用户名: 密码: 验证码:
含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤是一种孔隙-裂隙双重介质,瓦斯在煤层中的流动是流固耦合作用下的瓦斯流动,煤与瓦斯突出亦是流固耦合作用下的煤体失稳破坏现象,而渗透率作为标志瓦斯在煤层中流动难易程度的指标和煤层瓦斯热-流-固耦合模型一起成为煤层瓦斯运移规律研究中最基础也最重要的问题,而煤与瓦斯突出模拟实验又是煤与瓦斯突出防治研究中最重要的技术手段。因此,选择重庆能源投资集团松藻煤电公司打通一矿8#煤层、石壕矿8#煤层以及平顶山煤业集团一矿戊8煤层和己15煤层所制煤样作为研究对象,以打通一矿8#煤层和石壕矿8#煤层为主,利用西南资源开发及环境灾害控制工程教育部重点实验室(重庆大学)的MTS815岩石力学试验机、VEGAⅡ型自带能谱扫描电镜、自主研发的煤与瓦斯突出模拟试验台和煤炭科学研究总院重庆研究院的HCA型高压容量法瓦斯吸附实验系统及含瓦斯煤三轴渗透实验系统等设备对煤层瓦斯运移规律及煤与瓦斯突出模拟实验进行了系统研究,并结合岩石力学和渗流理论从理论层面开展了一些有益的探讨,通过以上系统研究,在以下方面取得了一些结论或进展:
     1)根据渗透率实验和煤样扫描电镜及其表面孔隙分形特征研究,发现煤渗透率与其分形维数和孔隙发育程度成正相关关系,与其密度成反相关关系。
     2)提出了含瓦斯煤在外应力和内应力共同作用下存在结构变形和本体变形两种变形机制,建立了压缩条件下(扩容前)的含瓦斯煤孔隙率动态演化模型和吸附热力学参数表达的有效应力方程,经现场和已有实验资料验证,运用该模型预测未采区域含瓦斯煤孔隙发育程度和应力状态的误差相对较小。
     3)基于含瓦斯煤三轴渗透率实验,分析了有效应力、温度和瓦斯压力对其渗透率的作用规律,系统探讨了有效应力、温度和瓦斯压力分别对渗透率的影响机理,建立了压缩条件下(扩容前)煤渗透率动态演化模型,经渗透率实验验证,该模型预测煤渗透率精度较高,对提高瓦斯抽放效果具有理论指导意义。
     4)自主研发了“煤与瓦斯突出模拟试验台”,该试验台弥补了国内现有突出实验装置存在的不足,在结合相似理论探讨该试验台的模拟能力的基础上,进行了不同瓦斯压力、不同突出口径及不同煤粉粒径配比等条件下的煤与瓦斯突出模拟实验,依据所开展的11次煤与瓦斯突出模拟实验结果分析了煤与瓦斯突出过程中煤体温度、突出强度、孔洞形态和突出煤样粉碎性以及煤粉粒级分布的变化规律。
     5)在起纽带作用的物性参数耦合方程研究基础上,建立了体现热流固三场完全耦合的含瓦斯煤THM耦合模型,经二次开发将耦合模型嵌入多物理场耦合分析软件进行数值计算,经已有解析解的一维瓦斯渗流算例和煤与瓦斯突出实验室相似模拟实验印证表明,本文建立的含瓦斯煤THM耦合模型和数值计算方法具有一定的可靠性;并以重庆能源投资集团松藻煤电公司石壕矿S1824综采工作面为工程背景,分析了采煤工作面在一次采全高且刚掘出开切眼时煤层瓦斯渗流过程中各相关指标的变化规律,提出了一套进行煤层瓦斯渗流规律分析和数值计算的研究方法。
Coal belongs to two-phase material of pore-fracture, in which gas flow is affected by fluid-solid coupling. Coal and gas outburst is a distabilizing and destructive phenomenon of coal which is also affected by fluid-solid coupling. Coal-bed permeability which indicates the difficult level of the gas migration in coal and the Thermal-Hydrological-Mechanical Coupling model of coal-bed gas are both the first and the most important for the study on migration rules of coal-bed gas. Coal and gas outburst simulation experiment is the most important technological means for the research of prevention and management of coal and gas outburst calamity. So this paper chooses coal samples which are from the original coal of the 8# coal-bed of Datong No.1 mine and the 8# coal-bed of Shihao mine of Chongqing Energy Investment group Songzao C&E CO.LTD., Wu8 and Ji8 coal-bed of Pingdingshan coal CO.LTD. No.1 mine as study objects, mainly with 8# coal-bed of Datong No.1 mine and Wu8 coal-bed of Shihao mine, by using MTS815 Rock Mechanics Test System, VEGAⅡscanning electron microscopy and self-development coal and gas outburst simulation test device of Ministry of Education Key lab. for exploitation of Southwestern Resources & Environmental Disaster Control Engineering (Chongqing University), and HCA high pressure volumetric method gas adsorption experiment system and gassy coal triaxial osmotic experiment system of Coal research institute Chongqing branch, to do the systematical research on the migration rules in coal-bed and the coal and gas outburst simulation experiment, meanwhile the paper combines rock mechanics and the seepage theory to do a helpful research from the theoretical aspect. Based on the above systematic study, the main research results and progress are as follows:
