用户名: 密码: 验证码:
对Fe(Ⅲ)具有敏感性的荧光高分子材料的制备及其荧光性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,控制环境污染已成为工业生产中一个引人注目的问题,也吸引众多研究者的关注。由于荧光检测技术敏感度高,选择性好且具有多功能等优点而广为人知。因此合成对金属离子具有识别能力的荧光小分子至关重要。但荧光小分子在应用中容易脱落,同时与基材相溶性不好,仪器稳定性受到影响。相比之下,高分子材料具有很好的稳定性和成膜性,易于制成各种器件;并且,与溶液检测技术相比,膜检测具有可多次重复使用,易保存,操作简便、处理效率高等优点。在综述部分,我们对近年来报道的对金属离子具有识别能力的荧光小分子探针及光诱导电子转移(PET)和分子内电荷转移(ICT)两种识别机理进行了归纳介绍,并介绍了其在高分子材料方向的发展情况。
     由于铁离子在新陈代谢过程和生物材料中所起的重要作用,发展对铁离子具有高选择性和敏感性的传感材料成为一个重要的科技项目。本论文结合荧光小分子的离子识别能力和高分子材料优良的成膜性,采用荧光小分子高分子化的方法来制备对Fe~(3+)具有选择识别的高分子材料,再利用高分子膜的成膜性制备可对Fe~(3+)选择识别的高分子膜材料。本文分别选用诺氟沙星和1,8-萘酰亚胺小分子作为原料,采用不同方法制备得到对Fe~(3+)具有较好选择性的荧光高分子材料。我们对所得到的小分子的光物理性质进行了研究,并探讨了高分子材料在溶液和膜状态下的离子识别范围,线性关系,响应时间等性质。研究取得如下成果:
     (1)以诺氟沙星为荧光小分子,合成可聚合的单体分子,与甲基丙烯酸甲酯(MMA)聚合之后得到侧链含诺氟沙星单元的发蓝光聚甲基丙烯酸甲酯(PMMA)高分子。对侧链含有一种诺氟沙星单元衍生物的PMMA高分子和侧链含有两种诺氟沙星单元衍生物的PMMA高分子,分别研究了其溶液和固体的基本发光性能、高分子溶液的溶剂化效应及离子效应。发蓝光的高分子材料在溶液中由于过渡态金属离子与发色团的配位加速了分子内部电荷转移(ICT)过程,因此金属离子对高分子溶液的荧光均有部分猝灭效应。由于Fe~(3+)氧化性较强,表现的荧光猝灭现象更为突出,其他金属离子由于高分子链的卷曲对小分子的保护使得荧光影响微弱。并且Fe~(3+)的猝灭机理符合Stem-Volmer动力学关系。
     (2)分别采用两种路线合成了以萘酰亚胺衍生物为荧光小分子,并制得发绿色荧光的高分子材料。
     第一种方法是先合成荧光小分子单体,后与MMA共聚的方法得到发绿光的油溶性高分子PMMA材料。合成得到的小分子发绿色荧光,具有很强的溶剂化作用,在非极性有机溶剂中具有较高的荧光量子产率。我们对过渡态金属离子对荧光高分子材料在有机溶液及膜状态下的基本荧光性质的影响作了详细的研究。当Fe~(3+)在不同的浓度区间,溶液和膜的相对荧光强度(F_0/F)与[Fe~(3+)]均能满足一定的线性关系。
     第二种方法是采用先聚合再悬挂得到水溶性的发绿光的聚丙烯酰胺(PAM)高分子材料。研究了pH值对其水溶液荧光的影响,根据其非线性变化曲线计算得到荧光小分子的酸性常数pKa为3.5。该水溶性荧光高分子在水溶液中对Fe~(3+)和Cu~(2+)均表现很好的配位能力。
     (3)对含有两种具有光谱重叠(一种小分子的发射光谱与另一小分子的激发光谱发生较大程度的重叠)的荧光小分子的高分子材料进行了研究,探讨了高分子膜中的两种小分子的分子间能量转移现象及金属离子等对高分子材料发光性能的影响。
     首先是侧链含有诺氟沙星和二胺基吖啶的水溶性PAM高分子材料。该材料在溶液中表现的是两种小分子分别的荧光性质,能量转移现象不明显。在膜及粉末状态时,由于小分子间距离减小,发生了明显的能量转移过程;且当能量受体分子含量较高时,能量转移效率较大。被测金属离子中Fe~(3+)表现出明显的荧光猝灭现象。在水溶液中,金属离子Fe~(3+)对诺氟沙星发色团的猝灭效应要强于对胺基吖啶发色团的猝灭。在乙醇环境中,过渡金属离子对高分子膜两处荧光强度的猝灭作用则表现一致。总之,两处发射峰的荧光强度与金属离子浓度之间形成的线性关系能够提高检测的准确性。
     其次是制备两种具有光谱重叠的萘酰亚胺衍生物分子,分散在油溶性材料聚氯乙烯(PVC)中得到PVC荧光膜。改变两种分子的比例,发现能量受体分子含量越高,从能量给体向能量受体分子转移的能量越多,既较高处荧光强度与较低处荧光强度值比值越大。而pH环境对PVC荧光膜的影响很小。对于所研究的过渡态金属离子,只有Fe~(3+)对此PVC荧光膜表现持续的荧光猝灭作用。并且当Fe~(3+)在不同的浓度区间,PVC膜两处发射峰的相对荧光强度(F_0/F)与[Fe~(3+)]均满足一定的线性关系。
     论文合成的几种新型荧光高分子材料均对Fe~(3+)具有较好的选择性,并且荧光强度与离子浓度之间满足一定的线性关系。该项研究为荧光高分子用于Fe~(3+)的检测提供了理论指导,并为制备相应的传感材料和器件奠定了基础。
In recent years,the environmental pollution has been a major concern of the present industrial societies.Fluorescence-based sensors are well known for their high sensitivity,versatility,and fairly good selectivity compared to absorption sensors. Thus the development of new functional fluorescent compounds having responsibility to metal ions is important for expanding the utilization of fluorescent chemosensors. But,any supersaturated concentration of dye is likely to result in migration and phase separation in application.Polymer materials have good stability and high quality of film making.Compared with the detection technique in solution,detecting in film state have showed much more advantages such as the reproductivity,being easy to preserve,the simplified operation and being effective.In the first department of this paper,the latest research progress in supramolecular fluorescence sensors and switches used for metal cation recognition is summarized.Two types of systems were reviewed,photo-induced electron transfer(PET) and intramolecular charge transfer(ICT) systems.And the development of fluorescent polymeric sensor for metal cation recognition was reviewed.
     Since iron plays an important role in metabolic processes and biological materials,the development of highly selective and sensitive sensors able to detect iron cations in the soil and water sources has become a very important scientific goal. Integrating together the recognition capability of the dyes and the advantages of polymeric materials,the fluorescent polymers having the ability to recognizing metal cation Fe~(3+) were obtained based on norfloxain and 1,8-naphthalimide.The photophysical properties of fluorescent compounds synthesized in this paper were detected,and properties of the fluorescent polymer in the area of reorganization range of metal ions,relationship between fluorescent intensity and concentration of ions and response time were measured in the solution and film state.
     (1) Novel norfloxacin-containing fluorescent polymers were synthesized via copolymerization of one or two kinds of derivatives of norfloxacin and methylmetacrylate(MMA).Fluorescence characteristics of the polymers as a function of pH and metal cations were investigated in aqueous solution and film state.The presence of metal cations(Mn~(2+),Fe~(3+),Co~(2+),Ni~(2+),Cu~(2+) and Zn~(2+)) could quench the fluorescence intensity of the polymers in different levels because the coordination of metal ions and the dyes accelerated the ICT process.Exhibiting powerful oxidizing properties,Fe~(3+) showed the strongest fluorescent quenching on the fluorophores, which was accordance with Stem-Volmer dynamics.The results suggested the possibility that this newly synthesized compound works as a polymeric sensor responding to water polluted by protons and Fe~(3+).
     (2) Novel naphthalimide-containing green fluorescent polymers were synthesized via two methods.
     Firstly,we obtained green fluorescent polymers PMMA throught the copolymerization of the monomeric derivative of 1,8-naphthalimide and MMA.The monomeric derivative of 1,8-naphthalimide is a solvatochromic fluorophore exhibiting strong fluorescence in nonpolar solvent.The responses of the polymer in solution and in film state to metal cations were detected in detail.Different linear relationship were received between the relative fluorescent intensity(F_0/F) and the concentration of Fe~(3+)[Fe~(3+)]in the different range of[Fe~(3+)].
