Sources, 2005, 144:83-93
    [78]王文东,陈实,吴锋.温度、压力和湿度对质子交换膜燃料电池性能的影响[J].能源研究与信息,2003,19(1):39-46
    [79] Hwang, J. J., Hwang, H.S.. Parametric studies of a double-cell stack of PEMFC using Grafoil flow-field plates[J]. Journal of Power Sources, 2002,104(1):24-32
    [80] Santarelli, M.G.., Torchio, M.F.. Experimental analysis of the effects of the operating variables on the performance of a single PEMFC[J]. Energy conversion and management, 2007, 48(1):40-51
    [81]张连洪,揭伟平,谢春刚,等.温度、压力和湿度对PEMFC堆电效率的影响[J].天津大学学报,2007,40(5):594-599
    [82] kadjo A J J. Brault P. Caillard A, etc.. Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation[J]. Journal of Power Sources, 2007, 172: 613-622
    [83]李湘华,肖金生,潘牧,等.质子交换膜燃料电池的结构和运行参数对其性能的影响[J].武汉理工大学学报,2006,30(6):1027-1030
    [84]李曦.质子交换膜燃料电池系统的建模与智能控制策略研究[D].上海交通大学博士论文,上海交通大学,2006
    [85] Wu, J.F., Yi,B.l., Hou, M., etc.. Influence of catalyst layer structure on the current distribution of PEMFCs[J]. Electrochemical and Solid-state Letters, 2004,7(6):151-154
    [86] Amphlett, J.C., Baumert, R.M., Mann, R.F., et. al.. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell II[J]. Empirical model development. Journal of theElectrochemical Society, 1995, 142(1):9-15
    [87]胡里清,李拯,夏建伟,等.燃料电池运行压力对整车燃料效率的影响[J].电源技术, 2004, 28(5):288-290
    [88]王明华,朱新坚,隋升,等.千瓦级PEMFC电堆的研制[J].电源技术, 2004, 28(3):150-162
    [89] Pei, P. C., Ouyang, M.G., Lu, Q. C., etc. Testing of an automotive fuel cell system[J]. International Journal of Hydrogen Energy, 2004, 29(10): 1001-1007
    [90]衣宝廉,燃料电池——原理、技术、应用,化学工业出版社[M].北京,2003,160-290
    [91] Amphlett, J.C., Mann, R.F., Peppley, B.A., et al.. A model predicting transient responses of proton exchange membrane fuel cells[J]. Journal of Power Sources 1996, 61:183-8
    [92] Sampath, Y., Davari, A., Feliachi, A.,et al.. Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2003, 124:104-13
    [93]蔡常丰.数学模型建模分析[J].科学出版社,1995
    [94] Pathapati, P.R., Xue, X., Tang, J.. A new dynamic model for predicting transient phenomena in a PEM fuel cell system[J]. Renewable Energy, 2005, 30:1-22
    [95] Eikerling, M., Kharkats, Y., kornyshev, A. A.,et al.. Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes[J]. Journal of Electrochemical Society, 1998, 145:2684-98
    [96] Friede, W., Davat, B.. Mathematical model and characterization of the transient behavior of a PEM fuel cell[J]. Transactions on power electronics, 2004, 19(5):1234-1241
    [97] Weydahl, H., Steffen M.H., Georg, H., etc.. Transient response of a proton exchange membrane fuel cell[J]. Journal of power sources, 2007,171(2):321-330
    [98]张颖颖,曹广益,朱新坚.燃料电池——有前途的分布式发电技术[J].电网技术,2005,29(2):57-61
    [99]孙涛,曹广益,朱新坚.车辆质子膜燃料电池控制系统分析[J].移动电源与车辆, 2004,3:44-47
    [100] Shao,Q.l., Wei, D., Cao, G.Y., et al.. Dynamic thermal model and temperature control of proton exchange membrane fuel cell stack[J]. Chinese Journal of Chemical Engineering, 2005, 13(2):218-224
    [101] ang, S.R.. ANFIS: Adaptive-network-based fuzzy inference systems[J], IEEE Trans. On Systems, Man&Cybemetics, 1993, 23(3), 665-685
    [102]周志坚,毛宗源.一种最优模糊神经网络控制器[J].控制与决策, 2000, 15(3):358-361
    [103] Wang L X., Mendel J M. Fuzzy basis functions, universal approximation and orthogonal least squares learning[J], IEEE Trans. On Neural Networks 1992, 3(5):807-814
    [104]王振雷,顾树生.基于实值遗传算法的模糊神经网络辨识器[J].东北大学学报(自然科学版),2000, 21(4):354-356
    [105] Wang Z L., Wang J H., Gu S S.. New learning algorithm of neuron-fuzzy network[C]. Proceedings of IFAC Conference on New Technologies for Computer Control, 2001, 614-618
    [106] Kwong. C. K., Chan. K. Y., Wong. H.. Takagi-Sugeno neural fuzzy modeling approach to fluid dispensing for electronic packaging[J]. Expert systems with applications, 2008,34: 2111-2119
