用户名: 密码: 验证码:
含瓦斯煤失稳破坏及声发射特性的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含瓦斯煤失稳破坏和煤与瓦斯突出是煤矿开采过程中急需解决的关键问题。本文自行研制和开发了煤岩三轴蠕变瓦斯渗流装置及煤与瓦斯突出模拟试验系统,并利用该试验装置和系统对煤样、含瓦斯煤样在单轴和三轴压缩、循环载荷、蠕变作用下的失稳破坏规律、声发射特性以及煤与瓦斯突出进行了理论与实验研究,取得了如下主要研究成果:
     1.自行研制开发了煤岩三轴蠕变瓦斯渗流装置和大型煤与瓦斯突出模拟试验系统。
     2.为了研究含瓦斯煤样的力学特性对应力、应力途径的敏感性,进行了不同应力水平、加载方式下的实验。试验结果表明,含瓦斯煤样的力学性质具有较强的应力敏感性,同时瓦斯的存在使煤样材料变形表现出明显的延性和非线性。
     3.通过对煤样、含瓦斯煤样的三轴压缩和蠕变试验研究,建立了煤样在三轴压缩状态下的“四段式”本构模型、蠕变状态本构方程及含瓦斯煤样在三轴压缩状态下的改进内时本构模型、改进西原蠕变本构模型,提出了“次级滞回曲线”的概念。
     4.进行了不同应力状态及加载方式下煤样、含瓦斯煤样受载过程的声发射特性实验研究,得到了煤样、含瓦斯煤样失稳破坏过程的声发射特性。结果表明:单轴压缩状态下煤样的声发射事件特性曲线与全应力应变曲线吻合较好,而三轴压缩状态下声发射事件特性曲线具有明显“滞后性”,且呈“双峰”形;由于瓦斯的存在,含瓦斯煤样在三轴压缩状态下声发射事件特性曲线明显变缓,且呈“三峰”形。
     5.运用RFPA软件对煤样受载过程声发射特性进行了模拟研究。结合实验研究结果,建立了以声发射特性及损伤力学理论为基础的煤样损伤本构方程,以煤样声发射事件率、声发射能量数两个参数确定了煤样的损伤参数。
     6.根据对不同颗粒组成的两种煤样试件的力学特性、声发射特性的试验研究结果,提出了煤样力学性质的“粒度效应”。
     7.在煤样和含瓦斯煤样失稳破坏过程声发射特性实验室研究的基础上,结合非线性理论,研究了煤样、含瓦斯煤样失稳破坏过程声发射特性的非线性特征,分析了其自相似系数、分形维数及自组织演化规律,并建立了消去声发射信号传播速度的一维、二维声发射源定位方法。
     8.在煤样及含瓦斯煤样失稳破坏力学试验和声发射特性试验的基础上,结合灰色理论和突变理论,建立了含瓦斯煤样失稳破坏的灰色-突变模型,并运用该模型对含瓦斯煤样失稳破坏进行了预测。结果表明该模型精确度较高。
     9.对煤样三维应力状态下全应力-应变过程中瓦斯流动速度与应力耦合关系研究表明:固定围压时,轴压和瓦斯流动速度耦合关系可用四次曲线表征,且峰后煤样内瓦斯流动速度要大于煤样起始瓦斯流动速度;固定轴压时,围压和瓦斯流动速度耦合关系可用二次曲线表示;瓦斯压力对煤样峰前瓦斯流动的影响明显大于对峰后瓦斯流动的影响;不同粒径组成煤样内的瓦斯流动速度受应力影响随着粒径增加而减小,同一外界条件下时,大颗粒组成的试件内瓦斯流动速度明显大于小颗粒组成试件内的瓦斯流动速度;提出了瓦斯流动困难应力点的概念;根据流固耦合的基本理论,建立了瓦斯流动方程。
     10.自行研制开发了煤与瓦斯突出模拟试验系统,并进行了该实验系统的可靠性验证实验和不同地应力条件、不同煤体含水率条件下煤与瓦斯突出模拟试验研究,结果表明:该试验系统可以实现加载方式多样化、突出模具大型化、突出口开关瞬间化、充气形式平面化、记录过程动态化且精度较高、可重复性好的特点;并且得出了突出强度与含水率的关系可用二阶曲线表示、与主地应力呈修正对数关系的结论。
Both unstable failure of coal contained gas and the coal and gas outburst are key problems in the process of coal mining. In this paper, triaxial gas seepage - creep of coal and Simulation Testing System of coal and gas burst are self-developed, and both the theoretical and experimental study on the unstable failure and AE laws under uniaxial compression, triaxial compression, cyclic loading, creep of coal or coal contained gas and simulation of coal and gas outburst were done, the Main research results as follows:
     1. Test equipment of triaxial gas seepage - creep and Simulation Testing System of coal and gas burst are self-developed.