     Then a novel water-soluble green fluorescent polymer PAM was synthesized based on 1,8-naphthalimide through a series of easy reactions with high yields. Fluorescence characteristics of the polymer as a function of pH were investigated, with the pK_a 3.5.The presence of metal cations(Cu~(2+)and Fe~(3+)) could quench efficiently the fluorescence intensity of aqueous solution of this polymer.
     (3) The fluorescent polymer containing two dyes having spectra overlap (emission spectrum of the donor partially overlaps the absorption spectrum of the acceptor) were prepared.The photophysical characteristics of the polymer such as the energy transfer phenomenon between the two dyes and the response to metal ions were detected.
     A new kind of bichromophoric Poly(acrylamide) covalently linked with norfloxacin(NF) and proflavine(PF) molecules were synthesized with different contents of the two dyes.The photophysical properties of the polymer were investigated that energy transfer(ET) from norfloxacin to proflavine occurred in the solid state(containing film and powder) of the polymer but not in aqueous solution because of the high concentration of chromophore groups existing in solid state(film and powder state).The transfer efficiency increased linearly with the content of acceptor either in film or in powder state.Responses of different metal caions on the fluorescence intensity of the polymer solution were investigated.Only Fe~(3+) ions exhibited remarkable fluorescence intensity quenching to the polymer.The linear relationship between[Fe~(3+)]and fluorescence intensity can be recorded synchronously at two position,which could enhance the selectivity and precision of the sensor both in aqueous solution and in film state.
     Fluorescent polyvinyl chloride(PVC) films were prepared thought doping two 1,8-naphthalimide derivates(having spectra overlap) into PVC.The energy transfer efficiency increased linearly with the content of acceptor,pH environments have no influence on the fluorescence of the film.Response of different metal caions on the fluorescence intensity of the film was investigated.Only Fe~(3+) ions exhibited remarkable fluorescence intensity quenching.Different linear relationship were received between the relative fluorescent intensity(F_0/F) at two emission wavelength and the concentration of Fe~(3+) in the different range of[Fe~(3+)].
     All the newly synthesized materials showed selectivity to Fe~(3+),and linear relationship between the fluorescent intensity and the concentration of Fe~(3+) were obtained.They may be as potential efficient and selective sensors for water pollution by Fe~(3+) cations.
引文
[1].F.Hirayama Intramolecular excimer formation.I.Diphenyl and triphenyl alkanes[J].J Chem Phys,1965,42:3163-3171.
    [2].N E Wolf,R J Pressley.Maser optical action in Eu~(3+) containing organic matrix.Appl Phy Lett,1963,2(8):152-154.
    [3].E.Banks,Y.Okamoto,Y.Ueba.Synthesis and characterization of rare earth metal-containing polymers.I.Fluorescent properties of ionomers containing Dy~(3+),Er~(3+),Eu~(3+),and Sm~(3+)J Appl Polym Sci 1980;25(3):359-368.
    [4].http://cmbi.bjmu.edu.cn/news/report/2008/fp.html
    [5].H.He,M.A.Mortellaro,M.J.P.Leiner,S.T.Young,R.J.Fraatz,J.K.Tusa A Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer.Anal Chem 2003,75:549-555.
    [6].L.Prodi,C.Bargossi,M.Montalti,P.B.Savage,N.Zaccheroni,N.Su,J.S.Bradshaw,R.M.Izatt An effective fluorescent chemosensor for mercury ions.J Am Chem Soc 2000,122:6769-6770.
    [7].H.Tong,L.Wang,X.Jing,F.Wang Highly Selective Fluorescent Chemosensor for Silver(I) Ion Based on Amplified Fluorescence Quenching of Conjugated Polyquinoline.Macromolecules 2002,35:7169-7171.
    [8].M.Irie,T.Fu kaminato,T.Sasaki,N.Tamai,T.Kawai A digital fluorescent molecular photoswitch Nature 2002,420:759-760.
    [9].A.X.Trautwein Bioionorganic chemistry,Wiley-VCH,Weinheim,1997.
    [10].E.Merian Metals and their compounds in the environment,Wiley-VCH,Weinheim,1991.
    [11].A.W.Czarnik(Ed.),Fluorescent Chemosensors for Ion and Molecule Recognition,ACS Symposium Series 358,American Chemical Society,Washington,DC,1993.
    [12].J.R.Lakowicz((ed.),Probe Design and Chemical Sensing,Topics in Fluorescence Spectroscopy,vol.4,Plenum,New York,1994.
    [13].B.Valeur,E.Bardez,Chem.Br.1995,31:216.
    [14].L.Fabbrizzi,A.Poggi.Sensors and switches from supramolecular chemistry.Chem Soc Rev 1995 24(3):197-202.
    [15].J.-P.Desvergne,A.W.Czarnik((eds.),Chemosensors of Ion and Molecule Recognition, NATO ASI Series,Kluwer,Dordrecht,1997.
    [16].A.P.de Silva,H.Q.N.Gunaratne,T.Gunnlaugsson,A.J.M.Huxley,C.P.McCoy,J.T.Rademacher,T.E.Rice.Signaling Recognition Events with Fluorescent Sensors and Swithes.Chem Rev 1997,97(5):1515-1566.
    [17].B.Liu,G.C.Guo,J.S.Huang.Four triazole-bridging coordination polymers containing (m-phenol)-1,2,4-triazole:Syntheses,structures and properties of fluorescence and magnetism.J Solid State Chem,2006,179(10):3136-3144
    [18].Y.Ding,S.Hay Allan Synthesis of highly fluorescent materials:isoindole-containing polymers.J Polym Sci Part A:Polym Chem,1999,37(16):3293-3299.
    [19].A D Scully,S W Bigger,K P Ghiggino,V O ogl.Temperature dependence of fluorescence from polymer-bound 2-(2'-hydroxyphenyl)-2H-benzotriazole photostabilizers.J.Photochem.Photobiol.A:Chem,1991,55(3):387-393.
    [20].K Y Law,R O Loutfy.Fluorescence probe for microenvironments:On the fluorescence properties of p-N,N-dialkylaminobenzylidenemalononitrile in polymer matrices.Polymer,1983,24(4):439-442.
    [21].Miwako Mizoguchi,Nobuhiro Ohta.Fluorescence of an electron donor-acceptor system in a polymer film under the simultaneous application of electric field and magnetic field.Chemi Phy Lett 2003,372(1-2):66-72.
    [22].许金钩,王尊本.荧光分析法(第三版),北京:科学出版社,2006.
    [23].Guillet J.Polymer Photophysics and Photochemistry.New York:Cambridge University Press,1985.
    [24].李善君,纪才圭,李橦,程极济.,高分子光化学原理及应用(第二版),上海:复旦大学出版社,2003.
    [25].吴世康.高分子光化学导论-基础和应用,北京:科学出版社,2003..
    [26].B Valeur,Molecular Fluorescence:Principles and Applications.Wiley,Weinheim,oh.9,pp.247(2001).
    [27].O.Kuznetz,D.Davis,H.Salman,Y.Eichen,S.Speiser.Intramolecular electronic energy transfer in rhodamine-azulene bichromophoric molecule.J Photochem Photobiol A:Chemistry 2007,191,176-181.
    [28].L.Prodi,F.Bolletta,M.Montalti,N.Zaccheroni.Luminescent chemosensors for transition metal Ions.Coordin Chem Rev 2000,205,59-83.
    [29].B.Valeur,I.Leray Design principles of fluorescent molecular sensors for cation recognition Coordin Chem Rev 2000,205,3-40.
    [30]R.A.Bissell,A.P.de Silva,H.Q.N.Gunaratne,P.L.M.Lynch,G.E.M.Maguire,C.P.McCoy,K.R.A.S.Sandanayake,Fluorescent PET(Photoinduced Electron Transfer) Sensors Top Currb Chem 1993,168:223-265.
    [31].A.Prasanna de Silva,Thorfinnur Gunnlaugsson and Terence E.Rice Recent evolution of luminescent photoinduced electron transfer sensors.Analyst,1996,121,1759- 1762,
    [32].L.Fabbrizzi,M.Lichelli,P.Pallavicini,D.Sacchi,A.Taglietti,Sensing of transition metals through fluorescence quenching or enhancement Analyst 1996,121,1763-1768.
    [33].R.Bergonzi,L.Fabbrizzi,M.Lichelli,C.Mangano.Molecular switches of fluorescence operating through metal centred redox couples Coordin Chem Rev 1998,170,31-46.
    [34].R.Y.Tsien,Annu.Rev.Neurosci.12(1989) 227.
    [35].R.Y.Tsien Methods in Cell Biology,vol.30,Academic Press,1989,p.127.