     1) According to permeability experiment, coal sample scan electron microscope and the research of fractal feature of surface layer porosity in this paper, it is found that permeability of coal sample is directly proportional to its fractal dimension and pore development but inversely proportional to its density,
     2) Two deformation mechanisms that are gassy coal integral deformation and primary deformation have been put forward under effective stress and temperature and gas pressure. Gassy coal porosity dynamical evolution model under compressive condition (before dilatancy) and effective stress equation expressed by the adsorption thermodynamics parameter have been established. That this model have less errors in predicting pore development and stress state of gassy coal in non-mining areas has been verified by field and existing experimental data.
     3) Based on gassy coal triaxial permeability experiment, the effect law of effective stress, temperature and gas pressure on permeability has been analyzed; meanwhile the mechanism of their own effect of the three factors on permeability has respectively been discussed. Coal permeability dynamical evolution model has been established under compressive condition (before dilatancy). Verified by the permeability experiment, this model has higher precision in predicting permeability of coal and has theoretical guidance significance for improving gas drainage effect.
     4) Coal and gas outburst stimulant test-bed is invented independently, which makes up for what domestic experimental devices is lack of. This test-bed is applied to the simulation experiment of coal and gas outburst under different gas pressure, different outburst caliber and different stress conditions, etc, and the paper also confirm the simulation capacity of the test-bed by Similarity theory. Based on the simulation experimental results of eleven times, it analyzes the change laws of temperature of coal, outburst intensity, hole configuration, comminution of outburst coal, as well as grain size distribution of coal in the process of the coal and gas outburst.
     5) Gassy coal THM coupling model is established based on parameter coupling equation which has the linking function, achieving thermal-hydrological-mechanical coupling. By embedding coupling model into COMSOL Multiphysics to do numerical calculation, proved by one-dimensional gas seepage calculation and coal and gas outburst simulated experiment, gassy coal THM coupling model and numerical method which are estabished in this paper are, to some extent, reliable. Based on the background of Shihao mine S1824 fully mechanized coal mining face of Chongqing Energy Investment group Songzao C&E CO.LTD., it analyzes the variable changing laws of related indexes in coal-bed gas seepage process in the condition of mining in lump in a time and just exhuming open-off cut, and put forward a series of study rules analyse and numerical methods on coal-bed gas seepage.
引文
[1]梁冰.煤和瓦斯突出的固流耦合失稳理论的研究[D].沈阳:东北大学,1994.
    [2]李建铭等.煤与瓦斯突出防治技术手册[M].北京:中国矿业大学出版社,2006.
