用户名: 密码: 验证码:
氮气泡沫分流酸化工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸化是通过酸来溶解地层基质中的颗粒堵塞物,恢复或提高油气井产量的一种有效措施。常规酸化存在布酸不均、残酸返排不彻底、酸岩反应速度太快等缺点。泡沫分流酸化对渗透率和油水层具有选择性,可以实现均匀布酸,提高酸化效果。
     通过单岩心和并联岩心驱替实验,得出泡沫在高低渗岩心分流的机理为:低渗岩心毛管力大,气泡容易破裂,形成气相蹿流,流动阻力小,高渗岩心相反;并得到渗透率级差小于10时采用泡沫段塞分流酸化工艺,级差为10~15时采用泡沫酸分流酸化工艺。通过实验测定了泡沫酸与石英砂和N80钢反应的溶蚀量,并与土酸进行了对比,得到泡沫酸的溶蚀量小于土酸的溶蚀量,且泡沫特征值越大反应速度越慢,温度越高反应速度越快,泡沫酸化具有缓蚀作用,能够达到较深的穿透距离,实现油井深部酸化。
     把热阻力的概念引入泡沫流体管流的压降计算中,推导出了泡沫流体热阻力系数的计算公式,通过计算得出无量纲加热数越大,泡沫流体的热阻力越明显。当无量纲加热数大于0.25时,热阻力大约是摩擦阻力的10%,热阻力必需考虑。建立了泡沫分流酸化数学模型,对泡沫段塞分流酸化和泡沫酸分流酸化过程进行了模拟,由计算结果得出,注泡沫段地层总表皮系数会逐渐增大,井底和井口压力都会逐渐升高;在注酸段总表皮系数、注入压力会逐渐减小。泡沫酸分流酸化比泡沫段塞分流酸化的分流效果要好,不同渗透率的小层进酸更均匀,对低渗层渗透率改善最明显,但是总作业时间长,注入压力高。由酸岩反应计算结果得出,HF在地层中作用范围只有0.5m左右,H2SiF6与HF的溶解能力相当,并且是HF的有益补充,0.5~1.1m范围内快速反应矿物的消耗主要是由H2SiF6溶解,增加了土酸的穿透深度。地层温度越高HF消耗越快;注酸排量越大,酸化穿透深度越大。建立了泡沫举升排酸数学模型,对井筒温度场和压力场进行了耦合求解,计算得到了泡沫举升过程的井筒内温度、压力、密度、流速的分布,并与氮气举升排酸过程进行了对比。
     提出了泡沫分流酸化选井原则和现场施工工艺,现场应用表明泡沫分流酸化能有效封堵高渗层,把酸液转向低渗层,提高油井产量,该技术适于非均质油藏油井、重复酸化老井的解堵增产增注。
Acidizing is a kind of stimulating methods for oil and gas well or injection well, through dissolution of plug in formation matrix. There are some problems in conventional acidizing technology, such as uneven distribution of acid, unthorough flowback of reacted acid, bad acidizing effect, and so on. Foam fluid has selection of different formations with different permeability, and oil and water. Diverted acidizing with foam fluid can improve acidizing distribution, and acidizing effect.
     Through displacement experiments for single and parallel core, theory for diversion of foam fluid in cores with different permeability was gained. Capillary tube pressure is higher in low permeable core. The bubble breaks easily, which causing gas cross flow and low flow pressure loss in low permeable core. The situation is opposite in high permeable core. When permeability ratio of high and low permeable formations is less than 10, diverted acidizing with foam plug is suitable; When permeability ratio lies in 10 to 15, diverted acidizing with foamed acid is suitable. Corrosion of foamed acid to formation is meaning to site application. Corrosion of foamed acid, base fluid, and mud acid to quartz sand were researched by experimental method. Corrosion weight loss of N80 steel was tested. The affect of foam quality and temperature to corrosion were also analysised. The results show that corrosion of foamed acid is much less than that of mud acid. The lower the foam quality is, and the higher the temperature is, the faster the reaction is. Foamed acid has good corrosion resistant, which can realize deep acidizing in formation.