    [36].A.P.de Silva,H.Q.N.Gunaratne.Fluorescent PET(photoinduced electron transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties J Chem Soc Chem Commun 1990,3:186-188.
    [37].M.A.Kuhn,Chapter 10,in:A.W.Czamik(ed.),Fluorescent Chemosensors for Ion and Molecule Recognition,ACS Symposium Series 358,American Chemical Society,Washington,DC,1993,p.47.
    [38].L.Schouteten,P.Denjean,J.Faure,D.Pansu,C.Bernard,R.Pansu.Photophysics of Calcium Green 1 invitro and in live cells Phys Chem Chem Phys 1999,1,2463-2469.
    [39].J.R.Lakowicz,H.Szmacinski,K.Nowaczyk,M.L.Johnson.Calcium imaging using fluorescence lifetimes and long-wavelength probes JFluoresc 1992,2(1):47-62.
    [40].A.P.de Silva,H.Q.N.Gunaratne,GE.M.Maguire,'Off-on' fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer(PET),which also behave as photoionic OR logic gates J Chem Soc Chem Commun 1994,10,1213-14.
    [41].M.E.Huston, K.W.Haider, A.W.Czarnik.Chelation enhanced fluorescence in 9,10-bis[[(2-(dimethylamino)ethyl)methylamino]methyl]anthracene J Am Chem Soc 1988,110(13);4460-62.
    [42].L.Fabbrizzi,M.Lichelli,P.Pallavicini,A.Taglietti.A Zinc(Ⅱ)-Driven Intramolecular Photoinduced Electron Transfer Inorg Chem 1996,35(6) 1733-36.
    [43].L.Fabbrizzi,M.Lichelli,P.Pallavicini,A.Perotti,D.Sacchi.An Anthracene-Based Fluorescent Sensor for Transition Metal Ions Angew Chem Int Ed Engl 1994,33(19):1975-1977.
    [44].L.Fabbrizzi,M.Lichelli,P.Pallavicini,A.Perotti,A.Taglietti,D.Sacchi.Fluorescent Sensors for Transition Metals Based on Electron-Transfer and Energy-Transfer Mechanisms Chem EurJ 1996,2(1):75-82.
    [45].X.Guo,X.Qian and L.Jia.A Highly Selective and Sensitive Fluorescent Chemosensor for Hg~(2+) in Neutral Buffer Aqueous Solution J Am Chem Soc 2004,126:2272-2273.
    [46].S.C.Burdette,C.J.Frederickson,Weiming Bu,and Stephen J.Lippard ZP4,an Improved Neuronal Zn~(2+) Sensor of the Zinpyr Family J Am Chem Soc 2003,125:1778-1787.
    [47].G.K.Walkup,S.C.Burdette,S.J.Lippard,and R.Y.Tsien A New Cell-Permeable Fluorescent Probe for Zn~(2+) J Am Chem Soc 2000,122(23):5644-5645.
    [48].A.P.de Silva,S.A.de Silva.Fluorescent signalling crown ethers;'switching on' of fluorescence by alkali metal ion recognition and binding in situ J Chem Soc Chem Commun 1986,23:1709-10.
    [49].Y.Kohno,Y.Shiraishi,T.Hirai Effects of proton and metal cations on the fluorescence properties of anthracene bearing macrocyclic polyether and polyamine receptors J Photochem Photobiol A:Chem 2008,195:267-276.
    [50].H.Mu,R.Gong,Q.Ma,Y.Sun and E.Fu A novel colorimetric and fluorescent chemosensor:synthesis and selective detection for Cu~(2+) and Hg~(2+) Tetrahedron Lett 2007,48:5525-5529.
    [51].A.P.de Silva,H.Q.N.Gunaratne,K.R.A.S.Sandanayake.A new benzo-annelated cryptand and a derivative with alkali cation-sensitive fluorescence Tetrahedron Lett 1990,31(36):5193-96.
    [52].S.Banthia and A.Samanta Photophysical and Transition-Metal Ion Signaling Behavior of a Three-Component System Comprising a Cryptand Moiety as the Receptor J Phys Chem B 2002,106:5572-5577.
    [53].I.Aoki,T.Sakaki,S.Shinkai.A new metal sensory system based on intramolecular fluorescence quenching on the ionophoric calix[4]arene ring J Chem Soc Chem Commun 1992,9:730-732.
    [54].F.Unob,Z.Asfari,J.Vicen.An anthracene-based fluorescent sensor for transition metal ions derived from calix[4]arene Tetrahedron Lett 1998,39(9):2951-54.
    [55].B.Valeur,J.Bourson,J.Pouget,in:A.W.Czarnik(Ed.),Fluorescent Chemosensors for Ion and Molecule Recognition,ACS Symposium Series 538,American Chemical Society,Washington,DC,1993,p.25.
    [56].W.Rettig,R.Lapouyade,Probe design and chemical sensing,in:J.R.Lakowicz(Ed.),Topics in Fluorescence Spectroscopy,vol.4,Plenum,New York,1994,p.109.
    [57].B.Valeur,F.Badaoui,E.Bardez,J.Bourson,P.Boutin,A.Chatelain,I.Devol,B.Larrey,J.P.Lefe'vre,A.Soulet,in:J.-P.Desvergne,A.W.Czarnik(Eds.),Chemosensors of Ion and Molecule Recognition,NATO ASI Series,Kluwer,Dordrecht,1997,p.195.
    [58].Hans Gerd Loehr,Fritz Voegtle.Chromo- and fluoroionophores.A new class of dye reagents Acc Chem Res 1985,18(3):65-72.
    [59].M.V.Alfimov,S.P.Gromov,W.Rettig(Ed.),Applied fluorescence,in:Chemistry,Biology and Medicine,Springer,Berlin,1999.
    [60].J.Bourson,B.Valeur.Ion-responsive fluorescent compounds.2.Cation-steered intramolecular charge transfer in a crowned merocyanine J Phys Chem 1989,93(9):3871-76.
    [61].J.F.Le'tard,R.Lapouyade,W.Rettig.Synthesis and photophysical study of 4-(N-monoaza-15-crown-5) stilbenes forming TICT states and their complexation with cations.Pure Appl Chem 1993,65(8):1705-1712.
    [62].E.N.Ushakov,S.P.Gromov,O.A.Fedorova,M.V.Alfimov,Izv.Akad.Nauk,Ser.Khim.(1997) 484[Russ.Chem.Bull.1997,46:463].
    [63].M.M.Martin,L.Be'gin,J.Bourson,B.Valeur.A new concept of photogeneration of cations:Evidence for photoejection of Ca~(2+) and Li~+ from complexes with a crown-ether-linked merocyanine by picosecond spectroscopy J Fluoresc 1994,4(4):271-3.
    [64].M.M.Martin,P.Plaza,Y.H.Meyer,F.Badaoui,J.Bourson,J.P.Lefe'vre,B.Steady-State and Picosecond Spectroscopy of Li+ or Ca2+ Complexes with a Crowned Merocyanine.Reversible Photorelease of Cations Valeur J Phys Chem 1996,100(17):6879-88.
    [65].P.h.Dumon,G.Jonusauskas,F.Dupuy,P.Pe'e,C.Rullie're,J.F.Le'tard,R.Lapouyade.Picosecond Dynamics of Cation-Macrocycle Interactions in the Excited State of an Intrinsic Fluorescence Probe:The Calcium Complex of 4-(N-Monoaza-15-crown-5)-4'-phenylstilbene J Phys Chem 1994,98(41):10391-96.
    [66].R.Mathevet,G.Jonusauskas,J.F.Le'tard,R.Lapouyade.Picosecond Transient Absorption as Monitor of the Stepwise Cation-Macrocycle Decoordination in the Excited Singlet State of 4-(N-Monoaza-15-crown-5)-4'-cyanostilbene J Phys Chem 1995,99(43):15709-13.
    [67].S.I.Druzhinin,M.V.Rusalov,B.M.Uzhinov,M.V.Alfimov,S.P.Gromov,O.A.Fedorova,Pro.Indian Acad Sci 107(1995) 721.
    [68].G.Grynkiewicz,M.Poenie,R.Y.Tsien.A new generation of Ca2+ indicators with greatly improved fluorescence properties J Biol Chem 1985,260:3440-3450.
    [69].V.Van den Bergh,N.Boens,F.C.De Schryver,M.Ameloot,P.Steels,J.Gallay,M.Vincent,A.Kowalczyk.Photophysics of the fluorescent Ca~(2+) indicator Fura-2 Biophys J 1995,68(3):1110-1119.
