用户名: 密码: 验证码:
急倾斜多煤层俯伪斜上保护层开采的关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开采保护层是有效防治煤与瓦斯突出的首选区域性防突措施。开采保护层的关键问题在于矿井被保护层的有效保护范围的划定和被保护层卸压瓦斯的有效抽采。由于急倾斜多煤层俯伪斜上保护层开采卸压规律的特殊性,使得传统的参照《防治煤与瓦斯突出细则》所给出的参考值来划定保护层开采保护范围的方法,在急倾斜多煤层俯伪斜上保护层开采的应用中存在一定的局限性。对此,本文以东林煤矿急倾斜多煤层俯伪斜上保护层开采为工程研究背景,采用实验研究、理论分析和数值计算相结合的方法,研究了急倾斜多煤层俯伪斜上保护层开采保护范围的判别准则和划定方法;根据急倾斜多煤层俯伪斜上保护层开采保护范围的现场考察结果,验证了理论计算的合理性与可靠性;在此基础上,基于保护层开采的“卸压增透效应”,对研究区域的被保护层卸压瓦斯抽采进行了优化设计和效果监测。本文的主要研究成果与结论有:
     ①通过研究区域周围煤岩层的抗压、抗拉和抗剪试验,以及三轴应力作用下低渗透突出煤体的瓦斯渗流试验,确定了研究区域周围煤岩层的基本物理力学参数和研究区域低渗透煤体的等效孔隙压力系数与渗透率的动态变化规律。试验研究结果表明,煤体的等效孔隙压力系数随着煤体的孔隙瓦斯压力的增加而近似线性地增加,且随着煤体体积应力的增加而近似线性地减小;瓦斯在煤体中的渗流具有显著的Klinkenberg效应,且Klinkenberg系数与煤体的绝对渗透率呈显著的幂函数关系、煤体的绝对渗透率与体积应力呈显著的二次多项式函数关系。
     ②基于煤与瓦斯突出的失稳理论,建立了有限变形下煤与瓦斯突出的固气动态耦合失稳模型;在此基础上,针对研究区域被保护煤层,通过模型求解得到了该煤层发生煤与瓦斯突出的极限瓦斯压力值。
     ③提出了一种保护层开采保护范围的极限瓦斯压力判别准则,即被保护层的残余瓦斯压力值小于该煤层发生煤与瓦斯突出的极限瓦斯压力值的被保护层区域被判定为保护层开采的有效保护范围。研究结果表明,该准则反映了应力、瓦斯压力与煤的结构对煤与瓦斯突出的综合作用。
     ④基于保护层开采卸压瓦斯的越流理论,建立了急倾斜多煤层俯伪斜上保护层开采的卸压瓦斯越流的固气动态耦合模型;通过模型求解,获得了上保护层开采后被保护层的瓦斯压力分布规律。研究结果表明,该模型反映了煤体有效应力的变化规律、煤层孔隙率与低渗透煤层渗透率的动态变化规律、煤层瓦斯解吸延时过程和煤层瓦斯渗流扩散的共同作用机制对被保护层卸压瓦斯越流的影响。
     ⑤提出了基于极限瓦斯压力判别准则的保护层开采保护范围的划定方法,该方法能够较好地反映实际保护层开采过程中的被保护煤层的瓦斯越流和煤层变形情况;针对东林煤矿,划定了基于极限瓦斯压力判别准则和基于煤层变形判别准则的急倾斜多煤层俯伪斜上保护层开采的有效保护范围。理论计算结果表明,基于极限瓦斯压力判别准则的保护层开采保护范围的划定方法所得到的保护层工作面上部、中部和下部三个位置的走向卸压角相差较小,且上保护层开采保护范围的走向卸压角从浅部往深部方向逐渐减小,大小为43.2°~40.7°;基于极限瓦斯压力判别准则与基于变形判别准则所划定的保护范围卸压角比较接近,且后者所得到的卸压角都要比前者小。
     ⑥通过开展东林煤矿急倾斜多煤层俯伪斜上保护层开采的现场考察试验,确定了研究区域的保护层开采保护范围的现场实测结果。试验结果表明,被保护层的钻孔瓦斯流量与瓦斯压力,都随着保护层工作面的向前推进经历了两次卸压过程;保护层工作面倾向各处沿走向的卸压保护角呈非均匀分布,其大小为43.5°~53.6°,保护层工作面沿倾斜下山方向的卸压角为78.7°;急倾斜多煤层俯伪斜上保护层开采保护范围的理论计算结果与现场考察结果接近,且理论计算结果相对于现场考察结果偏于安全,这说明了本文所提出的理论计算方法是合理、可靠的。
     ⑦提出了一种通过分析急倾斜多煤层俯伪斜上保护层开采的下伏卸压岩体移动特性及卸压瓦斯运移规律,并利用保护层开采的“卸压增透效应”,结合研究区域的实际情况,来确定被保护层卸压瓦斯的抽采布置参数的优化设计方法。卸压瓦斯抽采的监测结果表明,采用本文设计的卸压瓦斯抽采的优化布置参数使卸压瓦斯平均抽采率达到50%。
Exploiting protective layer is a preferred and effective regional prevention measure for controlling coal and gas outburst. Its key issues were the location of the effective protection region of protected layer and the effective extraction of pressure-relief methane gas. Due to the particularity of pressure-relief law in exploiting steep-incline upper-protective layer with a bow pseudo-incline technique (SULBPT), the application of the traditional locating method of protection region by referring to the reference values of in exploiting SULBPT could not be carried out. Withal, in this paper, regarded the SULBPT at Donglin coal mine as the project background for this study, the discrimination criterion and locating method for the protection region of SULBPT was investigated by incorporating the experimental study, the theory analysis and the numerical calculation; According to the practical investigation results of the protection region of SULBPT, the rationality and reliability of the theory analysis was checked. Based on it, an optimization designing and an effect monitoring on extracting pressure-relief gas of SULBPT was carried out by utilizing the effect“pressure-relief to strengthen permeability”. These conclusion and results can be drawn that:
