用户名: 密码: 验证码:
中国大陆及边邻地区地壳上地幔Rayleigh面波相速度结构与方位各向异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据Rayleigh面波的频散特征,本文利用双台窄带通滤波-互相关方法与基于图像分析的相速度频散曲线提取技术,提取Rayleigh面波相速度频散,进而反演与讨论了中国大陆及边邻地区(70°~135°E,18°~55°N)地壳上地幔相速度结构与方位各向异性特征。取得的主要成果如下:
     1.充分收集了中国大陆及周边地区固定与流动台网记录的远震波形资料。根据记录波形质量,选定204个数字化地震台站所记录的1990年至2006年之间409个地震事件的长周期垂直向面波波形资料,获得了4941条双台路径上的Rayleigh面波相速度频散,并最终得到了2610条独立路径上20~120s周期基阶Rayleigh面波相速度频散资料。
     2.首次获得了中国大陆及边邻地区不同周期高分辨率Rayleigh面波相速度分布。检测板测试结果显示中国大陆西部及边邻地区横向分辨率大约5°,中东部地区3°,局部地区可达2°。研究结果显示中国大陆Rayleigh面波相速度分布横向差异显著,分区特征明显,可划分为具有不同相速度结构特征的东、西两部分。南北地震带在所有周期的相速度图上始终呈现出相对较低的速度特征,并成为划分中国大陆东、西部具有不同岩石圈相速度特征的天然分界。
     3.首次获得了中国大陆具有较高分辨率的不同周期Rayleigh面波相速度方位各向异性空间分布图像,该结果有助于理解板块之间运动的动力学模式以及变形过程中物质的运移方式。各向异性结果显示:
     青藏地块内各向异性强度存在明显的空间差异,中部强度大于两侧,最大强度达4%,出现在40~80s周期;喜马拉雅东构造结各向异性最大强度为3%,出现在40~60s周期;松潘-甘孜地块内各向异性强度也表现出一定的空间差异,靠近其北边界的东昆仑断裂带东端各向异性强度最大(3%),出现在35~40s周期。综合青藏地块及其东缘快波方向变化与各向异性强度随周期的变化,可以看出,该区域变形强烈,变形部位以下地壳与上地幔顶部最为突出。青藏地块内短周期与中长周期的快波方向基本保持一致,表明其地壳与上地幔顶部存在耦合关系;同时,快波方向自西向东围绕喜马拉雅东构造结顺时针旋转,可能指示在板块碰撞挤压过程中物质的流变方向。长周期各向异性图像显示顺时针旋转现象基本消失,且青藏地块内的快波优势方向与印度板块的运动方向一致,由于板块运动的主要驱动力来自于地幔对流,该区域长周期快波优势方向可能指示地幔流动的方向。位于青藏地块西北的塔里木盆地东部与西部各向异性强度大于盆地中部地区,最大强度达3%;短周期各向异性图像显示,盆地西部、中部与东部的中地壳快波优势方向分别为NE-SW、E-W、NW-SE向,存在自西向东的顺时针旋转,快波方向的方位变化与青藏地块的变化一致,应具有同源性。但当周期T≥30s时,盆地西部快波方向发生了明显变化,说明印度板块碰撞对塔里木盆地西部下地壳与上地幔的影响明显减弱。青藏地块东侧的四川盆地中地壳与下地壳上地幔快波方向明显不同,说明该盆地中地壳与下地壳变形状态具有明显差异,存在解耦关系,而30s以上周期快波方向保持一致则表明其下地壳与上地幔为强耦合;四川盆地较强的各向异性可能是其所经历的新近一次大规模构造运动遗留在岩石圈中的具有记忆性的“化石”各向异性。
     通过综合分析不同周期的相速度与方位各向异性图像发现,中国大陆104°E以东地区地壳上地幔构造变形总体弱于西部地区。但位于鄂尔多斯盆地西南缘、祁连褶皱带东段至秦岭-大别造山带西段的交汇地区例外,55~85s周期各向异性最大强度可达2%,显示该区域经历了强变形。中国大陆东部地壳上地幔存在的弱各向异性是中国大陆东部受印度-澳大利亚板块与欧亚板块碰撞以及太平洋板块与菲律宾海板块向欧亚板块下方俯冲共同作用的结果,进而也可以看出中国大陆东部受板块碰撞的影响明显弱于西部。
     随着周期的增大,中国大陆不仅上地幔相速度结构的横向非均匀性明显减小,除局部地区外,各向异性的强度也明显减小。但自65s周期开始,东部的日本海、朝鲜半岛以及南部海南岛以西的印支地块各向异性强度较中短周期有明显增大,处于岩石圈拉张减薄区的东南沿海地区上地幔各向异性增大可能与软流圈地幔对流有关,反映橄榄石晶格取向的快波方向可能指示地幔流动的方向。
     大约以103°E为界,龙门山断裂带可分为南西段和北东段。南西段处于低速区,北东段处于高速区;方位各向异性强度差异也较显著,北东段方位各向异性强度明显大于南西段,且30s以上周期的快波方向以NE-SW向为主。2008年5月12日汶川8.0级地震震中正好位于龙门山断裂带中部的南西段与北东段的分界过渡区,而该地震沿断裂带的单侧破裂模式除与北东段本身具有高应力积累直接相关外,与北东段地下介质物性也应存在密切关系,高速坚硬岩体的发育有利于应变能的积累与集中释放,同时该段方位各向异性结果所显示的NE-SW向快波方向的介质环境也可能是地震波能量传播的优势方向。
     单一周期的各向异性结果所显示的快波方向与研究区域内大型构造带走向之间没有一致性,应说明区域内大型构造带可能孕育于不同的构造运动时期,因而复杂的构造演化历史也就导致了构造活动存在显著的差异性与分段性。
     4.所获得的双台路径分布有利于获取可靠的相速度与方位各向异性。由于双台相速度频散资料主要集中在中国大陆内部,反演时受研究区域以外结构的影响较小;且很多频散资料路径距离较短,可以更好地约束小区域的相速度结构,从而可以更可靠地给出研究区内的相速度与方位各向异性分布,同时,对进一步反演该区可靠的横波速度结构具有重要意义。
Based on the Rayleigh surface-wave dispersion characteristics, this paper will provide the Rayleigh-wave phase velocity dispersion curves by utilizing a two-station cross-correlation of narrow band-pass filter and an image analysis technique. The dispersion data were then used to invert phase velocity and azimuthal anisotropy distribution in the crust and upper-mantle beneath the continental China and its adjacent regions (70°-135°E, 18°-55°N). Several main results obtained are as follows:
     1. This paper will present a large amount of teleseismic surface waveform data, which had been collected from both permanent and portable digital seismic networks distributed in continental China and its adjacent areas. Further according to the waveform data quality, the vertical-component records of 409 earthquakes during 1990-2006 from 204 stations were processed to obtain inter-station phase velocity dispersions of fundamental-mode Rayleigh waves at periods between 20 and 120s along 4961 paths (including multiple paths) or 2610 independent paths.