    [70].Z.Xu,Y.Xiao,X.Qian,J.Cui,and D.Cui Ratiometric and Selective Fluorescent Sensor for Cu(Ⅱ) Based on Internal Charge Transfer(ICT) Org Lett 2005,7(5):889-892.
    [71].Z.Xu,X.Qian,J.Cuia,and R.Zhang Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn~(2+) fluorescent chemosensor with a large red-shift in emission Tetrahedron 2006,62:10117-10122.
    [72].Z.Xu,X.Qian,and J.Cui Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission:Cu(Ⅱ)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore Org Lett 2005,7(14):3029-3032.
    [73].L.Jia,Y.Zhang,X.Guo,X.Qian.A Novel Chromatisrn Switcher with Double Receptors Selectively for Ag~+ in Neutral Aqueous Solution:4,5-Diaminoalkeneamino-N-alkyl-1,8-naphthalimides.Tetrahedron Lett,2004,45,3969- 3973.
    [74].Z.Xu,S.Kim,H.N.Kim,S.J.Han,C.Lee,J.S.Kim,X.Qiand,and J.Yoon A naphthalimide-calixarene as a two-faced and highly selective fluorescent chemosensor for Cu~(2+) or F~- Tetrahedron Lett 2007,48:9151-9154
    [75].J.Bourson,M.-N.Borrel,B.Valeur.Ion-responsive fluorescent compounds:Part 3.Cation complexation with coumarin 153 linked to monoaza-15-crown-5 Anal Chim Acta 1992,257(2):189-193.
    [76].J.Bourson,J.Pouget,B.Valeur.Ion-responsive fluorescent compounds.4.Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers J Phys Chem 1993,97(17):4552-57.
    [77].J.Bourson,F.Badaoui,B.Valeur.Coumarinic fluorescent chemosensors for the detection of transition metal ions J Fluoresc 1994,4(4):275-77.
    [78].J.-L.Habib Jiwan,C.Branger,J.-P.h.Soumillion,B.Valeur.Ion-responsive fluorescent compounds V.Photophysical and complexing properties of coumarin 343 linked to monoaza-15-crown-5 J Photochem Photobiol A:Chem.1998,116(2):127-133.
    [79].I.Leray,J.-L.Habib-Jiwan,C.Branger,J.-Ph.Soumillion,B.Valeur Ion-responsive fluorescent compounds V.Photophysical and complexing properties of coumarin 343 linked to monoaza-15-crown- 5 J Photochem Photobiol A:Chem.2000,135(2-3):163-169.
    [80].I.Leray,F.O.Reilly,J.-L.Habib Jiwan,J.-Ph.Soumillion and B.Valeur A new calix[4]arene-based fluorescent sensor for sodium ion Chem Commun 1999:795-6.
    [81].I.Leray,J.-P.Lefevre,J.F.Delouis,J.Delaire,B.Valeur Synthesis and Photophysical and Cation-Binding Properties of Mono- and Tetranaphthylcalix[4]arenes as Highly Sensitive and Selective Fluorescent Sensors for Sodium Chem Eur J 2001,7(21):4590-4598.
    [82].B.Valeur,in:S.G.Schulman(Ed.),Molecular Luminescence Spectroscopy,Part 3,Wiley,New York,1993,p.25
    [83].H.Bouas-Laurent,A.Castellan,M.Daney,J.-P.Desvergne,G.Guinand,P.Marsau,M.-H.Riffaud.Cation-directed photochemistry of an anthraceno-crown ether J Am Chem Soc 1986,108(2):315-317.
    [84].D.Marquis,J.-P.Desvergne.A cooperative effect in sodium cation complexation by a macrocyclic bis(9,10) anthraceno-crown ether in the ground state and in the excited state Chem Phys Lett 1994,230(1-2):131-136.
    [85].D.Marquis,J.-P.Desvergne,H.Bouas-Laurent.Photoresponsive Supramolecular Systems:Synthesis and Photophysical and Photochemical Study of Bis-(9,10-anthracenediyl) coronands J Org Chem 1995,60(24):7984-96.
    [86].I.Aoki,H.Kawabata,K.Nakashima,S.Shinkai,Fluorescent calix[4]arene which responds to solvent polarity and metal ions J Chem Soc Chem Commun 1991,24:1771-73.
    [87]关晓琳,苏致兴,新型温度/pH荧光双重响应性高分子发光材料的合成及发光性能研究兰州大学2006.6博士毕业论文
    [88].C.Haznecia,K.Ertekinb,B.Yenigula,E.Cetinkaya.Optical pH sensor based on spectral response of newly synthesized Schiff bases Dyes and Pigments 2004,62:35-41.
    [89].G.Ozturk,S.Alp,K.Ertekin.Fluorescence emission studies of 4-(2-furylmethylene)-2-phenyl-5-oxazolone embedded in polymer thin film and detection of Fe~(3+) ion Dyes and Pigments 2007,72:150-156.
    [90].S.M.Lee,W.Y.Chung,J.K.Kim.A novel fluorescence temperature sensor based on a surfactant-free PVA/borax/2-naphthol hydrogel network system.J App Polym Sci,2004,93(5):2114-2118.
    [91].Ariel Michelman-Ribeiro,Hac(?)ne Boukari,Ralph Nossal,Ferenc Horkay.Fluorescence Correlation Spectroscopy Study of Probe Diffusion in Poly(vinyl alcohol) Solutions and Gels Macromol Syrup,2005,227(1):221-230
    [92].S.Catherine,J.Amanda Immobilized molecular beacons:A new strategy using UV-activated poly(methyl methacrylate) surfaces to provide large fluorescence sensitivities for reporting on molecular association events Anal Biochem,2007,363(1):35-45.
    [93].刘兴妤,关晓琳,苏致兴.聚合物对Eu(TTA)_3·2NMP发光性能的影响.高等学校化学学报,2005,4(26):769-772.
    [94].Lun Wang,Hongqi Chen,Leyu Wang.Determination of proteins at nanogram levels by synchronous fluorescence scan technique with a novel composite nanoparticle as a fluorescence probe.Spectrochimcal Acta,Part A:Mole Biomole Spectro,2004,60(11):2469-2473.
    [95].M.Ahmad,K.P.Chang,T.A.King.A compact fibre-based fluorescence sensor.Sens Actuat A:Phy,2005,119(1):84-89.
    [96].M.Ahmad,R.Narayanaswamy.Optical fibre Al(Ⅲ) sensor based on solid surface fluorescence measurement.Sens Actuat B:Chem,2002,81(2-3):259-266.
    [97].T D Z.Atvars,C A Bortolato,D.Dibbern-Brunelli.Electronic absorption and fluorescence spectra of xanthene dyes in polymers.J Photochem Photobiol A:Chem.,1992,68(1):41-50.
    [98].S.L.Bondarev,A.Sergei Tikhomirov.Fluorescence and solvatochromism of a merocyanine dye with a high quadratic polarizability in solutions and polymer films J Lumines,2007,124(1):178-186.
    [99].T Konstantinova,R Lazarova,V Vassileva.On the synthesis and photostability of some new naphthalimide dyes Polym Degrad Stabil,2004,84(3):405-409.
    [100].T Konstantinova,A Spirieva,T Petkova.The synthesis,properties and application of some 1,8-naphthalimide dyes Dyes Pigments,2000,45(2):125-129.
    [101].赵莹,杨丽敏,张莉.含三价铕荧光络合物与聚甲基丙烯酸甲酯的发光材料.高分子学报,2000,4(4):393-396.
    [102].张其锦,王品,王大志.C_(60)掺杂聚苯乙烯薄膜的荧光发射.功能高分子学报,1997,10(1):18-22.
    [103].O Oter,K Ertekin,C Kirilmis,M Koca and M Ahmedzadeb.Characterization of a newly synthesized fluorescent benzofuran derivative and usage as a selective fiber optic sensor for Fe(Ⅲ)Sens Actuators B 2007,122:450-456.
    [104].O Oter,K Ertekin,R K(?)l(?)ncarslan,M Ulusoy and B Cetinkaya.Photocharacterization of a novel fluorescent Schiff Base and investigation of its utility as an optical Fe~(3+) sensor in PVC matrix Dyes Pigments 2007,74:730-5.
    [105].O.Oter,K.Ertekin,C.Kirilmis,M.Koca.Spectral characterization of a newly synthesized fluorescent semicarbazone derivative and its usage as a selective fiber optic sensor for copper(Ⅱ)Analy Chim Acta 2007,584:308-314.
    [106].S.S.Bozkurt,S.Ayata,I.Kaynak Fluorescence-based sensor for Pb(Ⅱ) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium Spect Acta Part A 72(2009) 880-883.