     2. In order to investigate both the stress and stress paths-dependent of mechanical properties of coal contained gas, the experiment under different stress level and loading path are done. The results of experiment show: bigger stress sensitivity is had by mechanical properties of coal contained gas, and the obvious ductility and nonlinear characteristics are showed by coal because the gas exist.
     3. Based on experiments of triaxial compression and creep of coal and coal contained gas, both Four-section constitutive model under triaxial compression and creep constitutive model of coal and intrinsic time constitutive model under triaxial compressionand creep have improved K-B constitutive model of coal contained gas;the conception of secondary hysteretic curve is proposed.
     4. Experiments of AE in process of deformation under different stress and loading method of coal and coal contained gas are done and their characteristics are obtained. The results show: the characteristic curve of AE under uniaxial compression is similar to complete stress-strain curve of coal, hysteretic nature and double peak form are the obvious characteristic of the curve of AE under triaxial compression; the AE characteristic curve of coal contained gas under triaxial compression becomes gentle and present three peak form because of the existing of gas.
     5. AE characteristic of coal in process of deformation is simulated by the soft of RFPA. Based on results, damage constitutive equation of coal is built based on AE characteristic and damage mechanics theory, damage parameters are obtained according to event rate and energy of AE.
     6.Based on experiments of mechanical properties, acoustic emission characteristics and results of sem study, effect of particle size are built.
     7. Based on the laboratory studies of AE in process of deforming coal contained gas and nonlinear theory, the nonlinear characteristic of AE in process of instability of coal contained gas is analyzed, the laws of Self-Similar parameter, fractal dimension, self-organization evolution are analyzed, the way of AE source location in which the velocity of AE signal is eliminated is built on one-dimensional and two- dimensional.
     8. Based on the laboratory studies of mechanical properties and AE in process of deforming coal or coal contained gas, grey-catastrophe model that is used to predict and judge the instability of coal contained gas is built according to grey theory and catastrophe theory, the result of predict and judge the instability of coal contained gas show by the model: the accuracy is higher.
     9. The result of coupling relationship between velocity of gas seepage and stress in process of whole deformation under three-dimensional stress shows: quartic curve expresses the coupling relationship between velocity of gas seepage and axial pressure under fixed confining pressure very well, and the velocity after instability of coal contained gas is bigger than before ; quadratic curve expresses the coupling relationship between velocity of gas seepage and confining pressure under fixed axial pressure;the effect on velocity of gas seepage caused by gas pressure before instability of coal contained gas is obviously bigger than after it; the effect on velocity of gas seepage of coal sample composed of different diameter coal particle decreases as diameter coal particle increase, the velocity of gas seepage of coal sample composed of big diameter coal particle is obviously bigger than small it under same conditions, and the conception of difficulty stress point of gas seepage is the gas seepage equation model is built based on fluid-solid coupling theory.
     10. Simulation Testing System of coal and gas burst is self-developed, and the experiments of coal and gas burst under same conditions or different ground stress and moisture content of coal are done, the results show: the characteristics which include diversification of loading mode, large-scale of outburst assembly, large open and close speed of outburst ostium, complanation of inflation-style, dynamic development of recording process and high precision ,high reproducibility, are posses; and the conclusions that both quadratic curve expresses the relationship between moisture content and intensity of outburst, improved logarithmic relationship expresses the relationship between ground stress and intensity of outburst are obtained.
引文
[1]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [2]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1993.
    [3]徐涛.煤样破裂过程固气耦合数值试验[D].沈阳:东北大学博士学位论文,2004.
    [4]何学秋.含瓦斯煤样流变力学[M].徐州:中国矿业大学出版社,1995.
    [5] Lama RD,Bodziony J. Management of outburst in underground coal mines [J]. Int. J of coal Geology,1998,25:83-115.
    [6]焦作矿业学院瓦斯地质组.瓦斯地质概论[M].煤炭工业出版社,1990,8.