     The concept of thermal resistance was introduced in pressure reduction calculation of foam pipe flow. Thermal resistance coefficient was deduced according mass conversation, momentum conversation and energy conversation equations. The results of example calculation show that the larger the non-dimensional heating number is, the larger the thermal resistance is. Thermal resistance is compared with fraction resistance. When non-dimensional heating number is small, thermal resistance can be ignored. When non-dimensional heating number is larger than 0.25, thermal resistance is about 10% of fraction resistance, which must be considered during pressure reduction calculation in pipeline. Based on gas trapping theory and mass conservation equation, mathematical models were developed for foam diverted acidizing, which can be achieved by foam slug followed by acid injection or continuous injection of foamed acid, respectively. The mathematical models were solved by a computer program. Computed results show that the total formation skin factor, and wellhead pressure and bottomhole pressure increase with foam plug injection, but decrease with acid plug injection. Flow rate of high-permeability layer decreases. It can divert acid into low-permeability layer from high-permeability layer. It can be seen from the results that concentration of HF decreases quickly during sandstone-matrix acidizing in radical direction, and operating range of HF is less than 0.5 m. Dissolving capacity of H2SiF6 is equal to HF, which increases penetration depth. Deposition of Si(OH)4 increases with time. Reacted acid must be blowed out thoroughly after some time, otherwise secondary precipitate will be produced, which affects acidizing effect. Consumption of HF increases with formation temperature. High injection rate of acid can increase penetration depth. Differential equations for temperature and pressure distributions of foam fluid in the wellbore were established in consideration of the heat exchange between the foam fluid in the annular space and the injected fluid from tube. Coupled solution of temperature and pressure distributions using numerical method was conducted. Distributions of foam temperature, foam density, foam quality, pressure and foam velocity in wellbore were obtained.
     Well selection methods and operating technique were provided for diverted acidizing with foam fluid. Field applications show that diverted acidizing with foam fluid can effectively block high permeability layer, and improve acidizing effect and oil production. It is fit to heterogenous formation wells and old wells with acidizing for many times.
引文
[1]吴奇,邹洪岚,张汝生,等(译).伦纳德.卡尔法亚(著).酸化增产技术[M].北京:石油工业出版社,2004:3-8.
    [2]罗景齐(译).威廉斯,吉德里,谢克特(著).油井酸化原理[M].北京:石油工业出版社,1983:9-11.
    [3]王宝峰.砂岩基质酸化中HF与石英的反应动力学[J].西安石油学院学报(自然科学版),2000,15(4):52-55.
    [4]万仁,罗英俊.采油工艺手册第九分册——压裂酸化工艺技术[M].北京:石油工业出版社,1998:701-702.
    [5]李静群,王俊旭,李武平,等.砂岩地层酸化可能对地层造成的伤害及预防处理[J].油气井测试,2003,12(4):17-21.
    [6] P. H. Morphy, K. G. Greenwald著,杜灿煜,史凤琴(译).用泡沫转向酸进行酸化施工的现场操作经验[J].国外油田工程,2000,16(5):12-13.
    [7]缑新俊,赵立强,刘平礼.基质酸化发展现状[J].钻采工艺,2002,25(2):37-41.
    [8]李立.大港油田成功应用多氢酸分流深部酸化技术[J].石油钻采工艺,2008,30(1):70.
    [9]卢聪,郭建春,陈红军,等.迪那2异常高压深层气藏酸化表皮系数研究[J].钻采工艺,2008,31(1):84-86.
    [10]葛红江,唐兰芳,吴长胤.裂缝性灰岩油藏堵水酸化联作技术研究与试验[J].断块油气田,2007,14(6):69-71.
    [11]王静波,赵立强,刘平礼,等.砂岩储层酸压酸液有效作用距离数学模型研究[J].天然气技术,2007,1(6):31-34.