     2. This paper will first provide relatively high resolution Rayleigh-wave phase velocity distributions at periods 20-120s in the continental China and its adjacent regions. Checkerboard tests show that the lateral resolution is about 5°in the western China and adjacent regions, about 3°in the central-eastern China, and even up to 2°for some local areas.
     The significant lateral variation of phase velocity distribution indicates various phase velocity structures in the studied area. The North-South Seismic Belt in China has relatively low phase velocity at all periods, and therefore becomes a natural boundary between eastern continental China and western portion with different lithospheric phase velocity features.
     3. It’s also the first time that relatively high resolution azimuthal anisotropy distributions of Rayleigh-wave phase velocity at various periods in the continental China and its adjacent regions have been obtained, and this knowledge is valuable for understanding the dynamics of plate-motion model and material migration pattern during deformation. The azimuthal anisotropy distributions in the study area also display spatial heterogeneity.
     The amplitude of azimuthal anisotropy beneath the central Qinghai-Tibet plateau is higher than that both in the western and eastern parts, and the maximum amplitude of azimuthal anisotropy is up to 4% at periods 40-80s; 3% appears near the eastern Himalayan syntaxis at periods 40-60s. It is also indicated that the anisotropy distribution beneath Songpan-Garze orogenic belt has significant spatial variation, and the maximum amplitude of anisotropy up to 3% is observed near the northern boundary at the east end of the east Kunlun fault zone at periods 35-40s. By considering the correlated variation between fast propagation direction, the anisotropy amplitude and different periods, it can be deduced that strong deformation has been occurred especially in the lower crust and the upper-mantle lid beneath Qinghai-Tibet block and its eastern margin. It is also recognized that fast propagation direction at short periods basically coincides with directions at mid-long periods beneath Qinghai-Tibet block, which indicates that the crust and upper-mantle lid are coupled there. Clockwise rotation is presented around the eastern Himalayan syntaxis from the west to the east within the block, which may indicate the direction of material flow (or escaping) in the block after the Eurasian and Indian collision. Azimuthal anisotropy maps at long periods show that clockwise rotation is disappeared and the dominant direction of fast propagation in Qinghai-Tibet block correlates well with the direction of the Indian plate movement. Since mantle convection mainly drives plate motion, the dominant direction maybe is indicative of the mantle flow direction beneath the Qinghai-Tibet block. Azimuthal anisotropy maps also indicate that the anisotropy amplitude of the eastern and western parts of the Tarim basin in front of the northwest of Qinghai-Tibet block is greater than that of the central part and the maximum amplitude is up to 3%. The maps at short periods show that the dominant directions of fast propagation in middle crust in the western, central and eastern parts are NE-SW, E-W and NW-SE, respectively, and present a clockwise rotation from west to east. This finding is in great accordance with Qinghai-Tibet block deformation and they may result from the same source property. Notable changes of fast propagation direction can be detected in western basin at periods above 30s; therefore, it becomes an indicator that the Eurasia-India collision effect on lower crust and upper mantle beneath the western Tarim basin is weakened clearly. It is recognized that fast propagation direction in the middle crust is clearly different from those both in the lower crust and upper mantle underlying the Sichuan basin adjacent to the eastern plateau margin. This finding suggests that decoupled deformation processes between middle crust and lower crust beneath the basin have been occurred. But further analysis of the maps at periods equal to or longer than 30s indicates that the lower crust and upper mantle are strongly coupled. The relatively large amplitude of azimuthal anisotropy in Sichuan basin may be the‘fossil’anisotropy frozen in the lithosphere, and this‘fossil’anisotropy could have been from more recent large scale deformation.
     By analyzing phase velocity and azimuthal anisotropy maps at various periods, the present paper indicates that the tectonic deformation of the crust and upper-mantle east of approximately 104°E is weaker than that of the west. But local exceptions are also found near the intersection of the southwest Ordos, eastern segment of Qilian fold belt and the western segment of Qinling-Dabie orogenic belt. The maximum amplitude of anisotropy is up to 2% at periods 55-85s, and is representative of strong deformation in geological history. It is observed that weak azimuthal anisotropy exists in the crust and upper mantle beneath the eastern continental China. This might result from the synthetic effects from the collision between India-Australia and Eurasian plates, as well as the Pacific plate and Philippine Sea plate subduction under the Eurasia plate along the margins of the continental China. The overall effect on the eastern flank is obviously weaker than that on the western continental China.
     The lateral heterogeneity of phase velocity structure and amplitude of azimuthal anisotropy in the upper mantle beneath continental China decreases as period increases, except for some local areas. However, anisotropy amplitudes underlying the Sea of Japan, Korean peninsula and Indo-China block located in the west of Hainan Island increase apparently as the periods equal to or greater than 65s. Increasing of upper-mantle anisotropy amplitude along southeast China coast, where the lithosphere is experiencing extension and thinning processes, may be related to mantle convection in asthenosphere, and the fast propagation direction is an indicator of crystal lattice orientation of olivine representing the mantle flow direction.
     According to the phase velocity distribution and the azimuthal anisotropy amplitude, the Longmen Shan tectonic zone can be divided into southwestern and northeastern sections at about 103°E. The southwestern section has relatively lower phase velocity, while the northeastern area has higher phase velocity and stronger anisotropy with NE-SW Rayleigh-wave fast-propagation direction at periods above 30s. This conclusion suggests that the NE striking unilateral rupture propagation of the Wenchuan Ms8.0 earthquake on May 12, 2008, which occurred at the central segment of the Longmen Shan tectonic zone, may be related not only to the cumulated high stress of the northeastern section, but also to the underlying medium property along the segment where high phase velocity (suitable for energy accumulation and concentrated release) and NE-SW fast-propagation direction (suitable for seismic energy propagation) are expressed.
     By synthesizing all the data, it is concluded that the fast anisotropy direction at any period isn’t consistent with the strike of the large-scale geological structures in the studied area, and further this cognition maybe means that large-scale geological structures have been formed and evolved in different tectonic episodes, and therefore the activities along large-scale structures behave obvious regionalization and segmentation.
     4. Distribution of inter-station paths has great advantage of determining reliable phase-velocity and azimuthal anisotropy maps. Because most paths are located within the continental China, this ray path distribution therefore can consequently minimize the influence from the structures outside of the research area on the inversion results. Additionally, many measurements of phase velocity dispersions are along relatively short paths, and then they can further constrain the phase velocity structure within the local area, and finally this advantage makes the distribution of the phase velocity and azimuthal anisotropy more reliable in the studied area. Consequently, the result is of important significance for further inverting reliable shear wave velocity structure of the studied region.
引文
[1] Master G, Jordan T H, Silcer P G, et al. A spherical earth structure from fundamental spheroidal-mode data[J]. Nature, 1982, 298: 609-613.
    [2] Woodhouse J H, and Dziewonski A M. Mapping the upper mantal: Three-dimensional modeling of earth structure by inversion of seismic waveforms[J]. J. Geophys. Res., 1984, 89: 5953-5986.
    [3]杨文采.地球物理反演和地震层析成像[M].北京:地质出版社, 1989.