     ①The basic physical-mechanics parameters of surround coal/rock and the dynamic changing laws of permeability in the coal with low permeability at investigation area are confirmed by the compression test, the tensile test, the shear test and the experiment of methane gas flow in coal with coal-gas burst hazard and low permeability under action of triaxial stresses, respectively. The test results show that the equivalent pore pressure coefficient increases approximate linearly with the increasing pore gas pressure and decreases approximate linearly with the increasing bulk stress; the Klinkenberg effect of methane gas flow in low permeability coal is especially prominent, and the Klinkenberg coefficient and the absolute permeability are relating to a power function meanwhile the absolute permeability and bulk stress is relating to a quadratic polynomial function.
     ②Based on the unstable theory of coal and gas outburst, the dynamic unstable model coupled solid deformation and gas flow in coal and gas outburst under finite deformation is founded. Based on it, the ultimate methane gas pressure of coal seam at the investigation area is gotten.
     ③A discrimination criterion found on ultimate methane gas pressure for protection region of exploiting protective layer was put forward, that was the protected layer area, whose remaining pressure was less than its ultimate methane gas pressure, were discriminated as the effective protection region for exploiting protective layer. The results show that this discrimination criterion reflects the effect of stress, methane gas pressure and the structure of coal on the coal and gas outburst.
     ④Based on the theory of pressure-relief gas flow leak in exploiting protective layer, the dynamic model of pressure-relief gas flow leak in exploiting upper-protective layer coupled solid deformation and gas flow is founded; The distribution laws of gas pressure of protected layer after exploiting upper-protective layer are obtained by solving this model. The research results show that this model reflects the effect of the changing law of effective stress, the dynamic changing of porous rate and permeability of coal with low permeability, the delaying process of gas desorption and the common action mechanism of coalbed methane gas flow and diffuse on the pressure-relief gas flow leak.