    [3]张子敏等.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005
    [4]程五一等.煤与瓦斯突出区域预测理论及技术[M].北京:煤炭工业出版社,2005
    [5]ю.н.马雷哈夫等.魏风清等编译.煤瓦斯突出预测方法和防治措施[M].北京:煤炭工业出版社,2003
    [6]重庆煤炭科学研究所.煤、岩石和煤瓦斯突出(图外资料汇编) [M].重庆:科学技术文献出版重庆分社,1978、1979、1980.
    [7]赵冰翠,张荣曾.关于煤煤孔隙的最新研究[J].煤质技术与科学管理,1997,3:25–32.
    [8]张占涛,王黎,张睿等.煤的孔隙结构与反应性关系的研究进展[J].煤炭转化,2005,28(4):62–85.
    [9]吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994.
    [10] Taske K.An investigation into the pore size distribution of coal using mereury porosimetry and the effect that stress has on this distribution[D].Queensland:The University of Queensland,2000.
    [11]袁静.松辽盆地东南隆起区上侏罗统孔隙特征及影响因素[J].煤田地质与勘探,2004,32(2):7–10.
    [12]张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报,2000,19(4):531–532.
    [13] Doremus M.A constitutive theory for the inelastic behaviour of roc[J]. Mechanics of Materials,1978,4:67–93.
    [14]张先贵,刘建军.降压开采对低渗储层渗透性的影响[J].重庆大学学报,2000,23(增):93–96.
    [15]李春光,王水林,郑宏,等.多孔介质孔隙率与体积模量的关系[J].岩土力学,2007,28(2):293-296.
    [16]李祥春,郭勇义,吴世跃.煤吸附膨胀变形与孔隙率、渗透率关系的分析[J].太原理工大学学报,2005,36(3):264–266.
    [17]卢平,沈兆武,朱贵旺,等.岩样应力应变全过程中的渗透性表征与试验研究[J].中国科学技术大学学报,2002,32(6):678–684.
    [18]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报, 2001,20(3) :161–167.
    [19] Somerton W. H. Effect of stress on permeability of coal [J]. Int. J. Rock Meck. Mech. Min. Sci. & Geomech.Abstr., 1975,12 (2):151–158.
    [20] SOMERTON W H. Effect of stress on permeability of coal [J]. Int. J. Rock Meck. Mech. Min. Sci. & Geomech.Abstr., 1975,12 (2):151–158.
    [21] LEVINE JR.Model study of the influence of matrix shrinkage on absolute permeability of coalbed reservoirs[J].GeologicalSociety Publication,1996,199:197–212.
    [22] Enever J R E, Henning A. The Relationship Between Permeability and Effective Stress for Australian Coal and Its Implications with Respect to Coalbed Methane Exploration and Reservoir Modelling[A].Proceedings of the 1997 International Coalbed Methane Symposium[C]. Alabama:The University of Alabama Tuscaloosa,1997,13–22.
    [23] J.R.E.Enever,A.Henning,The Relationship Between Permeability and Effective Stress for Australian Coal and Its Implications with Respect to Coalbed Methane Exploration and Reservoir Modelling[C].Proceedings of the 1997 International Coalbed Methane Symposium.
    [24]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,16(1):21–28.
    [25]赵阳升,胡耀青,杨栋等.三维应力下吸附作用对煤岩体气体渗流规律影响的研究[J].岩石力学与工程学报,1999,18(6):651–653.
    [26] Zhao Yangsheng,Kang Tianhe,Hu Yaoqing. The permeability classification of coal seam in China[J].Int.J.Rock Mech.Min.Sci.,1995,32(4):365–369.
    [27]唐巨鹏,潘一山,李成全等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563–1568.
    [28]许江,鲜学福,杜云贵,等.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5): 26–32.
    [29]杜云贵.地球物理场中煤层瓦斯吸附、渗流特性研究[D].重庆:重庆大学,1993.
    [30]谭学术,鲜学福,张广洋,等.煤的渗透性研究[J].西安矿业学院学报,1994,14(3):22–26.
    [31]程瑞端,陈海焱,鲜学福,等.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998,(1): 13–16.
    [32]孙培德,凌志仪.三轴应力作用下煤渗透率变化规律实验[J].重庆大学学报,2000,23:28–31.