    [4] Zhang Y S, and Tanimoto T. Global Love wave phase velocity variation and its significance to plate tectonics[J]. Phys. Earth Planet. Int., 1991, 66: 160-202.
    [5] Zhang Y S, and Tanimoto T. High-resolution global upper mantle structure and plate tectonics[J]. J. Geophys. Res., 1993, 98: 9793-9823.
    [6]张禹慎,马石庄.全球地震面波相速度变化及其大地构造学意义[J].地球物理学报, 1997, 40(2): 181-192.
    [7]吴建平,曾融生,明跃红.中国北部及蒙古地区上地幔P波速度结构的研究[J].地震学报, 1998, 20(6): 580-589.
    [8]周兵.用地震面波研究上地幔各向异性[J].地震研究, 1991, 14(4): 401-408.
    [9] Debayle E, Kennett B, Priestiey K. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia[J]. Nature, 2005, 433(3): 509-512.
    [10]彭艳菊,黄忠贤,苏伟,等.中国大陆及邻区海域地壳上地幔各向异性研究[J].地球物理学报, 2007, 50(3): 98-105.
    [11]苏伟,王春镛,黄忠贤.青藏高原及邻区的Rayleigh面波的方位各向异性[J].中国科学D辑:地球科学, 2008, 38(6): 674-682.
    [12] Lay T, and T C Wallace. Modern Global Seismology[M]. San Diego: Academic Press, 1995.
    [13] Stein S. and Wysessin M. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Oxford: Blackwell, 2003.
    [14] Toks?z M N, and D L Anderson. Phase velocity of long-period surface waves and structure of the upper mantle[J]. J. Geophys. Res., 1966, 71: 1649-1658.
    [15] Kanamori H. Velocity and Q of mantle waves[J]. Phys. Earth Planet. Inter., 1970, 2: 259-275.
    [16] Forsyth D W. The early structureal evolution and anisotropy of the oceanic upper mantal[J], Geophys. J. R. Astron. Soc., 1975, 43: 103-162.
    [17] Aki K, and Richards P G. Quantitative Seismology[M]. San Francisco: W. H. Freeman and Company, 1980.
    [18] Zhang Y S, Lay T. Global surface wave phase velocity variations[J]. J. Geophys. Res., 1996,101: 8415-8436.
    [19] Huang Z, Y Peng, Y Luo, et al. Azimuthal anisotropy of Rayleigh waves in East Asia[J]. Geophys. Res. Lett., 2004, 31: L15617, doi:10.1029/2004GL020399.
    [20]朱介寿,曹家敏,蔡学林,等.东亚及西太平洋边缘海高分辨率面波层析成像[J].地球物理学报, 2002, 45(5): 646-664.
    [21]冯锐,朱介寿,丁韫玉,等.利用地震面波研究中国地壳结构[J].地震学报, 1981, 3(4): 335-350.
    [22]庄真,邓大量.勒夫波群速度与太平洋地壳上地幔三维速度结构[J].地球物理学报, 1987, 30(3): 246-259.
    [23]周兵,朱介寿,秦建业.青藏高原及邻近区域S波三维速度结构[J].地球物理学报, 1991, 34(4): 426-441.
    [24]宋仲和,安昌强,陈国英,等.中国西部三维速度结构及其各向异性[J].地球物理学报, 1991, 34(6): 694-707.
    [25]宋仲和,陈国英,安昌强,等.中国东部及其相邻海域S波三维速度结构[J].地球物理学报, 1992, 35(3):316-329.
    [26]宋仲和,陈国英,安昌强,等.中国大陆及其海域地壳-上地幔三维速度结构[J].中国科学(B), 1993, 23(2): 180-188.
    [27] Zhang Y S, Tanimoto T. Ridges, hotspots, and their interpretation as observed in seismic velocity maps[J]. Nature, 1992, 355: 45-49.
    [28] Wu F, Levshin A L. Surface wave tomography of East Asia[J]. Phys. Earth Planet. Inter., 1994, 84: 59-77.
    [29] Wu F T, Levshin A L, Kozhevnikov V M. Rayleigh wave group velocity tomography of Siberia, China and the vicinity[J]. Pure and Applied Geophysics, 1997, 149: 447-473.
    [30]滕吉文,胡家富,张中杰.中国西北地区岩石层瑞利波三维速度结构与沉积盆地[J].地球物理学报, 1995, 38(6): 737-349.
    [31]滕吉文,张中杰,胡家富,等.中国东南大陆及陆缘地带的瑞利波频散与剪切波三维速度结构[J].地球物理学报, 2001, 44(5): 663-677.
    [32]陈国英,宋仲和,安昌强,等.中国北部及其邻区地壳上地幔三维速度结构[J].地球物理学报, 1995, 38(3): 321-327.
    [33] Ritzwoller M H, Levshin A L. Eurasian surface wave tomography: Group velocities[J]. J. Geophys. Res., 1998, 103: 4839-4878.
    [34] Nakamura Y, and Shibutani T. 3-D shear wave velocity structure in the upper mantle beneath the Philippine Sea[J]. Earth Planets Space, 1998, 50: 939-952.
    [35] Vdovin O, Rial J A, Levshin A L, et al. Group-velocity tomography of South America and surrounding Oceans[J]. Geophys. J. Inter., 1999, 136: 324-340.
    [36]徐果明,李光品,王善恩,等.用瑞利面波资料反演中国大陆东部地壳上地幔横波速度的三维构造[J].地球物理学报, 2000, 43(3): 366-375.
    [37]何正勤,张天中,叶太兰,等.河北平原北部的短周期面波频散与地壳中上部速度结构[J].地震学报, 2000, 22(1): 82-86.
    [38]何正勤,丁志峰,叶太兰,等.中国大陆及其邻域地壳上地幔速度结构的面波层析成像研究[J].地震学报, 2001, 24(6): 596-603.
    [39]何正勤,丁志峰,叶太兰,等.中国大陆及其邻域的瑞利波群速度分布图象与地壳上地幔速度结构[J].地震学报, 2002, 24(3): 252-259.
    [40]何正勤,苏伟,叶太兰,等.云南地区的短周期面波相速度层析成像研究[J].地震学报, 2004, 26(6): 583-590.
    [41]李红宜,刘福田,孙若昧,等.中国大陆东部及海域地壳-上地幔结构研究[J].地震学报, 2001, 23: 471-479.
    [42]朱良保,许庆,陈晓非.中国大陆及其邻近海域的Rayleigh波群速度分布[J].地球物理学报, 2002, 45(4): 475-482.
    [43] Rapine R., Tilmann F, West M, et al. Crustal structure of northern and southern Tibet from surface wave dispersion analysis[J]. J. Geophy. Res., 2003, 108(B2): ESE20.
    [44] Yanovskaya T B, and Kozhevnikov V M. 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from rayleigh wave data[J]. Phys. Earth Planet. Inter., 2003, 138: 263-278.
    [45]胡家富,朱雄关,夏静瑜,等.利用面波和接收函数联合反演滇西地区壳幔速度结构[J].地球物理学报, 2005, 48(5): 1069-1076.