     ⑤The locating method of protection region in exploiting protective layer based on the discrimination criterion of ultimate methane gas pressure is developed. This method can preferably reflect the condition of gas flow leak and coal deformation of protected layer in exploiting protective layer; Aimed at the Donglin coal mine, the effective protection region of SULBPT is located by the discrimination criterion of ultimate methane gas pressure and coalbed deformation. The theoretical calculation results show that the strike pressure-relief angles of the upper, middle and downside of the working face of protective layer located by the discrimination criterion of ultimate methane gas pressure have little difference, the strike pressure-relief angles of protection region of SULBPT decrease from superficial to deep and are among 43.2 degree to 40.7 degree; The pressure-relief angles located by the discrimination criterion found on ultimate methane gas pressure and coalbed deformation are closer and the back’results are larger than the former.
     ⑥The protection region for exploiting protective layer at investigation area were tested by the practical investigation experiment of SULBPT. The investigation results show that either the pore gas flux or the gas pressure of protected layer go through the pressure-relief process for two times along with the exploitation of working face of protective layer and that the strike pressure relief angle along the oblique working face of the protective layer is 43.5 to 53.6 degrees and the underside of SULBPT has a pressure relief angle of 78.7 degree. The practical test values and theoretical values of the protection region of SULBPT are closer and the theoretical values are safer, which show that it was reasonable and reliable for the theoretical calculation method put forward by this paper.
     ⑦An optimization designing method on extracting pressure-relief gas of protected layer, that the arrange parameters of extracting were determined by analyzing the moving characteristic of downside pressure-relief rock mass and the law of pressure-relief gas flow in SULBPT, utilizing the effect“pressure-relief to strengthen permeability”in exploting protective layer and integrating the practical condition of investigation area, was put forward. The monitoring results on pressure-relief gas extracting show that the average extracting rate of pressure-relief gas is reach to 50% by using the optimized extracting arrange parameters designed by this paper.
引文
[1]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [2]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [3] R.D. Lama, J. Bodziony. Management of outburst in underground coal mines[J]. International Journal of Coal Geology, 1998, (35): 83-115.
    [4]中华人民共和国煤炭工业部.防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1995.
    [5]陈炎光,徐永圻.中国采煤方法[M].徐州:中国矿业大学出版社,1991.
    [6]唐巨鹏,潘一山,李忠华,等.大台井俯伪斜分段密集采煤法数值模拟研究[J].煤炭学报,2003,28(5):496-499.
    [7]尹光志,代高飞,皮文丽,等.俯伪斜分段密集支柱采煤法缓和急倾斜煤层矿压显现不均匀现象的研究[J].岩石力学与工程学报,2003,22(9):1483-1488.
    [8]余海龙,尹光志,鲜学福.俯伪斜采煤法防治急斜煤层煤与瓦斯突出的研究[J].重庆大学学报(自然科学版), 1999, 22(3):107-111.
    [9]林柏泉,张建国.矿井瓦斯抽放理论与技术[M].徐州:中国矿业大学出版社, 1996: 57-64.
    [10]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报, 1998, 23(5): 466-469.
    [11]俞启香,程远平,蒋承林,等.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J].中国矿业大学学报, 2004, 33(2): 127-131.
    [12]程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报, 2004, 33 (2): 132-136.
    [13]袁亮,刘泽功.淮南矿区开采煤层顶板抽采瓦斯技术的研究[J].煤炭学报, 2003, 28 (2): 149-152.
    [14]李树刚,李生彩,林海飞,等.卸压瓦斯抽取及煤与瓦斯共采技术研究[J].西安科技学院学报, 2002, 22(3): 247-249.
    [15]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.
    [16]肖代兵,刘林.突出煤层保护层开采保护方法的考察[J].陕西煤炭技术,1999,(3): 2-3.
    [17]杨晓峰.松藻矿区防治煤与瓦斯突出综合技术[M].北京:北京科海电子出版社,2005.
    [18]于不凡,白帆,刘明.煤矿瓦斯防治技术[M].北京:中国经济出版社,1987.
    [19]Аǔрунu A.T.Теорияипрактикаборьбысрудничнымигазаминабольшихглубинах[M].Недра, 1981.
    [20]Аǔрунu A.T.,зенковuчЛ.М.,МхаmварuТ.Я.Искусственноеувеличениезащитногодействияприразработкевыбросоопасныхпластов[М].ЦНИЭИуголь, 1984.