    [33]孙培德.变形过程中煤样渗透率变化规律的实验研究[J].岩石力学与工程学报,2001,20:1801—1804.
    [34]程瑞端.煤层瓦斯涌出规律及其深部开采预测的研究[D].重庆:重庆大学,1996.
    [35]张广洋,胡耀华,姜德义.煤的瓦斯渗透性影响因素的探讨[J].重庆大学学报,1995,18(3):27–30.
    [36]杨胜来,崔飞飞,杨思松,等.煤层气渗流特征实验研究[J].中国煤层气,2005,2(1):36–39.
    [37]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1994.
    [38]В.В.Xодот.Внезапныевыбросыугольигаза,Государственноенаучно-техническоеиздательстволитературыпогорномуделу[M].Москвa,1961.
    [39]陈昌国.煤的物理化学结构和吸附(解吸)甲烷机理研究[D].重庆:重庆大学,1995.
    [40]周胜国,郭淑敏.煤储层吸附/解吸等温曲线测试技术[J].石油实验地质,1999,21(1):76–81.
    [41]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003,23(4):130–131.
    [42]张庆玲,崔永军,曹利戈.煤的等温吸附试验中各因素影响分析[J].煤田地质与勘探,2004,32(2):16–18.
    [43]赵志根,唐修义,张光明.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探,2001,23(4):130–131.
    [44]钟玲文,郑玉柱,员争荣,等.煤在温度和压力综合影响下的吸附性能及气含量预测[J].煤炭学报,2002,27(6):581–585.
    [45]刘建军.非等温情况下煤层瓦斯流动规律的研究[D].阜新:辽宁工程技术大学,1998.
    [46] Terzaghi K. Theoretical soil mechanics[M]. NewYork:John Wiley and Sons Inc,1943.
    [47] Biot M A. General theory of three dimensional consolidation[J].J.Appl.Phys,1941,12(5):155–164.
    [48] Biot M A. General solution of the equation of elasticity and consolidation for a porous material[J]. J. Appl. Mech,1956,27(3):91–96.
    [49] Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid[J].J. Appl.Phys,1955,26(2):182–191.
    [50] Biot M A. Theory of stress strain relations in anisotropic viscoelasticity and relaxation phenomena[J]. Appl.Phys,1954,25(11):1385–1391.
    [51] Detournay and J.C Roegiers, Poroelastic Concepts Explain Some of the Hydraulic Fracturing Mechanisms. SPE 15262, 1982.
    [52] Chen, H.Y,'I'eufel, L.W,and Lee,R.:“Coupled Fluid Flow and Ueomechanics in Reservoir Study一I. Theory and Governing Equations,”paper SPE 30752 presented at the SPE Annual Technical Conference&Exhibition, Dallas,TX, 22.25 Oct. 1995.
    [53] Chen,H.Y, Coupled Fluid Flow and Geomechanics in Reservoir Study.l.Theory and Governing Equations,SPE 30752,1995.
    [54] Jose ,G.Osorio, Numerical Simulation of the Impact of F1ow.Induced GeomechanicalResponse on the Production of Stress.Sensitive Reservoirs,SPE 51929.
    [55] Jose,G Numerical Simulation of Coupled F1uid.Flow/ Geomechanical Behavior of Tight Gas Reservoirs With Stress Sensitive Permeability, SPE39055,1997.
    [56] Jose,G Fully Coupled F1uid.Flow/Geomechanics Simulation of Stress.Sensitive Reservoirs. SPE 38023.
    [57] Litwiniszyn J. A model for the initiation of coal-gas outbursts[J]. Int.J. Rock Mech. Min. Sci. Geomech. Abstr.,1985,22(1):39–46.
    [58] Paterson L. A model for outburst in coal[J]. Int. J. Rock Mech. Min.Sci.,1986,23(4):327–332.
    [59] Zhao Chongbin,Valliappan S. Finite element modeling of methane gas migration in coal seams[J]. Computers and Structures,1995,55(40):625–629.