    [107] Wang. R. M., Cao. G. Y., Zhu. X. J.. New hybrid model of proton exchange membrane fuel cell. [J]. Journal of Zhejiang University Science A(English Edition), 2007,8(5): 741-747
    [108] Jemei, S., Hissel, D., Pera, M.C., Kauffmann, J.M.. On-board fuel cell power supply modeling on the basis of neural network methodology[J]. Journal of Power Sources, 2003,124:79-486
    [109] Lee, W.Y., Park, G.G., Yang, T.H., et al.. Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks[J]. International Journal of Hydrogen Energy, 2004, 29:61-66
    [110] Ogaji, S.O.T., Singh, R., Pilidis, P.,et al.. Modelling fuel cell performance using artificial intelligence[J]. Journal of Power Sources, 2006,154:192-197
    [111] Tian, Y.D., Zhu, X.J., Cao, G.Y.. Proton exchange membrane fuel cells modeling based on artificial networks[J].Journal of University of Science and Technology Beijing, 2005,12:72-77
    [112]焦李成,神经网络的应用与实现[M],西安:西安电子科技大学出版社,2005
    [113]陆爽,张子达,李萌.基于径向基函数神经网络的滚动轴承故障模式的识别[J].中国工程科学,2004,6(2):56-60
    [114]宋宜斌,王培进.基于径向基函数神经网络的非线性模型辨识[J].计算机工程, 2004,30(5):142-143
    [115] Mellit, Adel., Benghanem, Mohamed.. Sizing of stand-alone photovoltaic systems using neural network adaptive model[J]. Desalination, 2007, 209:64-72
    [116] Song, J.G., Zhang, C.N., Sun, F.C., et,al.. Operational aspects of a large PEFC stack under practical conditions[J]. Journal of Power Sources, 2004, 128(2):208-217
    [117] Xu, L., Krzyzak, A., Oja, E.. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection[J], IEEE Transactions on neural networks, 1993,4(4):636-649
    [118]陈瑞华,相奇志.纺织最优化方法与应用[M].北京:中国纺织出版社,1994:162-165
    [119]史忠植.知识工程[M].北京:清华大学出版社,1988, 48-49
    [120]周涌,陈庆伟,吴晓蓓,等.一类非线性系统的模糊神经网络内模控制[J].东南大学学报, 2003,33:41-45
    [121]文新宇,张井岗,赵志诚.模糊神经网络内模控制[J].中南工业大学学报, 2003, 34:225-230
    [122]魏崔琴.基于自适应模糊PID控制的双闭环直流调速系统[J].计算机与信息技术,2007,24:71-72
    [123]赵化启.基于模糊自适应整定PID控制的刨花板供胶系统[J].哈尔滨商业大学学报,2007,23(3):325-328
    [124]姜丰辉,陈晓高.基于Matlab的模糊自整定PID控制器仿真研究[J ].青岛科技大学学报, 2007, 28:109-113
    [125]李曦,曹广益,朱新坚.基于T—S模型的质子交换膜燃料电池控制建模[J].能源技术, 2004, 25(4):250-254
    [126] Seo P.H., Hun, C.Y., Hwan Cho Y., etc.. Performance enhancement of PEMFC through temperature control in catalyst layer fabrication[J]. Electrochimica Acta, 2007, 53: 763- 767
    [127] Li, Y.J., Wang, H,J., Dai Z.J.. Using artificial neural network to control the temperature of fuel cell[J]. Communications, circuits and systems proceedings, 2006, 3:2159-2162
    [128] Coppo, M., Siegel, N.P., von Spakovsky, M.R. . On the influence of temperature on PEM fuel cell operation[J]. Journal of Power Sources, 2006,159:560-569
    [129] Jarmo, Soderman., Frank Pettersson.. Structural and operational optimization of distributed energy systems[J]. Applied Thermal Engineering, 2006, 26: 1400-1408
    [130] Argyropoulos, P., Scott, K., Taama, W. M.. Ensional thermal model for direct methanol fuel cell stacks Part II. Model based parametric analysis and predicted temperature profiles[J]. Journal of Power Sources, 1999, 79(2):184-198
    [131] Wang,R.M., Cao,G.Y., Zhu,X.J., A new hybrid model of proton exchange membrane fuel cell[J]. Journal of Zhejiang University SCIENCE. 2007, 8(5): 741-747
    [132]张浩炯,余岳峰.应用自适应神经模糊推理系统进行建模与仿真[J].计算机仿真,2002,b19(4):47-49
    [133]唐志航.模糊控制系统优化设计研究[D].浙江工业大学硕士论文,浙江工业大学,2002
    [134]王国胤.Rough集理论与知识获取[M].西安:西安交通大学出版社,2003
    [135]卫东,曹广益,朱新坚.基于一种改进自适应模糊神经技术的PEMFC系统建模和控制[J].上海交通大学学报, 2004,38(9):1581-1586
    [136]李曦,曹广益,朱新坚.基于模糊建模技术的PEMFC的非线性控制[J].电源技术, 2005,29(4):245-249
    [137]王立新.自适应模糊系统与控制——设计与稳定性分析[M].北京:国防工业出版社,1995
    [138]廖芳芳,肖建.基于BP神经网络PID参数自整定的研究[J].系统仿真学报, 2005,17(7):1711-1713
    [139] Giulio, D. E., Antonio, M., Emanuela, N.. Use of neural networks for quick and accurate auto-tuning of PID controller[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(2):170-179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700