    [21]Аǔрунu A.T.,ВаǔншmеǔнЛ.А.прогнозированиеипредотвращениевнезапныхвыбросовугляигазазарубежом[М].ЦНИЭИуголь, 1991.
    [22]А.М.Рудь,О.А.Колесов,А.Т.Айруниидр.Меmодыпрогнозаиспособыпредотвращениявнезапныхвыбросовугля,породыигаза[М].ЦНИЭИуголь, 1990.
    [23]Ю.Н.马雷舍夫,А.Т.艾鲁尼,Ю.Л.胡金等.煤与瓦斯突出预测方法和防治措施[M].北京:煤炭工业出版社, 2004.
    [24]ЗенховuчЛ.М..Закономерностиизмененияфильтрационныхсвойствмеждупластовыхтолщпрндегазацинподзащитныхпластовскважинами[М].РотапринтИПКОНАНСССР, 1984.
    [25]АЙруниА.Т.Исследования.динамикидавленияметанавопасныхповнезапнымвыбросамподрабатываемыхйнадрабатываемыхугольныхпластахпрппримененииискусственнойдегазадии[C].Доклади,17международнаяконферендияпонауннымисследованиямвобластибезопасностиработвгорнойпромыщлености,Варна, 1977.
    [26]付建华.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社, 2005.
    [27]邹奎业.中梁山煤矿解放层开采[J].中煤科技,1980,(2):42-43.
    [28]南桐矿务局,重庆大学采矿系,煤炭科学研究院重庆研究所.南桐矿务局直属一井倾斜近距离开采解放层及抽放瓦斯研究报告,矿业安全与环保,1974, (1): 1-2.
    [29]涟邵矿务局立新煤矿瓦斯研究室.邻近煤层瓦斯抽放[J].煤矿安全, 1976, (4): 22-23.
    [30]老鹰山煤矿.被解放层边采边抽瓦斯在我矿的应用[J].煤矿安全, 1977, (6): 35-41.
    [31]高祥.保护层开采的保护范围和效果的研究[J].煤炭技术, 2004, 23(9): 1-2.
    [32]罗勇,祁琦.煤层群多重开采上保护层防突研究[J].防灾减灾工程学报, 2005, 25(3): 244-250.
    [33]屠锡根.试论上保护层开采的有效性[J].煤炭学报, 1965, 2(3): 20-26.
    [34]华安增.煤层底板采动影响[J].煤炭学报, 1983, 8(3): 36-41.
    [35]马大勋.关于上保护层的实验研究与探讨[J].煤炭学报, 1986, 11(3): 1-6.
    [36]王轩.解放层开采瓦斯渗流数值模拟[D].重庆:重庆大学硕士学位论文, 1983.
    [37]谭学术,肖勤学,吴泽源.上解放层解放范围的力学分析[J].煤炭学报, 1988, 13(2): 25-31.
    [38]孙培德,鲜学福.上保护层保护范围的固气耦合分析[J].煤, 1999, 8(1): 36-39.
    [39]孙培德. Sun模型及其应用-煤层气越流固气耦合模型及可视化模拟[M].杭州:浙江大学出版社, 2002.
    [40]王永秀,齐庆新,徐刚.华丰矿保护层开采数值模拟研究[J].煤矿开采, 2003, 8(4): 4-7.
    [41]石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报, 2004, 33(3): 259-263.
    [42]刘林.开采保护层保护效果及范围的数值模拟研究[J].矿业安全与环保, 2005, 32(6): 6-9.
    [43]徐涛.煤岩破裂过程固气耦合数值试验[D].沈阳:东北大学博士论文, 2004.
    [44]姚宝魁,孙广忠,尹代勋.煤与瓦斯突出的区域性预测[M].北京:中国科学技术出版社, 1993.
    [45]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社, 1995.
    [46]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社, 2000.
    [47]李文平.煤岩层地应力差异性及对瓦斯突出影响研究.煤矿瓦斯灾害防治理论战略研讨(周世宁,鲜学福,朱旺喜编)][M].徐州:中国矿业大学出版社, 2001.