    [12]李云海,熊兰琼,余箭,等.东溪构造南段低渗透储层分层酸化效果分析[J].天然气工业,2007,27(1)):91-93.
    [13]何君邹,洪岚,吴海红.应用新型粘性暂堵酸化技术提高气藏产能研究[J].石油学报,2006,27(4):97-100.
    [14]赵仁保,岳湘安,侯吉瑞,等.微乳酸的缓蚀行为及其在岩心中的酸化效果[J].应用化学,2006,23(2):149-152.
    [15]刘淑萍,高瑞民,刘亚勇,等.文留油田低渗透砂岩储层重复酸化用酸液及其应[J].油田化学,2004,21(2):106-109,102.
    [16] Stephane SAINTPERE, Yannick MARCILLAT. Hole cleaning capabilities of foams compared to conventional fluids[C]. SPE 63049, 2000.
    [17]李治龙,钱武鼎.我国油田泡沫流体应用综述[J].石油钻采工艺,1993,15(6):88-93.
    [18] Evren M. Ozbayoglu, Stefan Z. Miska. Cuttings transport with foam in horizontal & highly-inclined wellbores[C]. SPE 79856, 2006.
    [19]刘伟,董胜祥,曹子龙.泡沫洗井工艺的研究及应用[J].钻采工艺,2002,25(2):45-49.
    [20]张云连,陈永明,杲传良,等.泡沫钻井液的静液柱压力分析与计算[J].石油钻探技术,2000,28(3):19-20.
    [21] Lord D.L. Mathematical analysis of dynamic and static foam behavior[C]. SPE 7927, 1981.
    [22]李松岩,李兆敏,孙茂盛,等.水平井泡沫流体冲砂洗井技术研究[J].天然气工业,2007,27(7):71-74.
    [23]李兆敏,唐晓红,王渊.DY-1高温发泡剂的流变性和稳定性研究[J].钻采工艺,2005,28(3):91-95.
    [24]郭万奎,廖广志,邵振波,等.注气提高采收率技术[M].北京:石油工业出版社,2003.
    [25]李克向.保护油气层钻井完井技术[M].北京:石油工业出版社,1993.
    [26]黄颖辉,赵立强,陈冀嵋,等.泡沫分流酸化模型进展[J].西南石油学院学报,2004,26(1):30-34.
    [27]陈冀嵋,王仪,黄颖辉.基质酸化中考虑圈闭效应的泡沫分流模型[J].西南石油学院学报,2003,25(3):66-69.
    [28]刘成,刘丽君.混气酸化技术试验应用[J].石油钻采工艺,2000,22(2):56-59.
    [29]杨燕,蒲万芬,周明.驱油泡沫稳定剂的性能研究[J].西南石油学院学报,2002,24(4):37-40.
    [30]王树众,王志刚,林宗虎,等. CO2泡沫压裂液两相流流动特性的试验研究[J].西安交通大学学报,2003,37(9):975-978.
    [31]牛鹏辉.高温高压泡沫流变性测试研究[D].成都:西南石油学院,2003.
    [32]唐人选.关于泡沫的流变性及其在井筒中的摩阻和对井底的压力[J].试采技术,1989,10(4):55-63.
    [33]赵国庆.泡沫表观性能研究及在稠油开采中的应用[D].济南:山东大学,2007.
    [34]邹德海.高含水油藏泡沫调驱提高原油采收率研究[D].大庆:大庆石油学院,2006.
    [35]罗陶涛.高分子表面活性剂增强泡沫性能研究[D].成都:西南石油大学,2006.
    [36]钟显.泡沫洗井液体系研究及综合性能评价[D].成都:西南石油大学,2006.
    [37]魏红宾.泡沫流体排酸工艺参数优化研究[D].东营:中国石油大学(华东),2006.
    [38]张潦源.埕岛油田低伤害低密度入井液研究及应用[D].东营:中国石油大学(华东),2006.