    [7]吴俊.突出煤的显微结构及表面特征研究[J].煤炭学报, 1987, 2: 40-45.
    [8]周世宁,林柏泉.煤层瓦斯赋存及流动规律[M].北京:煤炭工业出版社,1998.
    [9] Cao Yunxing, He Dingdong, Glick DC. Coal and gas outbursts in footwalls of reverse faults[J]. Int J Coal Geology, 2001,48:47-63.
    [10]中国矿业学院瓦斯组.煤和瓦斯突出的防治[M].北京:煤炭工业出版社,1979.
    [11] B.B.霍多特.煤和瓦斯突出.宋世钊,王佑安译.北京:中国工业出版社, 1966.
    [12] M.И.包尔申斯基, B.C.马叶夫斯基,И.И.卡昌.瓦斯动力现象中岩石破坏机理的研究.华福明译.煤矿安全技术, 1983(1):44-49.
    [13]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理.力学与生产建设.北京:北京大学出版社, 1982.
    [14]氏平曾之,矶部俊郎,通口澄志.内部ガス压じよろ多孔质材料の破坏づロヤスじっムてーガス突出じすろ研究(第二报).日本矿业会志.1984(100):
    [15] L.Paterson. A Model for Outbursts in coal. Int.J.Rock Mech.Sci.&Geomech. Abstr,1986(23).
    [16]丁晓良.煤在瓦斯渗流作用下破坏及其持续扩展机制[D].北京:中国科学院力学研究所,1988.
    [17]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-106.
    [18]王佑安.煤和瓦斯突出理论的若干问题.见:四川煤矿第二届煤和瓦斯突出学术讨论会资料汇编,1978.
    [19]章梦涛,梁冰.冲击地压和突出的统一失稳理论[J].煤炭学报,1991,16(04):48-54.
    [20] J.Litwiniszyn. A model for Initiation of Coal Gas Outburst. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr,1985(22).
    [21] Niheiji Oda. Cause and Mechanism for Occurrence of gas Outburst. Tendencies in Gas and Rock Outburst Hazard Prevention in Underground Mines (Training Aids). Nowa Ruda, 1988.
    [22] A.J.Hargraves. A Critical Comparison of Gas-Dynamic Phenomena in coal with Occurrences in Evaporite Mines in Six Countries. Tendencies in Gas and Rock Outburst Hazard Prevention in Underground Mines (Training Aids). Nowa Ruda, 1988.
    [23]梁冰.煤和瓦斯突出的固流耦合失稳理论的研究[D].沈阳:东北大学, 1994.
    [24]姚宝魁,孙广忠,罗信华等.煤与瓦斯突出的防治.北京:中国科学技术出版社, 1993.
    [25]蒋承林,俞启香.石门揭穿含瓦斯煤层时动力现象的球壳失稳机理研究[D].徐州:中国矿业大学,1994.
    [26] J.Daniels, L.D.Moore. The Ultimate Strength of coal [J]. The Eng and Mining, 1970, (10):263-268.
    [27] D.Bunting. Chamber Pillars in Deep Anthracite Mine [J]. Trams. AIME, 1991,(42):236-245.
    [28] F.L.Gaddy. A study of the Ultimate Strength of coal as Related to the Absolute Size of Cubical Specimens [J]. Tested West Virginia Polytechnic Bulletin, 1956,(112):1-27.
    [29] A.M.Hirt, A Shakoor. Determination of Unconfined Compressive strength of coal for Pillar Design [J]. Mining Engineering, 1992,(8):1037-1041.
    [30] C.T.Holland, F.L.Gaddy. Some Aspects of permanent support of Overburden on coal beds [C]. Proceeding of the West Virginia Coal Mining Institute, 1956:43-46
    [31] T.P.Medhurst, E.T.Brown. A study of the mechanical Behavior of coal for Pillar Design [J]. Int. J. Rock. Min .Sci. 1998, 35(8):1087-1104.
    [32]刘宝琛,等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报, 1998,17(6):611-614.
    [33]吴立新.煤样强度机制及矿压红外探测基础实验研究[D].北京:中国矿业大学博士论文,1997.
    [34]孟召平,彭苏萍,凌灿标.不同侧压下沉积岩石变形与强度特征[J].煤炭学报, 2000,25(1):15-18.
    [35]王宏图,鲜学福,贺建民.层状复合煤岩的三轴力学特性研究[J].矿山压力与顶板管理,1999(1):81-83.