    [46] Nolet G, van Trier J, & Huisman R. A formalism for nonlinear inversion of seismic surface waves[J]. Geophys. Res. Lett., 1986, 13(1): 26-29.
    [47] Nolet G. Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs[J]. J. Geophys. Res., 1990a, 95: 8499-8512.
    [48] Nolet, G. Partitioned waveform inversion and two-dimensional structure under the NARS array[J]. J. Geophys. Res., 1990b, 95: 8513-8526.
    [49] Cara M and Lévêque J J. Waveform inversion using secondary observables[J]. Geophys. Res. Let., 1987, 14: 1046-1049.
    [50] Snieder R, and Nolet G. Linearized scattering of surface waves on a spherical Earth[J]. J. Geophys., 1987, 61: 55-63.
    [51] Snieder R. Large-scale waveform inversion of surface waves for lateral heterogeneity, 2, Application to surface waves in Europe and the Mediterranean[J]. J. Geophys. Res., 1988, 93: 12067-12080.
    [52] Stutzmann E & Montagner J P. An inversion technique for retrieving higher mode phasevelocity and mantle structure[J]. Geophys. J. Int., 1993, 113: 669-683.
    [53] Trampert J and Woodhous J. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds[J]. Geophys. J. Int., 1995, 122: 675-690.
    [54] Trampert J and Woodhous J. High resolution global phase velocity distributions[J]. Geophys. Res. Lett., 1996, 23: 21-24.
    [55] Marquering M and Snieder R. Waveform inversion and the significance of surface-wave mode coupling [J]. Geophys. J. Int., 1996, 124: 258-278.
    [56] Zielhuis A and Van der Hilst R D. Upper mantle shear velocity beneath eastern Australian from inversion of waveforms from SKIPPY portable arrays[J]. Geophys. J. Int., 1996, 127: 1-16.
    [57] van Heijst H J & Woodhouse J H. Measuring surface-wave overtone phase velocities using a mode-branch stripping technique[J]. Geophys. J. Int., 1997, 131: 209-230.
    [58] Lévêque J J, Debayle E and Maupin V. Anisotropy in the Indian Ocean upper mantle from Rayleigh- and Love-waveform inversion[J]. Geophys. J. Int., 1998, 133: 529-540.
    [59] Debayle E, and Kennett B L N. Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion[J]. Earth Planet. Sci. Lett., 2000, 184: 339-351.
    [60]曹小林.中国大陆及邻区地壳上地幔三维S波速度结构面波波形反演[D].成都:成都理工学院, 2000.
    [61]曹小林,朱介寿,赵连锋.南海及邻区地壳上地幔三维S波速度结构的面波波形反演[J].地震学报, 2001, 23: 113-124.
    [62] Simons F J, van der Hilst R D, Montagner J P, et al. Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle[J]. Geophys. J. Int., 2001, 147: 1-18.
    [63] Yoshizawa K and Kennett B L N. Non-linear waveform inversion for surface waves with a neighborhood algorithm-application to multimode dispersion measurements[J]. Geophys. J. Int., 2002, 149: 118-133.
    [64] Beucleré, Stutzmanné, Montager J P. Surface wave higher-mode phase velocity measurements using a roller-coaster-type algorithm[J]. Geophys. J. Int., 2003, 155: 289-307.
    [65] Marone F, van der Meijde M, van der Lee S, et al. Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary region[J]. Geophys. J. Int., 2003, 154: 499-514.
    [66] Du Z J, and Foulger G R. Surface wave waveform inversion for variation in upper mantle structure beneath Iceland[J]. Geophys. J. Int., 2004, 157: 305-314.
    [67]高星,王卫民,姚振兴.中国及邻近地区地壳结构[J].地球物理学报, 2005, 48(3): 591-601.
    [68] Su W J, and Woodward R L, Dziewonski A M. Deep origin of mid-ocean-ridge seismic velocity anomalies[J]. Nature, 1992, 360: 149-152.
    [69] Li X D, and Romanowicz B. Comparison of global waveform inversion with and without considering cross-branch model coupling[J]. Geophys. J. Int., 1995, 121: 695-709.
    [70] Passier M L, Snieder R K. On the presence of intermediate-scale heterogeneity in the upper mantle[J]. Geophys. J. Int., 1995, 123: 817-837.
    [71] Ewing M, and F Press. Crustal structure and surface-wave dispersion[J]. Bull. Seis. Soc. Am., 1950, 40: 271-281.
    [72] Ewing M, and F Press. Crustal structure and surface-wave dispersion, partⅡ, Solomon Islands earthquake of 29 July 1950[J]. Bull. Seis. Soc. Am., 1952, 42: 315-325.
    [73] Ewing M, and F Press. An investigation of mantle Rayleigh waves[J]. Bull. Seis. Soc. Am., 1954, 44: 127-147.
    [74] Ewing M, and Press F. Determination of crustal structure from phase velocity of Rayleigh waves, partⅢ: The united States[J]. Bull. Geol. Soc. Am., 1959, 70: 229-244.
    [75] Stoneley R. The transmission of Rayleigh waves across Eurassia[J]. Bull. Seis. Soc. Am., 1953, 43: 127-135.
    [76] Press F. Determination of crustal structure from phase velocity of Rayleigh waves, partⅠ: Southern California[J]. Bull. Geol. Soc. Am., 1956, 67: 1647-1658.
    [77] Press F. Crustal structure in California-Nevada region[J]. J. Geophys. Res., 1960, 65: 1039-1051.
    [78] Sat? Y. Analysis of dispersed surface waves by means of Fourier transform(Ⅲ)[J]. Bull. Earthq. Res. Inst., 1956, 34: 131-138.
    [79] Haskell N A. The dispersion of surface waves on multilayered media[J]. Bull. Seis. Soc. Am., 1953, 43: 17-43.
    [80] Gilbert F and G Backus. Propagator matrices in elastic wave and vibration problems[J]. Geophysics, 1966, 31: 326-332.
    [81] Brune J, J Dorman. Seismic waves and Earth structure in the Canadian Shield[J]. Bull. Seis. Soc. Am., 1963, 43: 167-210.
    [82] Knopoff L. A matrix method for elastic wave problem[J]. Bull. Seis. Soc. Am., 1964, 54: 431-438.
    [83] Schwab F, and Knopoff L. Fast surface wave and free mode computations[M].“Methods in computational physics”[Bolt A ed.]. New York: Academic Press, 1972, 11: 87-180.
    [84] Dziewonski A M, and Hales A L. Numerical analysis of dispersed seismic waves, Seismology: Surface waves and earth oscillations[M].“Methods in Computational Physics”[Bolt A ed.]. New York: Academic Press, 1972, 11: 39-86.
    [85] Braile L W, and Keller G R. Fine structure of the crust inferred from linear inversion of Rayleigh-Wave dispersion[J]. Bull. Seis. Soc. Am., 1975, 65: 71-83.
    [86] Kovach R L. Seismic surface waves and crustal and upper mantle structure[J]. Reviews of Geophysics and Space Physics, 1978, 16: 1-13.