    [107].X.Guan,X.Liu,Z.Su,P.Liu.The preparation and photophysical behaviors of temperature/pH-sensitive polymer materials bearing fluorescein.React Funct Polym 2006,66(11):1227-1239.
    [108].X.Guan,X.Liu,Z.Su.The Preparation and Photophysical Behaviors of Fluorescent Chitosan Bearing Fluorescein:Potential Biomaterial as Temperature/pH Probes.J Appl Polym Sc,.2007,104(6):3960-3966.
    [109].B.Wang,X.Guan,Y.Hu and Z.Su.Preparation and fluorescent properties of poly(vinyl alcohol) bearing coumarin.Polym Adv Techn.2007;18:529-534
    [110].Y.Pan,A.Zheng,H.Xiao,F.Hu.Study on PP grafted with ULP containing rare earth Mater Lett 2006,60:1383-1386.
    [111].X.Guan,X.Liu,Z.Su.Synthesis and Photophysical Behaviors of Temperature/pH-sensitive Polymeric Materials.1 Vinyl Monomer Bearing 9-Aminoacridine and Polymers Eur Polym J 2007,43:3094-3105.
    [112].L.Wang,W.Wang,W.Zhang,E.Kang,W.Huang.Synthesis and Luminescence Properties of NovelEu-Containing Copolymers Consisting of Eu(Ⅲ)-Acrylate-β-Diketonate Complex Monomers andMethyl Methacrylate Chem.Mater 2000,12:2212-2218.
    [113].R.P.Sebra,A.M.Kasko,K.S.Anseth,Christopher N.Bowman,Synthesis and photografting of highly pH-responsive polymer chains Sensor Actuat B 2006,119:127-134.
    [114].X.Zhang,Z.Li,K.Li,S.Lin,F.Du,F.Li Donor/acceptor vinyl monomers and their polymers:Synthesis,photochemical and photophysical behavior Prog Polym Sci 2006,31:893-948.
    [115].K.D.Ley,C.Ed Whittle,Michael D.Bartberger,and Kirk S.Schanze.Photophysics of π-Conjugated Polymers That Incorporate Metal to Ligand Charge Transfer Chromophores J Am Chem Soc,1997,119(14):3423 - 3424.
    [116].T.Yasuda,T.Yamamoto.Synthesis and Characterization of New Luminescent 1,10-Phenanthroline- and Pyridine-Containing π-Conjugated Polymers.Their Optical Response to Protic Acid,Mn~+,and Solvents Macromolecules 2003,36(20):7513 -7519.
    [117.I.Grabchev,S.Sali,Rosica Betcheva,V.Gregoriou New green fluorescent polymer sensors for metal cations and protons Eur Polym J 2007,43:4297-4305.
    [118].I.Grabchev,J.M.Chovelon New blue fluorescent sensors for metal cations and protons based on 1,8-naphthalimide Dyes Pigments 2008,77(1):1-6
    [119].H.-A Klok,M.Moller,Polymer bound chromogenic crown ethers for optical ion-detection devices Makromol Chem Phys 1996,197(4),1395-1409.
    [120].A.Nakamura,S.Okutsu,Y.Oda,A.Ueno,F.Toda,Synthesis of a rhenium complex appending a cyclodextrin unit on a ligand Tetrahedron Lett 1994,35(39):7241-44.
    [121].M.Nango,M.Higuchi,H.Gondo,M.Hara,Characterization of water soluble/bilayer active β-cyclodextrin-linked porphyrin derivatives J Chem Soc Chem Commun 1989,20:1550-1553.
    [122].Y Kuroda,M.Ito,T.Sera,H.Ogoshi Controlled electron transfer between cyclodextrin-sandwiched porphyrin and quinones J Am Chem Soc 1993,115(15),7003-04.
    [123].A.Ueno,F.Moriwaki,T.Osa,F.Hamada,K.Murai Excimer formation in inclusion complexes of modified cyclodextrins Tetrahedron 1987,43(7):1571-8.
    [124].A.Ueno,F.Moriwaki,T.Osa,F.Hamada,K.Murai Association,photodimerization,and induced-fit types of host-guest complexation of anthracene-appended γ-cyclodextrin derivatives J Am Chem Soc 1988,110(13),4323-28.
    [125].J.Emert,D.Kodali,R.Catena,Enhanced intramolecular excimer formation of guest molecules included in the cavity of γ-cyclodextrin J Chem Soc Chem Commun 1981,15:758-759.
    [126].N.J.Turro,T.Okubo,G.C.Weed Enhancement of Intermacromolecular Excimer formation of 1,3-bichromophoric propanes via complexation of high pressure and via complexation with cyclodextrins.Protection from Oxygen quenching Photochem Photobiol 1982,35(3),325-329.
    [127].Diederich,F.Cyclophanes;Royal Society of Chemistry:Cambridge,1991,p 113.
    [128].K.Tφmmeraas,S.P.Strand.Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore Carbohydr Res,2001,336(4):291-296
    [129].高朋召,胡道道,唐宗薰,等.西北大学报(自然科学版)2001,31(2):115-118
    [130].王辉.房喻;基于超分子相互作用的传感薄膜材料制备、荧光性能和应用 陕西师范大学2002.6硕士毕业论文
    [131].J.P.Cross,M.Lauz,P.D.Badger,Stephane Petoud Polymetallic Lanthanide Complexes with PAMAM-Naphthalimide Dendritic Ligands:Luminescent Lanthanide Complexes Formed in Solution J Am Chem Soc,2004,126:16278-16279
    [132].I.Grabchev,D.Staneva,V.Bojinov,R.Betcheva,V.Gregoriou.Spectral investigation of coordination of cuprum cations and protons at PAMAM dendrimer peripherally modified with 1,8-naphthalimide units Spectrochimica Acta Part A 2008,70(3):532-536.
    [133].韩巧荣,雷自强;王云普树状支化大分子的合成及其荧光性能研究西北师范大学2001.6硕士毕业论文
    [134].V.B.Bojinov,N.I.Georgiev,P.S.Nikolov.Design and synthesis of core and peripherally functionalized with 1,8-naphthalimide units fluorescent PAMAM dendron as light harvesting antenna J Photochem Photobio A:Chem 2008,197(2-3):281-289.
    [135].I.Grabchev,J.M.Chovelon,C.Petkov.An iron(Ⅲ) selective dendrite chelator based on polyamidoamine dendrimer modified with 4-bromo-1,8-naphthalimide Spectrochimica Acta Part A 2008,69:100-104.
    [136].I.Grabchev,S.Guittonneau.Sensors for detecting metal ions and protons based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides J Photochem.Photobio A:Chem 2006,179:28-34.
    [137].Y Zou,J Hou,C Yang,Y Li.Novel n-Type Conjugated Polymer DOCN-PPV:Synthesis,Optical,and Electrochemical Properties.Macromolecules,2006,39(26):8889-8891.
    [138].S W Thomas,T M Swager.Synthesis and Optical Properties of Simple Amine-Containing Conjugated Polymers.Macromolecules,2005,38(7):2716-2721
    [139].J.H Wosnick,C.M Mello,T M Swager.Synthesis and Application of Poly(phenylene Ethynylene)s for Bioconjugation:A Conjugated Polymer-Based Fluorogenic Probe for Proteases.J Am Chem Soc,2005,127(10):3400-3405.
    [140].M.Yu,Y.Tang,F.He,D.Zhu.Synthesis of Water-Soluble Dendritic Conjugated Polymers for Fluorescent DNA Assays.Macromol Rapid Commun,2006,27(20):1739-1745.
    [141].Q Wang,L.Yu Conjugated Polymers Containing Mixed-Ligand Ruthenium(Ⅱ) Complexes.Synthesis,Characterization,and Investigation of Photoconductive Properties.J Am Chem Soc,2000,122(48):11806-11811.
    [142].T Kaneko,T Matsubara,T Aoki.Synthesis of a Pendant Polyradical with a New π-Conjugated Polymer Backbone Containing an Anthracene Skeleton and Its Ferromagnetic Spin Coupling.Chem Mater,2002,14(9):3898-3906.
    [143].Q Zhou,T.M.Swager,Method for enhancing the sensitivity of fluorescent chemosensors:energy migration in conjugated polymers J Am Chem Soc 1995,117(26),7017-18.
    [144].Y.Zhang,C.B.Murphy,W.E.Jones.Poly[p-(phenyleneethynylene)-alt-(thienyleneethynyle ne)]Polymers with Oligopyridine Pendant Groups:Highly Sensitive Chemosensors for Transition Metal Ions Macromolecules 2002,35(3),630-636.