    [36] C.H.Schilz, T.A.Koszynski. Delatancy Anisotropy and the Response of Rock to Large Cyclic Loads [J]. J.Geophys. Res, 1979,265-345.
    [37] K.Akai, Y.Ohnishi. Strength and Deformation Characteristics of Soft Sedimentary Rock Under Repeated and Creep Loading[C]. Par, 5th ISRM, 1983,467-483.
    [38] R.E.Haimson. Mechanical Behavior of Rock Under Cyclic Loading[C].Rock 3rd ISRM, 1974, 165-173.
    [39]莫海鸿.岩石的循环试验及本构关系的研究[J].岩石力学与工程学报,1988,7(3): 215-224.
    [40]葛秀润.周期载荷下岩石大型三轴试件的变形和强度特性研究[J].岩土力学, 1987, 8(2):11-19.
    [41]殷有泉,曲圣年.房山大理岩本构性质的实验研究[J].岩石力学与工程学报, 1993,12(3): 240-248.
    [42]俞启香.矿井瓦斯防治[M].中国矿业大学出版社,1992,2.
    [43]王佑安.煤和瓦斯突出理论的若干问题.见:四川煤矿第二届煤和瓦斯突出学术讨论会资料汇编,1978
    [44]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-106.
    [45]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业大学学报, 1987,1:21-27.
    [46]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报, 1994, 13(3):229-239.
    [47]章梦涛,梁冰,等.采动影响下煤层内瓦斯流动状况的数学模型及数学分析[J].第二届全国岩石力学数值计算与模型试验学术讨论会论文集. P423-428,同济大学出版社, 1990.11.
    [48]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报, 1999, 18(6):397-401.
    [49]孙可明.煤层气注气开采多组分流体扩散模型数值模拟[J].辽宁工程技术大学学报,2005,24(3):305-308.
    [50]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报,2003,28(1):41-44.
    [51]孙培德.变形过程中煤样渗透率变化规律的实验研究[J].岩石力学与工程学报,2001,20(增):1801-1804.
    [52]孙培德,凌志仪.三轴应力作用下煤渗透率变化规律实验[J].重庆大学学报(自然科学版),2000,23(增):28-31.
    [53]胡耀青,赵阳升,杨栋,等.煤体的渗透性与裂隙分维的关系[J].岩石力学与工程学报,2001,21(10):1452-1456.
    [54]纪洪广,蔡美峰.混凝土材料声发射与应力-应变参量耦合关系及应用[J].岩石力学与工程学报,2001,22(2):227-231.
    [55]秦四清,李造鼎,张倬元,等.岩石声发射技术概论[M].成都:西南交通大学出版社,1993:16-17.
    [56]袁振明,邓日红.声发射技术的发展[J].无损检测技术,No.2,1986,6.
    [57]许昭勇,杨润海,赵晋明,等.岩石破坏前的短临应变前兆研究[J].地震研究,2001,24(3):191-195.
    [58]万志军,周楚良.岩石声发射源机理的激振模型研究[J].矿山压力及顶板管理,1998,80(4):67-70.
    [59]徐东强,单晓云,甄在学.双向压缩下岩石声发射特性损伤力学分析[J].矿山压力及顶板管理,2000,82(3):82-85.
    [60]刘立强.实验室声发射到时数据定位处理方法[J].华北地震科学,1986,4(3):31-42.
    [61]蒋海昆.典型断层组合及不同温压条件下岩石变形过程中的声发射活动特性[D].北京:中国地震局地质所,2000.
    [62]时书丽.声发射源定位的测试方法[J].辽宁工程技术大学学报,1998,25(1):42-46.
    [63]石显鑫,蔡栓荣,冯宏,等.利用声发射技术预测预报煤与瓦斯突出[J].煤田地质与勘探, 1998,26(3):60-65.
    [64]刘东燕,朱可善,胡本雄.含裂隙岩石受压破坏的声发射特性研究[J].地下空间,1998,18(4):210-216.
    [65]雷兴林,马瑾.岩石声发射三维定位及波速场联合反演[A].全国第二届构造物理学术讨论会论文集[M].北京:地震出版社,1989,186-195.
    [66] Ohue Yuji, Yoshida Akira New evaluation method on gear dynamics using continuous and discrete wavelet transforms [J].Journal of Vibration and Acoustics, 2003,125(7):274-281.