    [39]王秋霞.高温多效泡沫体系的研制与注入工艺优化技术研究[D].东营:中国石油大学(华东),2006.
    [40]林日亿.蒸汽-氮气泡沫体系流动规律研究及应用[D].东营:中国石油大学(华东),2007.
    [41] Smith C. L., Anderson J., Roberts P. G. New diverting techniques for acidizing and fracturing [C]. SPE 2751, 1969.
    [42] Kennedy D. K., Kitziger F. W., Hall B. E. Case study on the effectiveness of nitrogen foams and water-zone diverting agents in multistage matrix acid treatments [J]. SPE Production Engineering. 1992, 7(2): 203-211 (SPE 20621)
    [43] Gdanski R. D. Experience and research show best designs for foam-diverted acidizing [J]. Oil & Gas Journal, 1993:85-89.
    [44] Thompson K., Gdanski R. D. Laboratory study provides guidelines for diverting acid with foam [J]. SPEPF, 1993:285-290.
    [45] Zerhboub M., Touboul E., Ben Naceur, K. Matrix acidizing: a novel approach to foam diversion [J]. SPEPF, 1994:121-126.
    [46] Robert J. A., Rossen W. R. Fluid placement diversion and pumping strategy [M]. Reservoir Stimulation, Prentice Hall, Englewood Cliffs, 1997.
    [47] Thomas R. L., Ali S. A., Robert J. A., el al. Field validation of a foam diversion model: a matrix stimulation case study [C]. SPE 39422, 1998
    [48] Zhou Z. H., Rossen W. R. Applying fractional flow theory to foams for diversion in matrix acidization [J]. SPE Production & Facilities. 1994, 9(1): 29-35 (SPE 24660)
    [49] Bernard G. G., Holm L. W., Jacobs W. L. Effective of foam on trapped gas saturation and on permeability of porous media to water [J]. SPE Journal. 1965, 5(4): 295-300 (SPE 1204)
    [50] Friedmann F., Jensen J. A. Some parameters influencing the formation and propagationof foams in porous media [C]. SPE 15087, 1986.
    [51] Huh D. G., Handy L. Comparison of steady- and unsteady-state flow of gas and foaming solution in Porous media [J]. SPE Reservoir Engineering, 1989, 4(1): 77-84 (SPE 15078)
    [52] Sanchez J. M., Schechter R. S. Surfactant effects on the two-phase flow of steam-water and nitrogen-water through permeable media [J]. Journal of Petroleum Science & Engineering. 1989, 3(1-2): 185-199
    [53] de Vries, A. S., Wit K. Rheology of gas/water foam in the quality range relevant to steam foam. SPE Reservoir Engineering [J]. 1990, 5(2): 185-192 (SPE 18075)
    [54] Friedmann F., Chen W. H., Gauglitz P. A. Experimental and simulation study of high-temperature foam displacement in porous media [J]. SPE Reservoir Engineering. 1991, 6(1): 37-45 (SPE 17357)
    [55] Gillis J. V., Radke C. J. A dual-gas tracer technique for determining trapped gas saturation during steady foam flow in porous media [C]. SPE 20519, 1990
    [56] Bretherton F. P. The motion of long bubbles in tubes [J]. Journal of Fluid Mechanics, 1961, 10: 166-188.
    [57] Hirasaki G. J., Lawson J. B. Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries [J]. SPE Journal. 1985. 25(2): 176-190 (SPE 12129).
    [58] Falls A. H., Musters J. J., Ratulowski J. The Apparent viscosity of foams in homogeneous bead packs [J]. SPE Reservoir Engineering, 1989, 4(3): 155-164.
    [59] Xu Q., Rossen W. R. Effective viscosity of foam in periodically constricted tubes [J]. Colloids Surfaces, 2003:175-194.
    [60] Rossen W. R. Theory of mobilization pressure gradient of flowing foams in porous media. I. Incompressible foam [J]. Journal of Colloid Interface, 1990, 136: 1-16.