    [60] Valliappan S,Zhang W H. Numerical modeling of methane gasmigration in dry coal seams[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1996,20(8):571–593.
    [61] Zhao Y S,Qing H Z,Bai Q Z. Mathematical model for solid-gas coupled problems on the methane flowing in coal scam[J]. Acta Mechanica Solida Sinica,1993,6(4):459–466.
    [62]赵阳升.煤体—瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229–239.
    [63]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135–142.
    [64]汪有刚,刘建军,杨景贺等.煤层瓦斯流固耦合渗流的数值模拟[J].煤炭学报,2001,26(3):286–289.
    [65]徐剑良,刘全稳,李志军,等.煤层气渗流流固耦合数学建模及求解[J].天然气工业,2005,25(5):81–83
    [66]孙培德.煤层气越流固气耦合数学模型的SIP分析[J]..煤炭学报,2002,27(5):494-498.
    [67]赵国景,步道远.煤与瓦斯突出的固—流两相介质力学理论及数值分析[J].工程力学,1995,12(2):1–7
    [68]杨天鸿,徐涛,刘建新等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报,2005,24(16):2900–2905
    [69]许广明,武强,张燕君.非平衡吸附模型在煤层气数值模拟中的应用[J].煤炭学报,2003,28(4):380–384
    [70]徐涛,唐春安,宋力.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667–1673
    [71] Bear, J.,Corapcioglu, M.Y.A mathematical model for comsolidation in athermoelastic aquiferdue to hot water injection or pumping[J]. Water Resource Res. 1981,(17):723–736
    [72] Vaziri H H. Coupled fluid flow and stress analysis of oil sand subject to heating [J] CPT.1988,27(5):84–91.
    [73] Lewis R W,Sukirman Y. Finite element modelling of three phase flow in deforming saturated oil reservoirs[J].Int J Num Anal Methods Geomech,1993,(17):577–598.
    [74] Lewis R W. Finite element modeling of two phase heat and fluid flow in deforming porou media[J].Trans Porous Media,1989,(4):319–334.
    [75] Gutierrez,M. and Makurat, A. Coupled HTM modell ing of cold water injection in fractured hydrocarbon reservoirs[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr. 1997,34(3/4):429
    [76]黄涛.裂隙岩体渗流-应力-温度耦合作用研究[J].岩石力学与工程学报,2002,21(1):77–82.
    [77]孔祥言,李道伦,徐献芝等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2):269–275.
    [78]贺玉龙,杨立中,杨吉义.非饱和岩体三场耦合控制方程[J].西南交通大学学报,2006,41(4):419–423.
    [79]王自明.油藏热流固耦合模型研究及应用初探[D].成都:西南石油学院,2002.
    [80]刘建军,梁冰,章梦涛.非等温条件下煤层瓦斯运移规律的研究[J].西安矿业学院学报,1999,19(4):302–308.
    [81]梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报,1999,18(5):483–486.
    [82]梁冰,刘建军,范厚彬,等.非等温条件下煤层中瓦斯流动数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1–5.
    [83]刘建军.煤层气热—流—固耦合渗流的数学模型[J].武汉工业学院学报,2002,(2):91–94.
    [84]李宏艳.非等温气固耦合模型及有限元分析[D].阜新:辽宁工程技术大学,2000.
    [85]肖晓春.考虑深部影响的煤层气渗流数值模拟研究[D].阜新:辽宁工程技术大学,2005.
    [86]董平川.油气储层流固耦合理论、数值模拟及应用[D].沈阳:东北大学,1997.
    [87] Minkoff S,Stone C,Bryant S,et al.Coupled fluid flow and geomechanical deformation modeling[J].Journal of Petroleum Science and Engineering,2003,(38):37–56.
    [88] Fredrich J,Arguello J,Thome B,et al.Three-dimensional geomechanical simulation of reservoir compaction and implications for well failures in the Belridge Diatomite[A].In:Proceedings of SPE Annual Technical Conference and Exhibition[C].[s.l.]:[s.n.],1996.195–210.