    [67] Struzik Z.R.. Wavelet methods in (finacial) time-series processing[J]. Physica A:Statistical mechanics and its Application. 2001,296(1-2):307-319.
    [68] Peng Z.K, Chu F L, W. Tseb Peter Detection of the rubbing-caused impacts rotor-stator fault diagnosis using reassigned scalogram [J].Mechanical Systems and Signal Processing,2005(19): 391-409.
    [69] Mittrkovic D, Grabec I, Sedmak S Simuation of AE signals and signal analysis systems [J].Ultrasonic 1985, (9):227-232.
    [70]彭乐芳,李福林,李建中,等.加载速率变化条件下砂土的黏塑特性及本构模型[J].岩石力学与工程学报,2008,27(8):1576-1585.
    [71]吴胜兴,张顺祥,沈德建.混凝土轴心受拉声发射凯瑟尔效应试验研究[J].土木工程学报,2008.41(4):31-39.
    [72]李占鲁,王启智.加载速率对岩石动态断裂韧度影响的实验研究[J].岩土工程学报,2006,28(12):2116-2120.
    [73]吴刚,何国梁.岩石的弹塑性扰动状态本构模型[J].河海大学学报(自然科学版),2008,36(4):663-669.
    [74] DESAI C S. Mechanics of material and interfaces: the disturbed state concept[M].Baca Raton: CRC Press LLC 2001.
    [75] VARADARAJAN A , SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rock fill materials [ J ] . Journal of Geotechnical and Geoenvironemental Engineering ,2003 , 129(3) :206-218.
    [76] DESAI C S ,SOMASUNDARAM S , FRANTZISKONIS G. A hierarchical approach forconstitutive modeling of geologic materials [J ] .International Journal for Numerical and Analytical Methods in Geomechanics ,1986 (10) :225-257.
    [77]王德玲,葛修润.岩石的扰动状态本构模型研究[J ] .长江大学学报(自然科学版),2005 ,2(1) :91-95.
    [78]尹光志,赵洪宝,张东明.突出煤三轴蠕变特性及本构方程[J].重庆大学学报(自然科学版),2008,31(8):946-950.
    [79]许江,唐晓军,姜永东,等.循环载荷作用时不同实验条件下砂岩的声发射特征实验研究[J].中国科技论文在线, 2008,3(7):511-515.
    [80]岳世权,李振华,张光耀.煤样蠕变特性试验研究[J].河南理工大学学报, 2005,24(4): 271-274.
    [81]李世平,吴振业,贺永年,等.岩石力学简明教程[M].北京:煤样工业出版社,1996.
    [82]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1986.
    [83] Goodman R E. Introduction to rock mechanics[M]. 2nd ed. New York: John Wiley & Sons, 1980, 179-218.
    [84]沈振中,徐志英.三峡大坝地基花岗岩蠕变试验研究[J].河海大学学报, 1997,25(2): 1-7.
    [85]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001,20(6): 772-779.
    [86]邓荣贵,周德培.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6): 780-784.
    [87]左建平,满轲,曹浩,等.热力耦合作用下岩石流变模型的本构方程研究[J].岩石力学与工程学报,2008,27(增): 2610-2616.
    [88]鲜学福,李晓红,姜德义,等.瓦斯煤层裸露面蠕变失稳的时间预测研究[J].岩土力学, 2005,26(6): 841-844.
    [89]徐涛,杨天鸿,唐春安,等.含瓦斯煤样破裂过程固气耦合数值模拟[J].东北大学学报(自然科学版),2005,26(3):293-296.
    [90]卢平,沈兆武,朱贵旺,等.含瓦斯煤样的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):686-683.
    [91]孙培德,鲜学福,钱耀敏.煤体有效应力规律的实验研究[J].矿业安全与环保,1999,2: 16-19.
    [92]姜耀东,祝捷,赵毅鑫,等.基于混合物理论的含瓦斯煤本构方程[J].煤炭学报, 2007,32(11):1132-1137.
    [93] Dymond J H, Smith E B. The virial coefficient of pure gases and mixtures [M]. Oxford: Clarendon Press, 1980.
    [94]汪仁和,李栋伟,王秀喜.改进的西原模型及其在ADINA程序中的实现[J].岩土力学,2006,27(11):1954-1959.
    [95] Vialov S S. Long-term rupture of frozen soil as a thermally activation[A]. Proc. Second Int.Conf. Permafrost[C].[s.l]:[s:n], 1973,222-228.