    [87] Landisman M, Dziewonski A and Sato Y. Recent improvements in the analysis of surface wave observations[J]. Geophys. J. R. Astron. Soc., 1969, 17: 369-403.
    [88] Dziewonski A M, Bloch S and Landisman M. A technique for the analysis of transient seismic signals[J]. Bull. Seis. Soc. Am., 1969, 59: 427-444.
    [89] Feng C C and Teng T L. Three-dimensional crust and upper-mantle structure of the Eurasian continent[J]. J. Geophys. Res, 1983, 88: 2261-2272.
    [90] Dziewonski A M, and D L Anderson. Global images of the Earth's interior[J]. Science, 1981, 236: 37-48.
    [91] Nakanishi I, and D L Anderson. Measurements of mantle wave velocity and inversion for lateral heterogeneity and anisotropy, 1, Analysis of great circle phase velocities[J]. J. Geophys. Res., 1983, 88: 10267-10283.
    [92] Nakanishi I, and D L Anderson. Measurements of mantle wav velocity and inversion for lateral heterogeneity and anisotropy, 2, Analysis by the single station method[J]. Geophys. J. R. Astron. Soc., 1984, 78: 573-617.
    [93] Tanimoto T, and D L Anderson. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh Waves 100-250s[J]. J. Geophys. Res., 1985, 90: 1842-1858.
    [94] Nataf H C, I Nakanishi and D L Anderson. Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy, 3, inversion[J]. J. Geohys. Res., 1986, 91: 7261-7307.
    [95] Montagner J P, and T Tanimoto. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities[J]. J. Geophys. Res., 1990, 95: 4797-4819.
    [96] Montagner J P, and T Tanimoto. Global upper mantle tomography of seismic velocities and anisotropics[J]. J. Geophys. Res., 1991, 96: 20337-20351.
    [97] Trampert J and Woodhous J. Assessment of global phase velocity models[J]. Geophys. J. Int., 2001, 144: 165-174.
    [98] Ekstr?m G, Tromp J and Larson E W F, Measurements and global models of surface wave propgation[J]. J. Geophys. Res., 1997, 102: 8137-8157.
    [99] Silveira G, Stutzmann E, Griot D A, et al. Anisotropic tomography of the Atlantic Ocean from Rayleigh surface waves[J]. Phys. Earth Planet. Inter., 1998, 106: 257-273.
    [100] Debayle E. SV-wave azimuthal anisotropy in the Australian upper mantle: preliminary results from automated Rayleigh waveform inversion[J]. Geophys. J. Int., 1999, 137: 747-754.
    [101] Yanovskaya T B, Antonova L M, Kozhevnikov V M. Lateral variation of the upper mantle structure in Eurasia from group velocities of surface waves[J]. Phys. Earth Planet. Inter., 2000, 122: 19-32.
    [102]洪学海,朱介寿,曹家敏,等.中国大陆地壳上地幔S波品质因子三维层析成像[J].地球物理学报, 2003, 46(5): 642-651.
    [103] Villase?or A, Ritzwoller M H, Levshin A L, et al. Shear velocity structure of central Eurasia from inversion of surface wave velocities[J]. Phys. Earth Planet. Inter., 2001, 123: 169-184.
    [104] Shapiro N and Ritzwoller M. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle[J]. Geophys. J. Int., 2002, 151:88-105.
    [105] Brune J N, Nafe J E and Oliver J E. A simplified method for the analysis and synthesis of dispersed wave trains[J]. J. Geophys. Res., 1960, 65: 287-304.
    [106] Bloch S and Hales A L. New techniques for the determination of surface wave phase velocities[J]. Bull. Seis. Soc. Am., 1968, 58: 1021-1034.
    [107] Curtis A, Trampert J and Snieder R. Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures[J]. J. Geophys. Res., 1998, 103: 26919-26947.
    [108] Spetzler J, Trampert J and Snieder R. Are we exceeding the limits of the great circle approximation in global surface wave tomography[J]? Geophys. Res. Lett., 2001, 28: 2341-2344.
    [109] van Heijst H J and Woodhouse J H. Global high-resolution phase velocity distributions of overtone and fundamentalmode surface waves determined by mode branch stripping[J]. Geophys. J. Int., 1999, 137: 601-620.
    [110] Dahlen F A, Huang S H, and Nolet G. Frechet kernels for finite-frequency travel times-Ⅰ. Theory[J]. Geophys. J. Int., 2000, 141: 157-174.
    [111] Ritzwoller, M. H., Shapiro, N. M., Barmin M. P., et al.. Global surface wave diffraction tomography[J]. J. Geophys. Res., 2002, 107(B12): 2335, doi: 10.1029/2002JB001777.
    [112] Spetzler J, Trampert J and Snieder R. The effect of scattering in surface wave tomography [J]. Geophys. J. Int., 2002, 149: 755-767.
    [113] Yoshizawa K and Kennett B L N. Multimode surface wave tomography for the Australian region using a three-step approach incorporating finite frequency effects[J]. J. Geophys. Res., 2004, 109(B2): B02310.
    [114] Yoshizawa K and Kennett B L N. Sensitivity kernels for finite frequency surface waves[J]. Geophys. J. Int., 2005, 162: 910-926.
    [115] Zhou Y, Dahlen F A, Nolet G, et al. Finite-frequency effects in global surface-wave tomography[J]. Geophys. J. Int., 2005, 163: 1087-1111.
    [116] Trampert J, and Spetzler J. Surface wave tomography: finite-frequency effects lost in the null space[J]. Geophys. J. Int., 2006, 164: 394-400.
    [117] Jobert N, Journet B, Hirn A, et al. Deep structure of southern Tibet inferred from the dispersion of Rayleigh waves through a long-period seismic network[J]. Nature, 1985, 313: 386-388.
    [118]朱介寿,蔡学林,曹家敏,等.中国及相邻区域岩石圈结构及动力学意义[J].中国地质, 2006, 33(4): 793-803.
    [119]宋仲和,谭承业.用瑞雷和勒夫面波群速度确定我国地壳厚度[J].地球物理学报, 1965, 14(1): 33-44.
    [120]陈国英,曾融生,吴大铭,等.青藏高原瑞利面波相速度与深部结构的横向变化[J].地震学报, 1992, 14 (增刊): 565-572.
    [121]陈立华,宋仲和,安昌强,等.中国南北带地壳上地幔三维面波速度结构和各向异性[J].地球物理学报, 1992, 35(5): 574-583.
    [122] Huang Z, Su W, Peng Y, et al. Rayleigh wave tomography of China and adjacent regions[J]. J.Geophys.Res., 2003, 108( B2): 2073, doi:10.1029/2001JB001696.
    [123]曾融生,宋子安.我国境内瑞利波的相速度[J].地球物理学报, 1963, 12(2): 148-165.
    [124]姚华建.用Rayleigh面波相速度反演中国西部及其邻域地壳上地幔三维横波速度结构[M].合肥:中国科技大学, 2004.