    [145].C.B.Murphy,Y.Zhang,T.Troxler,V.Ferry,J.J.Martin,W.E.Jones.Probing Frrster and Dexter Energy-Transfer Mechanisms in Fluorescent Conjugated Polymer Chemosensors J Phys Chem B 2004,108(5):1537-43.
    [146].L.J.Fan,Y.Zhang,W.E.Jones.Design and Synthesis of Fluorescence "Turn-on"Chemosensors Based on Photoinduced Electron Transfer in Conjugated Polymers Macromolecules 2005,38(7),2844-49.
    [147].L.J.Fan,W.E.Jones.Studies of Photoinduced Electron Transfer and Energy Migration in a Conjugated Polymer System for Fluorescence "Turn-On" Chemosensor Applications J Phys Chem B 2006,110(15):7777-7782.
    [148].B.Wang,M.R.Wasielewski.Design and Synthesis of Metal Ion-Recognition-Induced Conjugated Polymers:An Approach to Metal Ion Sensory Materials J Am Chem Soc 1997,119(1):12-21.
    [149].LF Capitan-Vallvey,E Arroyo,C Berenguer,MD Femandez-Ramos,R.Avidad Single-use optical sensor for the determination of iron in water and white wines.Frensenius 'J Analyt Chem 2001;369:139-44.
    [1].K.Fang,Y.Chen,J.Sheu,T.Wang,C.Tzeng,Synthesis,Antibacterial,and Cytotoxic Evaluation of Certain 7-Substituted Norfloxacin Derivatives J Med Chem 2000,43(20),3809-3812.
    [2].J.R.Aeschlimann,L.D.Dresser,G W.Kaatz,M.Rybak,Effects of NorA Inhibitors on In Vitro Antibacterial Activities and Postantibiotic Effects of Levofloxacin,Ciprofloxacin,and Norfloxacin in Genetically Related Strains of Staphylococcus aureus J Antimicrob Agents Chemother 1999,43(2):335-340.
    [3].M.C.Cuquerella,M.A.Miranda,and F.Bosca.Role of Excited State Intramolecular Charge Transfer in the Photophysical Properties ofNorfloxacin and Its Derivatives J Phys Chem A 2006,110:2607-2612.
    [4].A.Albini,S.Monti,Photophysics and photochemistry of fluoroquinolones Chem Soc Rev 2003,32:238-250.
    [5].H.R.Park,H.C.Lee,T.H.Kim,J.K.Lee,K.Yang,K.M.Bark,Spectroscopic Properties of Fluoroquinolone Antibiotics and Nanosecond Solvation Dynamics in Aerosol-OT Reverse Micelles Photochem Photobiol 71(3):281-293(2000).
    [6].S.Navaratnam and .Claridge Primary Photophysical Properties of Ofloxacin Photochem Photobiol,2000,72(3):283-290.
    [7].M.Cordoba-Diaz,M.Cordoba-Borrego,D.Cordoba-Diaz The effect of photodegradation on the fluorescent properties of norfloxacin(Photodegradation and fluorescence of norfloxacin ) J Pharmaceutical Biomedical Analysis 18(1998) 865-870.
    [8].G Ouedraogo,P.Morliere,C.Maziere,J.C.Maziere and R.Santus Alteration of the Endocytotic Pathway by Photosensitization with Fluoroquinolones Photochem Photobiol,2000,72(4):458-163.
    [9].Sylvie Sauvaigo,Thierry Douki,Francette Odin,Sylvain Caillat,Jean-Luc Ravanat and Jean Cadet Analysis of Fluoroquinolone-mediated Photosensitization of 2'-Deoxyguanosine,Calf Thymus and Cellular DNA:Determination of Type-LType-II and Triplet-Triplet Energy Transfer Mechanism Contribution Photochem Photobiol,2001,73(3):230-237.
    [10].L.Du,Q.Xu,J.Yuan Fluorescence spectroscopy determination of fluoroquinolones by charge-transfer reaction J Pharmaceutical and Biomedical Analysis 2003,33:693-698.
    [11].P.Bilski,L.J.Martinez,E.B.Koker,C.F.Chignell Photosensitization by Norfloxacin is a Function of pH Photochem Photobiol 1996,64(3):496-500.
    [12].S.Sortino,G.De Guidi,S.Giuffrida,S.Monti,A.Velardita pH Effects on the Spectroscopic and Photochemical Behavior of Enoxacin:A Steady-State and Time-Resolved Study Photochem Photobiol 1998,67(2):167-173.
    [13].Salvatore Sortino,Giancarlo Marconi,Salvatore Giuffrida,Guido De Guidi,Sandra Monti Photophysical Properties of Rufloxacin in Neutral Aqueous Solution Photochem Photobiol 1999,70(5):731-736
    [14].M.Consuelo Cuquerella,Francisco Bosca ,and Miguel A.Miranda.Photonucleophilic Aromatic Substitution of 6-Fluoroquinolones in Basic Media:Triplet Quenching by Hydroxide Anion J Org Chem 2004,69,7256-7261.
    [15].Hyoung-Ryun Park,Chu-Ha Oh,Hyeong-Chul Lee,Jin-Ki Lee,Kiyull Yang and Ki-Min Bark Spectroscopic Properties of Fluoroquinolone Antibiotics in Water-methanol and Water-acetonitrile Mixed Solvents Photochem Photobiol 2002,75(3):237-248.
    [16].A.Belvedere,F.Bosca,M.Consuelo Cuquerella,Guido de Guidi and Miguel A.Miranda Photoinduced N-Demethylation of Rufloxacin and its Methyl Ester Under Aerobic Conditions Photochem Photobiol,2002,76(3):252-258.
    [17].H.-R.Park,T.H.Kim and K.-M.Bark.Physicochemical properties of quinolone antibiotics in various environments Eur J Med Chem 2002,37,443-460.
    [18].T.Zhang,H.Zhao,L.Jin Photochemical fluorescence enhancement of the terbium-lomefloxacin complex and its application Talanta 1999,49:77-82.
    [19].W.Bian,C.Jiang Highly sensitive spectrofluorimetric determination of trace amounts of lecithin using a norfloxacin-terbium probe Clinica Chimica Acta 2006 ,368:144-148.
    [20].W.Bian,Y Wang,X.Zhu,C.Jiang Spectrofluorimetric determination of trace amount of coenzyme Ⅱ using ciprofloxacin-terbium complex as a fluorescent probe J Lumines 2006,118:186-192.
    [21].Y.Han,X.Wu,J.Yang,S.Sun.The fluorescence characteristic of the yttrium-norfloxacin system and its analytical application J Pharmaceutical and Biomedical Analysis 2005,38:528-531.
    [22].M.E.El-Kommos, G.A.Saleh, Samia M.El-Gizawi, M.A.Abou-Elwafa. Spectrofluorometric determination of certain quinolone antibacterials using metal chelation Talanta 2003,60:1033-1050.
    [23].Z.Chen,H.Liang,H.Hu,Yan Li,R.Xiong,X.You A neutral 2D nanosized molecular square grid:the first vanadium(Ⅱ)coordination polymer of norfloxacin lnorgc Chem Commun 2003,6:241-243.
    [24].Y.Li,Z.Chen,R.Xiong,Z.Xue,H.Xian Ju,X.You A mononuclear complex of norfloxacin with silver(Ⅰ) and its properties Inorgc Chem Commun 2003,6:819-822.
    [25].S.Wu,W.Zhang,X.Chen,Z.Hu,M.Hooper,B.Hooper,Z.Zhao Fluorescence characteristic study of the ternary complex of fluoroquinolone antibiotics and cobalt(Ⅱ) with ATP Spectrochim Acta Part A 2001,57:1317-1323.
    [26].Mal-Nam Kim,A Hyon Lim,Jin-San Yoon.Antibacterial Activity of Polymers with Norfloxacin Moieties Against Native and Norfloxacin-Tolerance-Induced Bacteria J Appl Poly Sci 2005,96:936-943.
    [27].M.Yang and J.Paul Santerre.Utilization of Quinolone Drugs as Monomers:Characterization of the Synthesis Reaction Products for Poly(norfloxacin diisocyanatododecane polycaprolactone) Biomacromolecules 2001,2:134-141
    [28].B.Dizman,M.O.Elasri,and L.J.Mathias.Synthesis,Characterization,and Antibacterial Activities of Novel Methacrylate Polymers Containing Norfloxacin Biomacromolecules 6:514-520(2005).
    [29].W.Moon,J.Kim,K.Chung,E.Park,M.Kim,Yoon Antimicrobial Activity of a Monomer and Its Polymer Based on Quinolone J Appl Poly Sci 2003,90:1797-1801.