    [96] Ladanyi B. Anengineering theory of creep of frozen soils[J]. Canadian Geotechnical Journal, 1972,9(1):63-80.
    [97] Andersland O B, Douglas A G. Soil deformation rate and activation engergiers [J]. Geotechnique, 1970,20(1):1-6.
    [98] Fish A M. An acoustic and pressure meter method for investigation of the rheological properties of ice[R].[s.l]:US CRREL, 1972.
    [99] RADD J F, Wolf l h. Ice lens structure, compression strengths and creep behaviour of some synthetic frozen silty soils[A].Proc. 1 Int. Symp. Ground freezing [C]. Bochum: [s.n.], 1978,115-130.
    [100]许小祥,耿冬雷.煤样粒级分布对粘结指数测定的影响[J].煤气与热力, 2003,23(9): 555-556.
    [101]王艳,戴杰,黄琳.浅谈煤样粒度对粘结指数的影响[J].中州煤炭, 2004,130(4):19.
    [102]邓军,徐精彩,张辛亥,等.煤的粒度与低温自燃性关系的研究[J].煤, 1999, 8(5):13-15.
    [103]李向全,胡瑞林,张莉.粘性土固结过程中的微结构效应研究[J].岩土工程技术, 1999,52(3): 52-56.
    [104]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2004.
    [105]唐春安,唐烈先,李连崇.岩土破裂过程分析RFPA离心加载法[J].岩土工程学报,2007,29(1): 71-76.
    [106]唐春安,李连崇,李常文.岩土工程稳定性分析RFPA强度折减法[J].岩石力学与工程学报, 2006,25(8):1521-1530.
    [107]梁正召,唐春安,张永彬,等.岩石三维破裂过程的数值模拟研究[J].岩石力学与工程学报, 2006,25(5):931-936.
    [108]张永彬,唐春安,梁正召,等.岩石破裂过程分析系统并行计算方法研究[J].岩石力学与工程学报, 2006,25(9):1795-1801.
    [109]赵兴东,唐春安,李元辉,等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报, 2006,25(增):3673-3678.
    [110]徐涛,杨天鸿,唐春安,等.孔隙压力作用下煤样破裂及声发射特性的数值模拟[J].岩土力学,25(10):1560-1565.
    [111]姚妙新,陈芳启.非线性理论数学基础[M].天津:天津大学出版社,2005.
    [112]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004.
    [113]蒋承林.煤壁突出孔洞的形成机理研究[J].岩石力学与工程学报, 2000,19(2): 225-228.
    [114]张大伟,郭立稳,杜通.基于灰色系统理论的煤与瓦斯预测预报系统的研究[J].安全, 2008,10:8-11.
    [115]刘延松,吴翠.煤炭产需量预测方法讨论与实证分析[J].西安科技大学学报,2008,28(3):503-506.
    [116]王立杰,孙继湖.基于灰色系统理论的煤炭需求预测模型[J].煤炭学报,2002,27(3): 333-336.
    [117]荆全忠,张健. GM(1,1)模型在煤炭需求预测中的应用[J].中国煤炭,2004,(1):17-19.
    [118]荆全忠,苏同营.基于灰色理论的煤炭需求预测模型研究[J].山东科技大学学报,2004,23(1):91-93.
    [119]林大建,郑新宇,邬长福.矿山竖井安全状况蝴蝶突变评价模型的分析和探讨[J].矿业安全与环保,2008,35(5):81-83.
    [120]李长洪,张立新,张磊,等.灰色突变理论及声发射在岩爆预测中的应用[J].中国矿业,2008,17(8):87-90.
    [121]梁桂兰,徐卫亚,何育智,等.突变级数法在边坡稳定综合评判中的应用[J].岩土力学,29(7):1895-1899.
    [122] Poston T. Stewart I Catastrophe Theory and Its Application [M]. London:Pitam,1978.
    [123] Chow Shui Nee, Hale J K. Methods of Bifurcation Theory[M]. New York: Springer-Verlag, 1982.
    [124]姜永东,鲜学福,郭臣业.层状岩质边坡失稳的燕尾突变模型[J].重庆大学学报,31(5):553-557.
    [125]张卫中.向家坡滑坡稳定性评价、监测预报及动态综合治理研究[D].重庆大学博士学位论文.