    [48]霍多特, B.B. (宋世钊、王佑安译).煤与瓦斯突出机理[M].北京:中国工业出版社, 1966.
    [49]中国矿业学院瓦斯组.煤和瓦斯突出的防治[M].北京:煤炭工业出版社, 1979.
    [50]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理[A].煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文集[C], 1983: 3-11.
    [51]谈庆明,俞善炳,朱怀球等.含瓦斯煤在突然卸压下的开裂破坏[J].煤炭学报, 1997, 22(5): 514-5.
    [52]余善炳.恒稳推进的煤与瓦斯突出[J].力学学报, 1988, 20 (2): 97-105.
    [53]余楚新,鲜学福.煤层瓦斯渗流有限元分析中的几个问题[J].重庆大学学报, 1994, 17(4).
    [54]张广洋,谭学术,鲜学福等.煤层瓦斯运移的数学模型[J].重庆大学学报, 1994, 17(4).
    [55] Gray I. The mechanism of and energy release associated with outbursts[A]. Symposium on occurrence, prediction and control of outbursts in coal mines [C]. Aust. Inst. Min. Metall., Melbourne, 1980, 111-125.
    [56] Paterson, L.. A model for outburst in coal [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 19 86, (23): 327-332.
    [57] Litwiniszyn, J. A model for the initiation of coal-gas outbursts [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1985, (22): 39-46.
    [58]佩图霍夫И.М.预防冲击地压的理论与实践[A].第22届国际采矿安全会议论文集[C].北京:煤炭工业出版社, 1987
    [59]章梦涛,徐曾和,潘一山.冲击地压与突出的统一失稳理论[J].煤炭学报, 1991, 16(4): 48-53.
    [60]章梦涛,潘一山,梁冰等.煤岩流体力学[M].北京:科学出版社, 1995.107-109,158-166.
    [61]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报, 1990, (2).
    [62]何学秋.含瓦斯煤的流变特性及其对煤与瓦斯突出的影响[D].徐州:中国矿业大学博士论文,1990
    [63]蒋承林,俞启香.煤与瓦斯突出的球充失稳假说[J].煤矿安全, 1995, (2): 17-25.
    [64]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社, 1998.
    [65]吕绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报, 1999, 22(6): 80-84.
    [66]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报, 2001, 20(3): 161-167.
    [67]孙培德,鲜学福,茹宝麒.煤层瓦斯渗流力学研究现状与展望[J].矿业安全与环保, 1996, (3): 23-30, 33.
    [68]徐曾和,徐小荷.论矿业工程中的流-固耦合渗流问题[J].中国矿业, 1996, 5(3): 53-60.
    [69]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报, 1999, 5(1): 17-26.
    [70]薛世峰,全兴华,岳伯谦等.地下流固耦合理论的研究进展及应用[J].石油大学学报, 2000, 24(2): 109-115.
    [71]梁冰,孙可明,薛强.地下工程中的流固耦合问题的探讨[J].辽宁工程技术大学学报, 2001, 20(2):129-135.
    [72] ZbaoYang-Sheng, Qing Hui-Zheng, Bai Qi-Zen. Mathematical model for solid-gas coupled problems on the methane flowing in coal scam [J]. Acts Mechanics Solid a Sinica, 1993, 6(4): 459.
    [73]赵阳升.煤体-瓦斯耦合数学模型与数值解法[J].岩石力学与工程学报, 1994, (3): 229-239.
    [74]赵阳升,胡耀青,赵宝虎等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用[J].煤炭学报, 2003, 28 (1): 41-45.
    [75]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报, 1999, 18(6): 97-401.
    [76]刘建军,张盛宗,刘先贵等.裂缝性低渗透油藏流一固耦合理论与数值模拟[J].力学学报, 2002, 34(5): 779- 784.
    [77] Liu Jianjun. Simulation of coal-bed methane and water two-phase fluid-solid coupling flow. In: Frontiers of Rock Mechanics and sustainable development in the 21st century[A]. Sijing, Binjun and Zhongkui (eds.).Swets & Zeitlinger B V., Lisse[C]. The Netherlands, 2001, 347-349.