    [61] Rossen W. R. Theory of mobilization pressure gradient of flowing foams in porous media. II. Effect of compressibility [J]. Journal of Colloid Interface, 1990, 136: 17-37.
    [62] Rossen W. R. Theory of mobilization pressure gradient of flowing foams in porous media III. Asymmetric lamella shapes [J]. Journal of Colloid Interface, 1990, 136: 38-53.
    [63] Rossen W. R. Theory of mobilization pressure gradient of flowing foams in porous media: Effect of interactions with stationary lamellae [J]. Journal of Colloid Interface, 1990, 139:457- 467.
    [64] Hirasaki G. J. The steam foam process [J]. Journal of Petroleum Technology. 1989, 41(5): 449-456 (SPE 19505)
    [65] Rossen W. R. Foams in Enhanced Oil Recovery. in Foams: Theory, measurement, and applications [M]. Prud’homme, R. K., and Khan, S. (eds.), Marcel Dekker, New YorkCity (1996).
    [66] Kibodeaux K. R., Zeilinger S. C., Rossen W. R. Sensitivity study of foam diversion processes for matrix acidization [C]. SPE 28550, 1994.
    [67] Parlar M., Parris M. D., Jasinski R. J.,et al. An experimental study of foam flow through berea sandstone with application to foam diversion in matrix acidizing [C]. SPE 29678, 1995.
    [68] Robert J. A., Mack M. G. Foam diversion modeling and simulation [C]. SPE 29676, 1995.
    [69] Zeilinger S. C., Wang M., Kibodeaux K. R., et al. Improved prediction of foam diversion in matrix acidization [C]. SPE 29529, 1995.
    [70] Behenna F. R. Acid diversion from an undamaged to a damaged core using multiple foam slugs [C]. SPE 30121, 1995.
    [71] Rossen W. R., Wang M. W. Modeling foams for acid diversion [J]. SPE Journal, 1999: 92-100.
    [72] Cheng L., Kam S. I., Delshad, M., et al. Simulation of dynamic foam-acid diversion processes [J]. SPE Journal, 2002: 316-324.
    [73] Nguyen Q. P., Currie P. K., Zitha P. L. J. Determination of foam induced fluid partitioning in porous media using X-ray computed tomography [C]. SPE 80245, 2003.
    [74] S. I. Kam, W. W. Frenier, S. N. Davies. Experimental study of high-temperature foam for acid diversion [C]. SPE 82266, 2003.
    [75] Q. Xu, W. R. Rossen. Laboratory study of gas trapping in foam-acid diversion [C]. SPE 84133, 2003.
    [76] Q. Xu, W. R. Rossen.Experimental study of gas injection in surfactant-alternating-gas foam prosess [C]. SPE 84183, 2003.
    [77] Z. Li, W. R. Rossen, Q. P. Nguyen. 3D modeling of tracer experiments to determine gas trapping in foam in porous media [C]. SPE 107287, 2007
    [78] Q. P. Nguyen, P.L.Z. Zitha, P.K. Currie, et al. CT study of liquid diversion with foam [C]. SPE 93949, 2005
    [79] Fogg P. G. T., Gerrand W. Solubility of Gases in Liquids [M]. John Wiley & Sons, Ltd. Baffins Lane, Chichester West Sussex PO 19 1UD, England (1991).
    [80] Thomas R. L., Ali S. A., Robert J. A., et al. Field validation of a foam diversion model: a matrix stimulation case study [C]. SPE 39422, 1998.
    [81] Alvarez J. M., Rivas H., Navarro G. An optimal foam quality for diversion in matrix acidizing projects [C]. SPE 58711, 2000.
    [82] Alvarez J. M., Rivas H., Rossen W. R. A unified model for steady-state foam behavior at high and low foam qualities[J]. SPE Journal, 2001: 325-333.
    [83] Nguyen Q. P., Zitha P. L. J., Currie P. K., el al. Effect of trapped foam on gas tracer diffusion in a visual microflow model [C]. SPE 75208, 2002.