    [89] Noorishad J,Tsang C F.Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks-formulation and numerical solution[A].In:Stephansson O,Jing L,Tsang CF ed. Coupled Thermo-Hydro-Mechanical Processes of Fractured Media [C]. Amsterdam:Elsevier Science Publishers,1996.93–134.
    [90] Tsang C F.Linking thermal , hydrological , and mechanical processes in fractured rocks[J].Annu.Rev.Earth Planet.Sci.,1999,(27):359–384.
    [91] Zhao C,Hobbs B E,Muhlhaus H B,et al.Computer simulations of coupled problems in geological and geochemical systems[J].Computer Methods in Applied Mechanics and Engineering,2002,(191):3 137–3 152.
    [92] Rutqvist J , Tsang C F.Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain[J].Journal of Contaminant Hydrology,2003,(63):637–652.
    [93] Oldenburg C M,Pruess K,Bensen S M.Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery[J].Energy and Fuels,2001,15:293–298.
    [94]盛金昌.多孔介质流—固—热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报,2006,25(增1):3028–3033.
    [95]于不凡.煤矿瓦斯灾害防治及利用技术手册(修订版) [M].北京:煤炭工业出版社,2005.
    [96]АируниАТидрОтделрудничнойаэолгиилабораиявнзапныхвыбросовутляигаза[M].МоскваИнститутГорногоДелаАкадемииНаукСССР,1955.
    [97]氏平增之.煤与瓦斯突出机理的模型研究及其理论探讨[J].第21届国际煤矿安全研究会议论文集,1985.
    [98]氏平增之.內部分か壓じよる多孔質材料の破壞づろやたついてか突出た關する研究[J].日本礦業會志,1984,(100):397–403.
    [99]邓全封,栾永祥,王佑安.煤与瓦斯突出模拟试验研究[J].煤矿安全,1989,(11):5–10
    [100]蒋承林.石门揭穿含瓦斯煤层时动力现象的球壳失稳机理研究[D].徐州:中国矿业大学,1994.
    [101]蒋承林.煤壁突出孔洞的形成机理研究[J].岩石力学与工程学报,2003,19(2):225–228.
    [102]孟祥跃.煤与瓦斯突出的二维模拟实验研究[J].煤炭学报,1996,21(1) :57–62
    [103]蔡成功.煤与瓦斯突出三维模拟实验研究[J].煤炭学报,2004,29(1):66–69.
    [104]蔡成功.煤与瓦斯突出三维模拟理论及实验研究[J].瓦斯地质研究与应用-中国煤炭学会瓦斯地质专业委员会第三次全国瓦斯地质学术研讨会,2003.
    [105]张建国,魏风清.含瓦斯煤的突出模拟实验[J].矿业安全与环保,2002,29(1):7–10
    [106]郭立稳,俞启香,蒋承林等.煤与瓦斯突出过程中温度变化的实验研究[J].岩石力学与工程学报,2000,19(3):366–368.
    [107]牛国庆,颜爱华,刘明举.煤与瓦斯突出过程中温度变化的实验研究[J].湘潭矿业学院学报,2002,17(4):20–23.
    [108] Gan H,Nandi S P,Walker P L. Nature of porosity in American coals [J]. Fuel,1972,(51):272–277.
    [109]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987,(4):51–57.
    [110]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40–44.
    [111] [苏]霍多特B B.(宋士钊,王佑安译).煤与瓦斯突出[M].北京:中国工业出版社,1966.
    [112] Elliot M A. (徐晓,吴奇虎,鲍汉琛等译).煤利用化学[M].北京:化学工业出版社,1961.
    [113] Walker P L.Desities. Porposites and surface area of coal macerals as measured by their interaction with gases, vapours and liquids[J].Fuel,1988,67(10):1615–1623.
    [114] vapours and liquids[J].Fuel,1988,67(10) :1615-1623.
    [115]吴俊,金奎励,童有德,等.煤孔隙理论及在瓦斯突出和抽放评价中的应用[J].煤炭学报,1991,16(3):86–95.