    [125]徐果明,姚华建,朱良保,等.中国西部及其邻域地壳上地幔横波速度结构[J].地球物理学报, 2007, 50(1): 193-208.
    [126] Rapine R, F Tilmann, M West, et al. Crustal structure of northern and southern Tibet from surface wave dispersion analysis[J]. J. Geophys. Res., 2003, 108(B2): 2120, doi: 10.1029 /2001JB000445.
    [127] Romanowicz B. Constraints on the structure of the Tibet Plateau from pure-path phase velocities of Love and Rayleigh waves[J]. J. Geophys. Res., 1982, 87: 6865-6883.
    [128] Brandon C and Romanowica B. A“no-lid”zone in the central Chang-Thang platform of Tibet: Evidence from pure path velocity measurements of long-period Rayleigh waves[J]. J. Geophys. Res., 1986, 91: 6547-6564.
    [129] Bourjot L and Romanowicz B. Crust and upper mantle tomography in Tibet using surface waves[J]. Geophys. Res. Lett., 1992, 19: 881-884.
    [130] Curtis A and Woodhouse J H. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from the interevent surface wave phase velocity inversion[J]. J. Geophys. Res., 1997, 102: 11789-11813.
    [131] Griot D A and Montagner J P. Phase velocity structure from Rayleigh and Love waves in Tibet and its neighboring regions[J]. J. Geophys. Res., 1998, 103: 21215-21232.
    [132] Tarantola A, Valette B. Generalized nonlinear inverse problems solved using the least square criterion[J]. Rev. Geophys. Space Phys., 1982, 20(2): 219-232
    [133] Tarantola A and Nercessian A. Three-dimensional inversion with blocks[J]. Geophys. J. R. astr. Soc., 1984, 76: 299-306.
    [134]姚华建,徐果明,肖翔,等.基于图像分析的双台面波相速度频散曲线快速提取方法[J].地震地磁观测与研究, 2004, 25(1): 1-8.
    [135] Yao H, van der Hilst R D, and de Hoop MV. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: I - Phase velocity maps[J]. Geophys. J. Int., 2006, 166: 732-744, doi:10.1111/j.1365-246 X.2006.03028.x.
    [136] Yao H, Beghein C, and Van der Hilst R D. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: II– Crustal and upper mantle structure[J]. Geophys. J. Int., 2008, 173(1): 205-219, doi:10.1111/j.1365-246X.2007.03696.x.
    [137]易桂喜,姚华建,朱介寿,等.中国大陆及邻区Rayleigh面波相速度分布特征[J].地球物理学报, 2008, 51(2): 402-411.
    [138] Anderson D L. Elastic wave propagation in layered anisotropic media[J]. J. Geophys. Res. 1961, 66: 2953-2963.
    [139] Hess H H. Seismic anisotropy of the upper mantle[J]. Nature, 1964, 203: 629-631.
    [140] Crampin S , Booth D C. Shear wave polarization near the North Anatolian fault , II. Interpretation in terms of crack induced anisotropy[J]. Geophys. J . R. Astron. Soc., 1985, 83: 75-92.
    [141]张中杰.地震各向异性进展[J].地球物理学进展, 2002, 17(2): 281-293.
    [142] Fuchs K. Recently formed elastic anisotropy and petrological models for the continental subcrustal lithosphere in southern Germany[J]. Phys. Earth planet. Inter., 1983, 31: 93-118.
    [143] Vinnik L P, L I Makeyeva, A Milev, et al. Global patterns of azimuthal anisotropy and deformations in the continental mantle[J]. Geophys. J. Int., 1992, 111: 433-447.
    [144] Russo R M and P G Silver. Trench-parallel flow beneath the Nazca Plate from seismic anisotropy[J]. Science, 1994, 263: 1105-1111.
    [145] Yu Y, J Park. Hunting for azimuthal anisotropy beneath the Pacific Ocean region[J]. J. Geophys. Res., 1994, 99(B8): 15399-15421.
    [146] Hirn A, Jiang M, Sapin M, et al. Seismic anisotropy as an indicator of mantle flow beneath Himalayas and Tibet[J]. Nature, 1995, 75: 571-57.
    [147] Lave T, Avouac J P, Lacassin R, et al. Seismic anisotropy beneath Tibet: evidence for eastward extrusion of the Tibetan lithosphere[J]? Earth Planet. Sci. Lett, 1996, 140: 83-96
    [148]丁志峰,曾融生.青藏高原上地幔横波各向异性的探测研究[J].地球物理学报, 1996, 39(2): 211-220
    [149] Forsyth D W, Dorman L M, Phipps-Morgan J, et al. Anisotropy and lateral variations in shear wave velocity from propagation of Rayleigh waves across the MELT array[J] . EOS, Trans. Am. Geophys. Un., 1996, 77: 652-653.
    [150] Laske G, Masters G. Surface-wave polarization data and global anisotropic structure[J]. Geophys. J. Int., 1998, 132: 508-520.
    [151] Levin V, W Menke and J Park. Shear wave splitting in Appalachians and Urals: a case for multilayered anisotropy[J]. J. Geophys. Res., 1999, 104: 17975-17994.
    [152] Weimer S, G Tytgat, M Wyss, et al. Evidence for shear-wave anisotropy in the mantle wedge beneath southcentral Alaska[J]. Bull. Seis. Soc. Am., 1999, 89: 1313-1322.
    [153] Peyton V, Levin V, Park J, et al. Mantle Flow at a Slab Edge: Seismic anisotropy in the Kamchatka region[J]. Geophys. J. Lett., 2001, 28(2): 379-382.
    [154]刘希强,周蕙兰,李红,等.中国大陆及邻区上地幔各向异性研究[J].地震学报, 2001, 23(4): 337-348.
    [155]姜枚,许志琴, Hirn A,等.青藏高原及其部分邻区地震各向异性和上地幔特征[J].地球学报, 2001, 22(2): 111-116.
    [156]高原,滕吉文.中国大陆地壳与上地幔各向异性研究[J].地球物理学进展, 2005, 20(1): 180-185.
    [157]石玉涛,高原,吴晶,等.云南地区地壳介质各向异性-快剪切波偏振特性[J].地震学报, 2006, 28(6): 574-585.
    [158] A Maggi, E Debayle, K Priestley, et al. Azimuthal anisotropy of the pacific region[J]. Earth Planet. Sci. Lett., 2006, 250: 53-71, doi:10.1016/j.epsl.2006.07.010.
    [159]王椿镛,常利军,吕智勇,等.青藏高原东部上地幔各向异性及相关的壳幔耦合型式[J].中国科学D辑:地球科学, 2007, 37(4): 495-503.
    [160]李志伟,胥颐, Steven W R,等.中天山地区的Pn波速度结构与各向异性[J].地球物理学报, 2007, 50(4): 1066-1072.
    [161]吴晶,高原,蔡晋安,等.华夏地块东南部地壳地震各向异性特征初步研究[J].地球物理学报, 2007, 50(6): 1748-1756.