    [84] Nguyen Q. P., Rossen W. R., Zitha P. L. J., el al. Determination of gas trapping with foam using X-ray CT and Effluent analysis [C]. SPE 94764, 2005.
    [85] Nguyen Q. P., Zitha P. L. J., Currie P. K. Film resistance to gas diffusion [J]. Journal of colloid and interface science, 2002, 248: 467-476.
    [86]赵立强,钟双飞,潘清川,等.暂堵酸化试验研究[J].西南石油学院学报,1995,17(1):56-62.
    [87]钟双飞,曾晓惠.多用途分流酸化试验装置的研制[J].实验技术与管理,2001,18(6):95-100.
    [88]缑新俊,钟双飞.泡沫暂堵酸化试验研究[J].实验技术与管理,2002,19(5):53-56.
    [89]钟双飞,缑新俊.泡沫稳定性能评价及泡沫分流效果试验研究[J].西南石油学院学报,2003,25(1):65-66,76.
    [90]李兆敏,孙茂盛,林日亿,等.泡沫封堵及选择性分流实验研究[J].石油学报,2007,28(4):115-118.
    [91]李振泉,殷勇,王其伟,等.气水交替注入提高采收率机理研究进展[J].西南石油学院学报,2007,29(2):22-26.
    [92]王增林,王其伟.强化泡沫驱油体系性能研究[J].石油大学学报(自然科学版),2004,28(3):49-55.
    [93]王其伟,郭平,周国华,等.泡沫体系封堵性能影响因素实验研究[J].特种油气藏,2003,10(3):79-81.
    [94]孙建华,蒋晓明,高瑞民,等.泡沫酸在多孔介质中流动形态研究[J].油田化学,2005,22(1):38-41.
    [95]张绍东,徐永辉,李兆敏,等.泡沫酸配方室内试验研究[J].钻采工艺,2006,29(5):99-101.
    [96]吴信荣,孙建华,尚根华,等. SH-01泡沫酸对高温高盐油层适应性动态评价[J].石油天然气学报,2005,27(1):83-85.
    [97]孙建华,唐长久.一种耐高温耐盐泡沫酸起泡剂的筛选研究[J].油田化学,2006,23(2):15-18.
    [98]王素兵,罗炽臻,马继强.水基泡沫段塞分层转向作用及其应用[J].石油钻采工艺,2004,26(6):51-53.
    [99]关富佳,童伏松.汉江油田黄场区块泡沫酸化室内研究[J].钻井液与完井液,2006,23(2):57-60.
    [100]谯天杰,张友彩,岑岚,等.泡沫酸化工艺对川中低压裂缝性油藏适应性的认识[J].钻采工艺,2003,26(6):103-105.
    [101]李宾飞,李兆敏,徐永辉,等.泡沫酸酸化技术及其在气井酸化中的应用[J].天然气工业,2006,26(1):130-132.
    [102]张学锋,李川梅.泡沫酸酸化在文明寨油田的应用[J].油田化学,1999,16(2):116-117.
    [103] J. R. Gatewood, B.E. Hall, L.D. Roberts, et al. Predicting results of sandstone acidizing [C]. SPE 2622, 693-700, 1970.
    [104] Yusuf Hekim, H. Scott Fogler, Conwell C. McCune. The radial movement of permeability fronts and multiple reaction zones in porous media [C]. SPE 9495, 99-107, 1982.2.
    [105] B. B. Williams, M. E. Whiteley. Hydrofluoric acid reaction with a porous sandstone [C]. SPE 3112, 306-314, 1971.
    [106] Glovannl Paccalonl, and Mauro Tambini. Advances in matrix stimulation technology [C]. SPE 20623, 256-263, 1993.
    [107] L. Cheng, S.I. Kam, M. Delshad, el al. Simalation of dynamic foam-acid diversion processes [C]. SPE 68916, 2001:1-11.