    [116]秦勇,徐志伟.高煤阶煤孔径结构的自然分类及其应用[J].煤炭学报,1995,20(3):266–271.
    [117]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(增1):51–55.
    [118] Mandelbrot B. B. Fractal: forms chance and dimension [M]. San Francisco:W. H. Freeman,1977.
    [119]郝柏林.混沌与分形[M].上海:上海科学技术出版社,2004.
    [120]陈颙,陈凌.分形几何学[M].北京:地震出版社,2005.
    [121]吴敏金.分形信息导论M].上海:上海科学技术文献出版社,1994.
    [122]唐晓军.循环载荷作用下岩石损失演化规律研究[硕士学位论文][D].重庆:重庆大学,2008.
    [123]张玉涛,土德明,仲晓星.煤孔隙分形特征及其随温度的变化规律[J].煤炭科学技术,35(11):73-76.
    [124]刘式达,刘式适.分形与分维引论[M].北京:气象出版社,1993.
    [125]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61–65.
    [126]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4):419–426.
    [127]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674–1678.
    [128]李传亮,孔祥言,徐献芝,等.多孔介质的双重有效应力[J].自然杂志,1999,21(5):288–297.
    [129]许江,尹光志,鲜学福,等.煤与瓦斯突出潜在危险区预测的研究[M].重庆:重庆大学出版社,2004.
    [130] Ettinger I L. Swelling stress in the gas-coal system as an energy source in the development of gas bursts[J]. Soviet Mining Science,1979,15(5):494–501.
    [131] Borisenko A A. Effect of gas pressure in coal strata[J]. Soviet Mining Science,1985,21(5):88–91.
    [132]卢平,沈兆武,朱贵旺,等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):687–693.
    [133]吴世跃.煤层气与煤层耦合运动理论及其应用的研究[D].沈阳:东北大学,2005.
    [134]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的试验研究[J].岩土工程学报,1995,17(3):26–31.
    [135]孙培德,鲜学福,钱耀敏.煤体有效应力规律的实验研究[J].矿业安全与环保,1999,(2):16–18.
    [136]孙培德. SUN模型及其应用[M].杭州:浙江大学出版社,2002.
    [137]林瑞泰.多孔介质传热传质理论[M].北京:科学出版社,1995.
    [138]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [139]尹光志,王登科,张东明,等.两种含瓦斯煤样变形特性与抗压强度的实验分析[J].煤炭学报,2009,28(2):410–417.
    [140]贺玉龙.三场耦合作用相关试验及耦合强度量化研究[D].成都:西南交通大学,2003.
    [141]孙立东,赵永军,蔡东梅.应力场、地温场、压力场对煤层气储层渗透率影响研究[J].山东科技大学学报,2007,26(3):12–31.
    [142]熊伟.流固耦合渗流机理研究[D].北京:中国科学院渗流流体力学研究所,2000.
    [143]陶云奇,许江,李树春.改进的灰色马尔柯夫模型预测采煤工作面瓦斯涌出量[J].煤炭学报,2007,32(4):391–395.
    [144]王宏图,杜云贵,鲜学福,等.地球物理场中的煤层瓦斯渗流方程[J].岩石力学与工程学报,2002,21(5):644–646.
    [145]王宏图,杜云贵,鲜学福,等.受地应力、地温和地电效应影响的煤层瓦斯渗流方程[J].重庆大学学报,2000,23(增):47–49.
    [146]易俊,姜永东,鲜学福.应力场、温度场瓦斯渗流特性实验研究[J].中国矿业,2007,16(5) :113–116.
    [147] Bear,J.(李竞生,陈崇希译).多孔介质流体力学[M].北京:中国建筑工业出版社,1998.
    [148]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [149] Zhou Y,Rajapakse R,Graham J. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration.International Journal of Solids and Structures,1998,(35) :4659–4683.
    [150]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2002.
    [151]谭云亮,肖亚勋,孙伟芳.煤与瓦斯突出自适应小波基神经网络辨识和预测模型[J].岩石力学与工程学报,2007,26(增1):3 373–3 377.