    [162]胥颐,李志伟,郝天珧,等.南海东北部及其邻近地区的Pn波速度结构与各向异性[J].地球物理学报, 2007, 50(5): 1473-1479.
    [163]胥颐,李志伟,刘劲松,等.黄海及其邻近地区的Pn波速度结构与各向异性[J].地球物理学报, 2008, 51(5): 1444-1450.
    [164]常利军,王春镛,丁志峰,等.青藏高原东北缘上地幔各向异性研究[J].地球物理学报, 2008, 51(2): 431-438.
    [165]田保峰,李娟,王卫民,等.华北太行山区地壳各向异性的接收函数证据[J].地球物理学报, 2008, 51(5): 1459-1467.
    [166]吴晶,高原,陈运泰.首都圈东南部地区地壳介质各向异性[J].地震学报, 2008, 30(1): 1-11.
    [167] Becker T W, Kellogg J B, Ekstr?m G, et al. Comparison of azimuthal seismic anisotropy from surface waves and finite strain from global mantle-circulation models[J]. Geophys. J. int., 2003, 155: 696-714.
    [168] J H Leven, I Jackson and A E Ringwood. Upper mantle seismic anisotropy and lithospheric decoupling[J]. Nature, 1981, 289: 234-239.
    [169] Raitt W R, Shor G G, Francis T J G, et al. Anisotropy of the Pacific upper mantle[J]. J. Geophys. Res., 1969, 74: 3095-3109.
    [170] Marone F, van der Lee S, Giardini D. Shallow anisotropy in the Mediterranean mantle from surface waves[J]. Geophys. Res. Lett., 2004, 31: L06624, doi: 10.1029/2003GL018948.
    [171]郑月军,黄忠贤,刘建华,等.青藏高原东部Love波偏振研究[J].地球物理学报, 2006, 49(4): 1068-1073.
    [172] Silver P G, Chan W W. Implication for continental structure and evolution from seismic anisotropy[J]. Nature, 1988, 335: 34-39.
    [173] Silver P G, Chan W W. Shear-wave splitting and subcontinental mantle deformation[J]. J. Geophys. Res., 1991, 96: 16429-16454.
    [174] Yang Y J, Forsyth D W. Rayleigh wave phase velocities, small-scall convection, and azimuthal anisotropy beneath southern California[J]. J. Geophys. Res., 2006, 111: B07306, doi: 10.1029/2005JB004180.
    [175] Deschamps F, Lebedev S, Meier T, et al. Azimuthal anisotropy of Rayleigh-wave phase velocity in the east central United States[J]. Geophys. J. Int., 2008, 173: 827-843.
    [176] Zhang S and S Karato. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature, 1995, 375: 774-777.
    [177]傅淑芳,刘宝城.地震学教程[M].北京:地震出版社, 1991.
    [178] Panza G F. Synthetic seismograms: the Rayleigh wave model summation[J]. J. Geophys., 1985, 58: 125-145.
    [179]朱介寿.地震学中的计算方法[M].北京:地震出版社, 1988.
    [180] Knopoff L, Muller S and Pilant W L. Structure of the crust and upper mantle in the Alps from the phase velocity of Rayleigh waves[J]. Bull. Seis. Soc. Am., 1966, 56: 1009-1044.
    [181] Landisman M, Dziewonski A, Sato Y. Recent improvement in the analysis of surface wave observations[J]. Geophys. J. R. Astron. Soc., 1969, 17: 369-403.
    [182] Herrin E and Goforth T. Phase-matched filters: application to the study of Rayleigh waves[J]. Bull. Seis. Soc. Am., 1977, 59: 427-444.
    [183] Taylor S and Toks?z N. Measurement of interstation phase and group and Q using Wiener filtering[J]. Bull. Seis. Soc. Am., 1982, 72: 73-91.
    [184] Deans S R. The Radon transform and some of its application[M]. New York: John Wiely and Sons Co., 1983.
    [185] Yanosvskaya T B and Ditmar P G. Smoothness criteria in surface wave tomography[J]. Geophys. J. Int., 1990, 102: 63-72.
    [186] Ditmar P G, Yanovskaya T B.An extension of the Backus-Gilbert technique for estimating lateral variations of surface wave velocities [J].Izv. Akad. Nauk SSSR Fiz. Zemli. 1 987, 6: 30-60.
    [187] Backus P G and Gilbert F. The resolving power of gross earth data[J]. Geophys. J. Int., 1968, 102: 63-72.
    [188] Backus P G and Gilbert F. Uniqueness in the inversion of in accurate gross earth data[J]. Philos. Trans. R. Soc. London., 1970, 226: 123-192.
    [189] Yomogida K, Aki K. Amplitude and phase data inversion for phase velocity anomalies in the Pacific Ocean basin [J]. Geophys. J. R. astr. Soc., 1987, 88: 161-204.
    [190]徐果明等.关于区域性的地震面波层析成像反演方法的讨论[J].地球物理学进展, 1994, 9: 43-53.
    [191]曹俊兴.跨孔地震波及电磁波层析成像研究[D].成都:成都理工学院, 1996.
    [192] Paige C C. and Sounders M M. LSQR: An algorithm for sparse linear equations and least squares problem[J]. ACM Trans. Math. Software, 1982a, 8: 43-71.
    [193] Paige C C and Sounders M M. LSQR: sparse linear equations and least squares problem[J]. ACM Trans. Math. Software, 1982b, 8: 195-209.
    [194]牛彦良,杨文采,吴永刚.跨孔CT地震中的逐次线性化方法[J].地球物理学报, 1995, 38(3): 378-386.
    [195] Ritzwoller M, Shapiro N, Barmin M, et al. Global surface wave diffraction tomography[J]. J. Geophys. Res., 2002, 107(B12), 2335, doi:10.1029/2002JB001777.
    [196]李红谊,刘福田,孙若昧,等.中国大陆东部及海域地壳-上地幔结构研究[J].地震学报, 2001, 23(5): 471-479.
    [197]宋仲和,陈国英,安昌强,等.中国大陆及其相邻海域瑞利波群速度分布特征[J].地震学报, 1993, 15(1): 32-38.
    [198]郑月军,黄忠贤,刘福田,等.中国东部海域地壳-上地幔瑞利波速度结构研究[J].地球物理学报, 2000, 43(4): 480-487.
    [199] Lebedev S, G Nolet. Upper mantle beneath Southeast Asia from S velocity tomography[J]. J. Geophys. Res., 2003, 108(B1): 2048, doi: 10.1029/2000JB000073.
    [200]彭艳菊,苏伟,郑月军,等.中国大陆及海域Love波层析成像[J].地球物理学报, 2002,45(6): 792-801.
    [201] Huang Jinli, Zhao Dapeng. High-resulution mantle tomography of China and surrounding regions[J]. J. Geophys. Res., 2006, 111: B09305, doi: 10.1029/2005JB004066.
    [202] Li C, Van der Hilst R D, Toksoz M N. Constraining P-wave velocity variations in upper mantle beneath Southeast Aisa[J]. Phys. Earth Planet. Inter., 2006, 154: 180-195.