    [108]罗世应,孟英峰,李允,等.气藏泡沫欠平衡钻井数学模型研究[J].天然气工业,2000,20(5):47-50.
    [109]过增元.热流体学[M].北京:清华大学出版社,1992.
    [110] A. H. Shapiro. The Dynamics and Thermaldynamics of Compressible Fluid Flow[C]. The Renald Company, 1953.
    [111]过增元,布卫红,张冠忠.流动系统中的热阻力和热绕流现象(1)[J].工程热物理学报,1985,6(2):160-165.
    [112] Guo Z Y. Thermal Drag in Forced Duct [J]. Heat and Mass Transfer, 1991, 34 (1): 229-235.
    [113]袁恩熙.工程流体力学[M].北京:石油工业出版社,2001.
    [114] Prausnitz J. M., Lichtenthaler R. N., Gomes de Azevedo E. Molecular thermodynamicsof fluid-phase equilibria [C]. New Jersey: Prentice-Hall Inc. Englewwood Cliffs (1986) SPE 29676.
    [115] HASAN A R, KABIR C S. Heat transfer during two-phase wellbore: part II-wellbore fluid temperature [C]. SPE 22948, 1991.
    [116]王弥康.注蒸汽井井筒热传递的定量计算[J].石油大学学报(自然科学版),1994,18(4):77-82.
    [117]张琪.采油工程原理与设计[M].东营:中国石油大学出版社,2006:41-49,40.
    [118] Steven Bryant. A improved model of mud acid/sandstone chemistry [C]. SPE 22855, 1994.
    [119]秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006:217.
    [120] MaGee J, Buijse M A, Pongratz R. Method of effective fluid diversion when performing a matrix acid stimulation in carbonate formations [C]. SPE 82263, 1997.
    [121] Harrison NW. Diverting agents-history and application [J]. Journal of Petroleum Technology, 1972: 593.
    [122] Taylor K C, Saudi Aramco. Laboratory evaluation of in-situ gelled acids for carbonate reservoirs [C]. SPE 71694, 2001.
    [123] A.D. Hill, W.R. Rossen. Fluid placement and diversion in matrix acidizing [C]. SPE 27982, 1994.
    [124]赵金省.聚驱后等流度泡沫驱油提高采收率技术研究[D].东营:中国石油大学(华东),2008.
    [125]韩修延,刘春天,万新德,等.聚能等流度高效驱油新方法研究[J].石油学报,2008,29(3):418-422.
    [126]尧艳,陈大钧,熊颖.一种泡沫酸对碳酸盐岩油气层的酸化作用[J].钻井液与完井液,2008,25(3):71-73.
    [127]罗跃,张煌,杨祖国,等.长庆低渗油藏暂堵酸化技术研究[J].钻井液与完井液,2008,25(2):48-50.
    [128] F. Farshbaf Zinati, R. Farajzadeh, P.L.J. Zitha. Modeling and CT-scan study of the effect of core heterogeneity on foam flow for acid diversion [C]. SPE 107790, 2007.
    [129] B.P. Price, B. Gothard, Multi-Chem. Foam-assisted lift—importance of selection and application [C]. SPE 106465, 2007.
    [130] Zhenquan Li, Guohua Zhou, Zongming Zhou. The feasibility studies of polymer foam flooding in Gudao oilfield [C]. SPE 101189, 2006.
    [131] Y. Liu, R.B. Grigg, R.K. Svec. CO2 foam behavior: influence of temperature, pressure, and concentration of surfactant [C]. SPE 94307, 2005.
    [132] E.M. Ozbayoglu, S. Akin, T. Eren. Foam characterization using image processing techniques [C]. SPE 93860, 2005.
    [133] V. Bhide, G. Hirasaki, C. Miller, et al. Foams for controlling water production [C]. SPE 93273, 2005.
    [134] Zhixi Chen, Desmond Nguyen, Sheik S. Rahman, et al. A 3-D numerical model for designing and planning of matrix acid stimulation in low-permeability rocks [C]. SPE 64403, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700