    [30].Capitan-Vallvey LF,Arroyo E,Berenguer C,Fernandez-Ramos MD,Avidad R.Single-use optical sensor for the determination of iron in water and white wines.Frensenius 'J Analyt Chem 2001;369:139-44.
    [31].O.Oter,K.Ertekin,C.Kirilmis,M.Koca,M.Ahmedzadeb Characterization of a newly synthesized fluorescent benzofuran derivative and usage as a selective fiber optic sensor for Fe(Ⅲ).Sens Actuat B 2007;122:450-456
    [32].O.Oter,K.Ertekin,R.K(?)l(?)ncarslan,M.Ulusoy,B.Cetinkaya.Photocharacterization of a novel fluorescent Schiff Base and investigation of its utility as an optical Fe~(3+) sensor in PVC matrix.Dyes Pigments 2007;74:730-735.
    [33].G.Ozturk,S.Alp,K.Ertekin.Fluorescence emission studies of 4-(2-furylmethylene)-2-phenyl-5-oxazolone embedded in polymer thin film and detection of Fe~(3+)ion Dyes Pigments 2007,72:150-156.
    [34].I.Grabchev,JM.Chovelon,C.PetkovAn iron(Ⅲ) selective dendrite chelator based on polyamidoamine dendrimer modified with 4-bromo-1,8-naphthalimide Spectrochim.Acta Part A:2008;69:100-104.
    [35].I.Grabchev,JM.Chovelon New blue fluorescent sensors for metal cations and protons based on 1,8-naphthalimide.Dyes Pigments 2008;77(1):1-6
    [36].I.Grabchev,S.Sali,R.Betcheva,V.Gregoriou New green fluorescent polymer sensors for metal cations and protons Eur Polym J 2007;43:4297- 4305.
    [37].赵藻藩,周性尧,张悟铭,赵文宽.仪器分析.北京:高等教育出版社,1997
    [38]许金钩,王尊本.荧光分析法(第三版),北京:科学出版社,2006.
    [39].B Valeur,Molecular Fluorescence:Principles and Applications.Wiley,Weinheim,2001.
    [40].A.T.R.Williams,S.A.Winfield,J.N.Miller,Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,Analyst 1983,108:1067-70.
    [41].Flemming G R,Knight A W E.Picosecond fluorescence studies of xanthene dyes.J Am Chem Soc,1977,99(13):4306-4311
    [42].D.L.Ross,C.M.Riley,Physicochemical properties of the fluoroquinolone antimicrobials V.Effect of fluoroquinolone structure and pH on the complexation of various fluoroquinolones with magnesium and calcium ions Int J Pharm1993,93:121-129.
    [43].Norah Barba Behrens,Guillermo Mendoza Diaz,David M.L.Goodgame Metal complexes of the antibiotic nalidixic acid Inorg Chin Acta 1986,125(1):21-26
    [44].J.C.Jimenez Sanchez,J.A.Munoz Leyva,M.Roman Ceba,A new method for determining the composition and stability constant of complexes of the form a_mb_n Anal Chim Acta 1977,90:223-231.
    [45].M.I.rodriguez,R.A.Agbaria,and I.M.Warner Fluorescence of Metal-Ligand Complexes of Mono- and Di-substituted Naphthalene Derivatives J Fluoresc 2005,15(2):185-190.
    [1].AT Peters,MJ Bide.Amino derivatives of 1,8-naphthalic anhydride and derived dyes for synthetic-polymer fibres.Dyes Pigments 1985;6:349-75.
    [2].S-C Chang,RE Uteht,DE Lewis.Synthesis and bromination of 4-alkylamino-N-alkyl-1,8-naphthalimides.Dyes Pigments 1999;43:83-94.
    [3].T.Konstantinova,A.Spirieva,T.Petkova,The synthesis,properties and application of some 1,8-naphthalimide dyes.Dyes Pigments 2000;45:125-129.
    [4].MQ.Chen,HB Yan,YY.Hu,YJ.Shen,Syntheses and characterization of co-polymeric fluorescent colors of methylmethacrylate and 1,8-naphthalimides containing polymerizable group,Joural of East China University Science Technology 2001;27:195-197.
    [5].I.Grabchev,JM.Chovelon,Synthesis and Functional Properties of Green Fluorescent Poly(methylmethacrylate) for use in Liquid Crystal Systems.Polym Adv Techno 2003;14:601-608;
    [6].I.Grabchev,I.Moneva,V.Bojinov,S.Guittonneau Synthesis and properties of fluorescent 1,8-naphthalimide dyes for application in liquid crystal displays J Mater Chem 2000;10:1291-1296.
    [7].WH.Zhu,N.Minami,S.Kazaoui,Y.Kim Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states J Mater Chem 2003;13:2196-2201.
    [8].W.Zhu,M.Hu,R.Yao and T.He A novel family of twisted molecular luminescent materials containing carbazole unit for single-layer organic electroluminescent devices.J Photochem PhotobiolA:Chem 2003;154:169-177.
    [9]W.Stewart,Synthesis of 3,6-disulfonated 4-aminonaphthalimides.J Am Chem Soc 1981;103:7615-7620.
    [10].XH.Qian,J.Tang,JD.Zhang,YL.Zhang Synthesis of furonaphthalimides with potential photosensitizing biological activity.Dyes Pigments 1994;25:109-114.
    [11].T.Gunnlaugsson,P.E.Kruger,T.Clive Lee,R.Parkesh,F.M.Pfeffer and G.M.Hussey Dual responsive chemosensors for anions:the combination of fluorescent PET(Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule Tetrahedron Lett 2003,44:6575-6578.
    [12].J.M.Chovelon,I.Grabchev A novel fluorescent sensor for metal cations and protons based of bis-1,8-naphthalimide Spectrochimica Acta Part A 2007,67:87-91.
    [13].Z.Z.Li,C.G.Niu,G.M.Zeng,Y.G.Liu,P.F.Gao,G.H.Huang,Y.A.Mao A novel fluorescence ratiometric pH sensor based on covalentlyimmobilized piperazinyl-1,8-napthalimide and benzothioxanthene Sensors Actuat B 2006,114:308-315.
    [14].Frederick M.Pfeffer,Marianne Seter,Naomi Lewcenko and Neil W.Barnett Fluorescent anion sensors based on 4-amino-1,8-naphthalimide that employ the 4-amino N-H Tetrahedron Letters 2006,47:5241-5245.
    [15].N.R.Deprez,K.A.McNitt,M.E.Petersen,R.G.Brown and D.E.Lewis Synthesis and fluorescence properties of naphthalimide-containing Troger's bases Tetrahedron Lett 2005,46:2149-2153.
    [16].V.B.Bojinov,T.N.Konstantinova Fluorescent 4-(2,2,6,6-tetramethylpiperidin-4-ylamino) -1,8-naphthalimide pH chemosensor based on photoinduced electron transfer Sensors Actuat B 2007,123:869-876.
    [17].V.B.Bojinov,N.I.Georgiev,P.S.Nikolov Synthesis and photophysical properties of fluorescence sensing ester- and amidoamine-functionalized 1,8-naphthalimides J Photochem Photobio A:Chem 2008,193:129-138.
    [18].贾丽华,新萘酰亚胺类荧光探针分子的合成及对金属离子的识别 大连理工大学博士学位论文2003.10
    [19].徐兆超,基于ICT蔡酞亚胺阳离子比率荧光探针的研究大连理工大学博士学位论文2006.6
    [20].Z.Xu,Y.Xiao,X.Qian,J.Cui,and D.Cui Ratiometric and Selective Fluorescent Sensor for CuⅡ Based on Internal Charge Transfer(ICT) Org Lett 2005,7(5):889-892.
    [21].Z.Xu,X.Qian,J.Cuia,and R.Zhang Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn~(2+) fluorescent chemosensor with a large red-shift in emission Tetrahedron 2006,62:10117-10122.
    [22].Z.Xu,X.Qian,and J.Cui Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission:Cu(Ⅱ)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore Org Lett 2005,7(14):3029-3032.
    [23].J.Gan,K.Chen,C.P.Chan,T.He.Luminescent properties and photo-induced electron transfer of naphthalimides with piperazine substituent Dyes Pigments 2003,57:21-28.
    [24].T.Konstantinova,Ant.Spirieva,T.Petkova The synthesis,properties and application of some 1,8-naphthalimide dyes Dyes Pigments 2000,45:125-129.