    [203]滕吉文,曾融生,闫雅芬,等.东亚大陆及周边海域Moho界面深度分布和基本构造格局[J].中国科学(D辑), 2002, 32(2): 89-100.
    [204]张中杰,滕吉文,李英康,等.藏南地壳速度结构与地壳物质东西向“逃逸”-以佩枯错-普莫雍错宽角反射剖面为例[J].中国科学(D辑), 2002, 32(10): 793-798.
    [205] Lebedev S, Meier T, van der Hilst R D. Asthenospheric flow and origin of volcanism in the Baikal Rift area[J]. Earth Planet. Sci. Lett., 2006, 249: 415-424.
    [206] Nelson K D. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results[J]. Science, 1996, 274: 1684-1688.
    [207] Wei W. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science, 2001, 292: 716-718.
    [208] McNamara D E, T J Owens, W R Walter. Observation of regional phase propagation across the Tibetan Plateau[J]. J. Geophys. Res., 1995, 100: 22215-22229.
    [209] McNamara D E, W R Walter, T J Owens, et al, Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography[J]. J. Geophys. Res., 1997, 102: 493-505.
    [210]周华伟, Murphy M A,林清良.西藏及其周围地区地壳、地幔地震层析成像-印度板块大规模俯冲于西藏高原之下的证据[J].地学前缘, 2002, 9(4): 285-192.
    [211]张雪梅,孙若昧,滕吉文.青藏高原及其邻区地壳、岩石圈和软流圈厚度研究[J].科学通报, 2007, 52(3): 332-338.
    [212]邓万明.西藏阿里北部的新生代火山岩-兼论陆内俯冲作用[J].岩石学报, 1989, No.3:1-11.
    [213]宋晓东,李思田,李迎春,等.岩石圈地幔结构及其对中国大型盆地的演化意义[J].地球科学-中国地质大学学报, 2004, 29(5): 531-538.
    [214]黄金莉,宋晓东,汪素云.川滇地区上地幔顶部Pn速度细结构[J].中国科学(D辑), 2003, 33(增刊): 144-150.
    [215]赵国泽,汤吉,詹艳,等.青藏高原东北缘地壳电性结构和地块变形关系的研究[J].中国科学(D辑), 2004, 34(10): 908-918.
    [216]赵国泽,陈小斌,王立凤,等.青藏高原东边缘地壳“管流”层的电磁探测证据[J].科学通报, 2008, 53(3): 345-350.
    [217]赵国泽,陈小斌,肖骑彬,等.汶川Ms8.0级地震成因三“层次”分析-基于深部电性结构[J].地球物理学报, 2009, 52(2): 553-563.
    [218] Gilder A A, Keller G R, Ming L, et al. Timing and spatial distribution of rifting in China[J]. Tectonophysics, 1991, 197: 225-243.
    [219] Li Z N, Mo X X, Yang S. Evolution of circum-Pacific basins and volcanic belts in east China and their geodynamic background[J]. J. China Univ. Geosci., 1995, 6(1): 4-10.
    [220] Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 2002, 344(3-4): 175-205.
    [221]易桂喜,闻学泽,王思维,等.由地震活动参数分析龙门山-岷山断裂带的现今活动习性与强震危险性[J].中国地震, 2006, 22(2): 117-125.
    [222] PlomerováJ, Kouba D, Babu?ka V. Mapping the lithosphere-asthernosphere boundary through changes in surface-wave anisotropy[J]. Tectonophysics, 2002, 358: 175-185.
    [223] Backus G E. Possible forms of seismic anisotropy of the uppermost mantle under oceans[J]. J. Geophys. Res., 1965, 70: 3429-3439.
    [224] Smith M L, F A Dahlen. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium[J]. J. Geophy. Res., 1973, 78: 3321-3333.
    [225] Montagner J, Nataf H. A simple method for inverting the azimuthal anisotropy of surface waves[J]. J. Geophys. Res., 1986, 91(B1): 511-520.
    [226]石耀霖,朱守彪.利用GPS观测资料划分现今地壳活动块体的方法[J].大地测量与地球动力学, 2004, 24(2): 1-5.
    [227]甘卫军,沈正康,张培震,等.青藏高原地壳水平差异运动的GPS观测研究[J].大地测量与地球动力学, 2004, 24(1): 29-35.
    [228] Chen Z, Burchfiel B C, Liu Y, et al. Global positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J]. J. Geophys. Res., 2000, 105(B7): 16215-16227.
    [229]王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场[J].地学前沿, 2002, 9(2): 415-429.
    [230]常利军,王椿镛,丁志峰.四川及邻区上地幔各向异性研究[J].中国科学D辑:地球科学, 2008, 38(12): 1589-1599.
    [231]石玉涛,高原,赵翠萍,等.汶川地震余震序列的地震各向异性[J].地球物理学报, 2009, 52(2): 398-407.
    [232]傅容珊,黄建华,徐耀光,等.印度与欧亚板块碰撞的数值模拟和现代中国大陆形变[J].地震学报, 2000, 22(1): 1-7.
    [233] Meissner R, Mooney W D, Artemieva I. Seismic anisotropy and mantle creep in young orogens[J]. Geophysics, 2002, 149: 1-14.
    [234] Nicolas A, Poirier J P. Crystalline plasticity and solid state flow in metamorphic rocks[M]. New York: John Wiley and Sons, 1976.
    [235]郑斯华,高原.中国大陆岩石层的方位各向异性[J].地震学报, 1994, 16(2): 131-140.
    [236] Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276: 788-790.
    [237] Flesch M L, Holt W E, Silver P G, et al. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data[J]. Earth Planet. Sci. Lett., 2005, 238: 248-268.
    [238]杨晓松,马瑾.大陆岩石圈解耦及块体运动讨论—以青藏高原-川滇地区为例[J].地学前沿, 2003, 10(特刊): 240-247.
    [239] McNamara D, Owens T, Silver P G, et al. Shear wave anisotropy beneath the Tibetan Plateau[J]. J. Geophys. Res., 1994, 99: 13655-13665.
    [240]王伟,王琪. GPS观测约束下的中国大陆活动地块运动学模型[J].大地测量与地球动力学, 2008, 28(4): 75-88.
    [241]刘堃,张中杰,胡家富,等.中国陆区S波分裂的频带相关性及其意义[J].中国科学(D辑), 2001, 31(2): 155-161.
    [242] Burchfiel B C, Wang E C. Northwest-trending, Middle Cenozoic, left-lateral faults in southern Yunnan, China, and their tectonic significance[J]. J. Structural Geology, 2003, 25(5): 781-792.
    [243]蔡学林,朱介寿,曹家敏,等.东亚西太平洋巨型裂谷体系岩石圈与软流圈结构及动力学[J].中国地质, 2002, 29(3): 234-245.
    [244]朱介寿.欧亚大陆及边缘海岩石圈的结构特性[J].地学前沿, 2007, 14(3): 1-20.
    [245]郭飚,刘启元,陈九辉,等.川西龙门山及邻区地壳上地幔远震P波层析成像[J].地球物理学报, 2009, 52(2): 346-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700