    [126]缪协兴,刘卫群,陈占清.采动岩体渗流与煤矿灾害防治[J].西安石油大学学报(自然科学版),2007,22(2):74-79.
    [127]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [128]缪协兴,陈占清,毛献彪,等.峰后岩石非Darcy渗流的分岔行为研究[J].力学学报,2003,35(6):660-667.
    [129]尹光志,李小泉,赵洪宝,等.地应力对突出煤瓦斯渗流影响实验研究[J].岩石力学与工程学报,2008,27(12):2557-2561.
    [130]陈宜康,陈占清,缪协兴,等.峰后砂岩非Darcy流渗透特性的试验研究[J].岩石力学与工程学报,2004,23(12):2005-2009.
    [131] Litwiniszyn J.A model for the initiation of coal-gas outbursts[J]. Int. J.Rock Mrch. Min. Sci.Geomech.Abstr, 1985,22(1):39-46.
    [132] Zhao chongbing, Valliappan S. Finite element modeling of methane gas migration in coal seams[J]. Computers and Structures,1995,55(40):625-629.
    [133] Zhao Y S, Qing H Z, Bai Q Z. Mathematical model for solid-gas coupled problems on the methane flowing in coal scam[J]. Acta Mechanica Solida Sinica, 1993,6(4):459-466.
    [134]王宏图,杜云贵,鲜学福,等.地球物理场中的煤层瓦斯渗流方程[J].2002,21(5):644-646.
    [135] Harpalani S.The effect of gas evacuation on coal permeability test specimens[J].Int.J.Rock Mech.Sci and geomech. Abstr, 1984,21(3):361-364.
    [136] Somerton W H. Effect of stress on permeability of coal[J]. Int.J.Rock Mech. Min. Sci, 1974,12(2): 129-145.
    [137]梁冰,刘建军,范厚彬,等.非等温条件下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [138] Liang Bing, Zhang Mengtao. The numerical forecasting of rock and coal burst. In: Proc. Int. Symp.for Mining Engineering, Shenyang:[s:n],1993.
    [139]汪友刚,刘建军,杨景贺,等.煤层瓦斯流固耦合渗流的数值模拟[J].煤炭学报,2001,26(3):285-289.
    [140]唐平,孙明贵.岩石渗流系统动力学响应及分析[J].矿山压力与顶板管理,2003,2:115-118.
    [141] Lockner D. The role of acoustic emission in the study of rock fracture[J]. Int Rock Mech Min Geomech Abstr, 1993,3(7):883-899.
    [142]邱绪光.实用相似理论[M].北京:北京航空学院出版社,1988.
    [143]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社,1982.
    [144]左启东.模型试验的理论与方法[M].北京:水利水电出版社,1984.
    [145]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [146]王路军,李守国,高坤,等.关于煤与瓦斯突出的数值模拟[J].煤矿安全,2008,407(10):4-6.
    [147]徐涛,郝天轩,唐春安,等.含瓦斯煤样突出过程数值模拟[J].中国安全科学学报,2005,15(1):108-112.
    [148] Cao Y X, He D D, Glick D C. Coal and gas outbursts in footwalls of reverse faults[J]. Int J Geology,2001,48:47-63.
    [149]章梦涛,潘一山,梁冰,等.煤样流体力学[M].北京:科学出版社,1995.
    [150] Dziurzynski W, Krach A. Mathematical model of methane emission caused by a collapse of rock mass crump[J].Archives of Mining Sciences,2001,46(4):433-449.
    [151]АируниАТидр1Отделрудничнойаэолгиилабораиявнзапныхвыбросовутляигаза[M] .Москва:ИнститутГорногоДелаАкадемииНаукСССР, 1955.
    [152]氏平增之.内部分か.压じよる多孔质材料の破坏づろや.たついてか.突出た关する研究[J ],日本矿业会志,1984 (100) : 397~403.
    [153]邓金封,栾永祥,王佑安.煤与瓦斯突出模拟试验研究[J ] .煤矿安全, 1989 (11) : 5~10.
    [154]蒋承林.石门揭穿含瓦斯煤层时动力现象的球壳失稳机理研究[D] .徐州:中国矿业大学, 1994.
    [155]孟祥跃.煤与瓦斯突出的二维模拟实验研究[J ] .煤炭学报, 1996 , 21 (1) : 57~62.
    [156]煤与瓦斯突出三维模拟实验研究[J].煤炭学报, 2004 , 29 (1) : 66~69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700