    [25].K.Wang ,W.Huang ,P.Xia ,C.Gao ,D.Yan Fluorescent polymer made from chemical modification of poly(styrene-co-maleic anhydride) React Funct Polym 2002,52:143-148.
    [26].C.Li,X.Pan,C.Hua,J.Su,H.Tian Synthesis of novel copoly(styrene-maleic anhydride) materials and their luminescent properties Eur Polym J 2003,39:1091-1097.
    [27].I.Grabchev,JM.Chovelon New blue fluorescent sensors for metal cations and protons based on 1,8-naphthalimide.Dyes Pigments 2008;77(1):1-6
    [28].I.Grabchev,S.Sali,R.Betcheva,V.Gregoriou New green fluorescent polymer sensors for metal cations and protons Eur Polym J 2001;43:4297- 4305.
    [29].H.Mu,R.Gong,Q.Ma,Y.Sun and E.Fu A novel colorimetric and fluorescent chemosensor:synthesis and selective detection for Cu2+ and Hg2+.Tetrahedron Lett 2007;48:5525-5529.
    [30].I.Grabchev,JM.Chovelon,C.Petkov An iron(HI) selective dendrite chelator based on polyamidoamine dendrimer modified with 4-bromo-1,8-naphthalimide Spectrochim.Acta Part A:2008;69:100-104.
    [31].I.Grabchev, D.Staneva, R.Betcheva Sensor activity, photodegradation and photostabilisation of a PAMAM dendrimer comprising 1,8-naphthalimide functional groups in its periphery PolymDegrad Stabil 2006,91:2257-2264.
    [32].I.Grabchev,P.Bosch,M.McKenna,D.Staneva A new colorimetric and fluorimetric sensor for metal cations based on poly(propilene amine) dendrimer modified with 1,8-naphthalimide J Photochem Photobio A:Chem 2009,2001(1):75-80.
    [33].M.S.Refat,I.M.El-Deen,I.Grabchev,Z.M.Anwer,Samir El-Ghol Spectroscopic characterizations and biological studies on newly synthesized Cu~(2+) and Zn~(2+) complexes of first and second generation dendrimers Spectrochim Acta Part A:2009,72(4):772-782.
    [34].L.Songa,l,E.A.Jares-Erijman a,b,T.M.Jovin A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer(FRET) J Photochem Photobio A:Chem 2002,150:177-185.
    [35].M.I.rodriguez,R.A.Agbaria,and I.M.Warner Fluorescence of Metal-Ligand Complexes of Mono- and Di-substituted Naphthalene Derivatives J Fluoresc 2005,15(2):185-190.
    [1].J.Barber,Primary processes of photosynthesis Acad.Press,New York,1977.
    [2]许金钩,王尊本.荧光分析法(第三版),北京:科学出版社,2006.
    [3].Valeur B,Molecular Fluorescence:Principles and Applications.Wiley,Weinheim,2001.
    [4].G.Weber,The quenching of fluorescence in liquids by complex formation.Determination of the mean life of the complex Trans Faraday Soc,1948,44:185-188
    [5].G.Weber and F.W.J.Teale,Fluorescence excitation spectrum of organic compounds in solution.Part 1.-Systems with quantum yield independent of the exciting wavelength Trans Faraday Soc,1958,54:640-648
    [6].O.Schnepp,M.Levy Intramolecular Energy Transfer in a Naphthalene-Anthracene System J Am Chem Soc,1962,84(2):172-177.
    [7].周庆复,田宏健,沈淑引,等.以共价键相连的卟啉 2 酞菁化合物分子内能量传递及光诱导电子转移 感觉科学与光化学,1992,10(2):144.
    [8].李希友,田宏健,周庆复,等.新型卟啉 2 酞菁二元分子内光物理过程的研究.物理化学学报,1997,13(1):11.
    [9].L.Wang,C.Yang,and W.Tan Dual-Luminophore-Doped Silica Nanoparticles for Multiplexed Signaling Nano Lett 2005,5(1):37-43
    [10].L.Wang and W.Tan Multicolor FRET Silica Nanoparticles by Single Wavelength Excitation Nano Let 2006,6(1):84-88
    [11].J.Seixas de Melo,A.J.F.N.Sobral,A.M.dA.Rocha Gonsalves,Hugh D.Burrows Singlet and triplet energy transfer in a bichromophoric system with anthracene covalently linked through sulfonamide to a meso-tetraphenylporphyrin J Photochem Photobio A:Chem 2005,172:151-160.
    [12].K.P.Ghiggino,E.K.L.Yeow,D.J.Haines,G.D.Scholes,T.A.Smith Mechanisms of excitation energy transport in macromolecules J Photochem Photobioy A:Chem 1996,102:81-86.
    [13].O.Kuznetz,D.Davis,H.Salman,Y.Eichen,S.Speiser Intramolecular electronic energy transfer in rhodamine-azulene bichromophoric molecule J Photochem Photobio A:Chem 2007,191:176-181.
    [14].D.G Johnson,M.P.Niemczyk,D.W.Minsek,G.P.Wiederrecht,W.A.Svec,G.L.Gaines Ⅲ,M.R.Wasielewski Photochemical electron transfer in chlorophyll-porphyrin-quinone triads:the role of the porphyrin-bridging molecule J Am Chem Soc.1993,115(13):5692-5701
    [15].X.Guan,X.Liu,Z.Su.The Preparation and Photophysical Behaviors of Fluorescent Chitosan Bearing Fluorescein:Potential Biomaterial as Temperature/pH Probes.J Appl PolymSci 2007,104(6):3960-3966.
    [16].B.Wang,X.Guan,Y.Hu and Z.Su.Preparation and fluorescent properties of poly(vinyl alcohol) bearing coumarin.Polymers for Advanced Technologies.2007;18:529-534.
    [17].T Yasuda,T.Yamamoto[J].Synthesis and Characterization of New Luminescent 1,10-Phenanthroline- and Pyridine-Containing π-Conjugated Polymers.Their Optical Response to Protic Acid,Mn~+,and Solvents Macromolecules 2003,36(20):7513 -7519.
    [18].O Oter,K Ertekin,C Kirilmis,M Koca and M Ahmedzadeb.Characterization of a newly synthesized fluorescent benzofuran derivative and usage as a selective fiber optic sensor for Fe(Ⅲ)Sens Actuators B 2007,122:450-456.
    [19].O.Oter,K.Ertekin,R.K(?)l(?)ncarslan,M Ulusoy and B.Cetinkaya Photocharacterization of a novel fluorescent Schiff Base and investigation of its utility as an optical Fe3+ sensor in PVC matrix Dyes Pigments 2007,74:730-5.
    [20].O.Oter,K.Ertekin,C.Kirilmis,M.Koca.Spectral characterization of a newly synthesized fluorescent semicarbazone derivative and its usage as a selective fiber optic sensor for copper(Ⅱ)Analy Chim Acta 2007,584:308-314.
    [21].S.S.Bozkurt,S.Ayata,I.Kaynak Fluorescence-based sensor for Pb(Ⅱ) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium Spectrochimica Acta Part A 2009,72:880-883.
    [22].H.P.Moises de Oliveira,Marcelo Henrique Gehlen Time-resolved fluorescence of cationic dyes covalently bound to poly(methacrylic acid) in rigid media J Lumines 2006,121:544-552.
    [23].Y Hu,B Wang,Z Su.Fluorescence property of Poly(M MA-co-ACNF) and its ability to detect Fe~(3+) ion.Int J Polym Anal Charact 2007,12:391-399.
    [24].A.Albert.Acridine syntheses and reactions.Part Ⅰ.Synthesis of proflavine from m-phenylenediamine and its derivatives J chem Soc 1941:121-124.
    [25].Suresh Das,C.S.Rajesh,C.H.Suresh,K.George Thomas,A.Ajayaghosh,C.Nasr,Prashant V.Kamat,M.V.George Photophysical and Photoelectrochemical Behavior of Poly[styrene-co-3-(acrylamido)-6-aminoacridine]Macromolecules 1995,28(12):4249-4254.
    [26].J.Su,H.Tian,K.Chen Novel Trichromophoric Rhodamine Dyes and Their Fluorescence Properties Dyes.Pigments,1996,31(1):69-77,
    [27].何元君,田 禾 新型双发色团固体激光染料的荧光性能 华东理工大学学报 2000,26(4):434-437.
    [28].I.Grabchev,J.M.Chovelon New blue fluorescent sensors for metal cations and protons based on 1,8-naphthalimide Dyes Pigments 2008,77(1):1-6
    [29].I.Grabchev,S.Sali,R.Betcheva,V.Gregorious New green fluorescent polymer sensors for metal cations and protons Eur Polym J 2007,43:4297-4305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700