    [152]胡千庭,邹银辉,文光才.瓦斯含量法预测突出危险新技术[J].煤炭学报,2007,32(3):276–280.
    [153]王海锋,程远平,俞启香,等.煤与瓦斯突出矿井安全煤量研究[J].中国矿业大学学报,2008,37(2):236–240.
    [154]栗原一雄.かス突出の发生机构の解明た关する基础的研究[J].炭矿技术,1980,(1):16–19.
    [155] Alexeeva A D,Revva V N,Alyshev N A,et al. True triaxial loading apparatus and its application to coal outburst prediction[J]. International Journal of Coal Geology,2004,58(4):245–250.
    [156]陈安敏,顾金才,沈俊,等.岩土工程多功能模拟试验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372–378.
    [157]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微机制研究[J].煤炭学报,2008,33(2):131–135.
    [158]景国勋,张强.煤与瓦斯突出过程中瓦斯作用的研究[J].煤炭学报,2005,30(2):169–171.
    [159]张玉贵,张子敏,曹运兴.构造煤结构与瓦斯突出[J].煤炭学报,2007,32(3):281–284.
    [160]王丽霞,凌贤长,顾全宇,等.相似方法在冻土低温三轴压缩试验研究中的应用[J].岩石力学与工程学报,2005,24(增1):5183–5188.
    [161]鲍培德.浅谈相似理论与模型试验在机械设计中的应用[J].设计与研究,2008,29(6):27–28.
    [162]肖木恩.安庆铜矿高阶段大直径深孔采矿相似材料模拟实验[J].矿业研究与开发,2005,25(3):11–12.
    [163]刘秀英,张永波.采空区覆岩移动规律的相似模拟实验研究[J].太原理工大学学报,2004,35(1):29–35.
    [164]尹光志,张卫中,张东明.煤矿开车岩层移动的相似模拟实验及数值分析[J].矿业安全与环保,2004,31(2):1–3.
    [165]刘巍,高召宁.浅埋煤层开采矿压显现规律的相似模拟[J].矿山压力与顶板,2005, (2):17–18.
    [166]柳贡慧,庞飞,陈治喜.水力压裂模拟实验中的相似准则[J].石油大学学报,2000,24(5):45–47.
    [167]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [168]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [169]谢晓佳.煤岩体的损伤蠕变理论及其在工程大变形数值分析中的应用研究[D].重庆:重庆大学,1993.
    [170]袁聚云.土工实验与原理[M].上海:同济大学出版社,2003.
    [171]盛金昌. CO2驱油过程中多场全耦合数学模型[J].岩石力学与工程学报,2006,25(9):1893–1897.
    [172]盛金昌,刘继山,赵坚.基于图像数字化技术的裂隙岩体非稳态渗流分析[J].岩石力学与工程学报,2006,25(7):1402–1407.
    [173]杨更社,周春华,田应国.寒区软岩隧道的水热耦合数值模拟与分析[J].岩土力学,2006,27(8):1258–1262.
    [174]付坤霞,朱煜,张鸣.基于非等温条件的空气静压轴承润滑问题研究[J].润滑与密封,2007,32(1):117–119.
    [175]杨更社,周春华,田应国.寒区软岩隧道的水热耦合数值模拟与分析[J].岩土力学,2006,27(8):1258–1262.
    [176] CnTech CO.,Ltd. COMSOL Multiphysics中文使用手册.http:// www.CnTech.com.cn.
    [177]孙培德,杨东全,陈亦柏.多物理场耦合模型及数值模拟导论[M].北京:中国科学技术出版社,2007.
    [178] William B.J.Zimmerman,中仿科技公司.COMSOL Multiphysics有限元法多物理场建模与分析[M].北京:人民交通出版社,2007.
    [179] Boit M A. General theory of three-dimensional consolidation[J].Journal of Applied Physics,1941,(12):155–164.
    [180]杨永杰.煤岩强度、变形及微震特征的基础试验研究[D].青岛:山东科技大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700