    [78]杨天鸿,徐涛,刘建新等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报, 2005, 24(16): 2900-2905.
    [79]徐涛,唐春安,宋力.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报, 2005, 24(10): 1667-1673.
    [80] Valliappan S., Zhang Wohua. Numerical modeling of methane gas migration in dry coal seams [J]. Geomechanics Abstracts, 1997, (1): 10.
    [81] Dziurzynski W, Krach A. Mathematical model of methane emission caused by a collapse ofrock mass trump [J]. Archives of Mining Sciences, 2001, 46(4): 433-449.
    [82] Price H S, McCulloch R C, Edwards J C. Computer model study of methane migration in coal beds [J]. Can Min Metall Bull, 1973, 66(737): 103-112.
    [83] Zhao Chongbin, Valliappan S. Finite element modeling of methane gas migration in coal seams [J]. Computers & Structures, 1995, 55(40): 625-629.
    [84] Vylegzhanin V N. Structural model of rock mass in the mechanism of sudden( rock)outbursts and intensive gas emission[C]. Int. symp. cum Workshop on Management & control of High Gas Emission & Outbursts Wollongng, March, 1995, 75-81.
    [85]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报, 1996, 15(2): 135-142.
    [86]赵国景,步道远.煤与瓦斯突出的固-流两相介质力学理论及数值分析[J].工程力学, 1995, 2(2): 1-7.
    [87]丁继辉,麻玉鹏,赵国景等.煤与瓦斯突出的固-流耦合失稳理论及数值分析[J].工程力学, 1999, 16(4): 47-56.
    [88]丁继辉,麻玉鹏,李凤莲.有限变形下固流多相介质耦合问题的数学模型及失稳条件[J].水利水电技术, 2004, 35(11): 18-21.
    [89]刘泽功.卸压瓦斯储集与采场围岩裂隙演化关系研究[D].合肥:中国科学技术大学, 2004.
    [90]鲜学福.我国煤层气开采利用现状及其产业化展望[J].重庆大学学报, 2000, 23(增): 1-5.
    [91] HU Guozhong, WANG Hongtu, FAN Xiaogang, et al. Mathematical model of coalbed gas flow with Klinkenberg effects in multi-physical fields and its analytic solution[J]. Transport in Porous Media, 2009, 76(3): 407-420.
    [92] ENEVER J R E,HENNING A. The relationship between permeability and effective stress for Australian coal and its implications with resort to coalbed methane exploration and reservoir modeling[C]//Proceedings of the 1997 International Coalbed Methane Symposium. [S.1.]: [s.n.], 1997: 13-22.
    [93] Bear, J.. Dynamics of Fluids in Porous Media[M]. New York: American Elsevier Publishing Co. Inc, 1972
    [94] Harpalani, S.. The effect of gas evacuation on coal permeability test specimens[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1984, 21: 361–364.
    [95] Jones, F.O., Owens, W.W.. A laboratory study of low permeability gas sands[J]. J. Pet. Technol. 1980, 32: 1631–1640.
    [96] Skjetne, E., Auriault, J.L.. Homogenization of wall-slip gas flow through porous media[J]. Transport in Porous Media, 1999, 36: 293–306.
    [97] Ville, A.D. On the properties of compressible gas flow in a porous media[J]. Transport in Porous Media, 1998, 22: 287–306.
    [98] HU Guo-zhong, WANG Hong-tu, TAN Hai-xiang, et al. Gas seepage equation of deep mined coal seams and its application[J]. Journal of China University of Mining and Technology, 2008, 18(4): 483-487.
    [99] XU Jia-lin, YU Bei-jian, LOU Jin-fu, et al. Characteristics of Gas Emission at Super-Length Fully-Mechanized Top Coal Caving Face[J]. Journal of China University of Mining and Technology, 2007, 17(4): 447-452.
    [100]刘宝安.下保护层开采上覆煤岩变形与卸压瓦斯抽采研究[D].淮南:安徽理工大学, 2006.
    [101]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报, 2000, 29(1): 78-81.
    [102]涂敏,刘泽功.综放开采顶板离层裂隙变化研究[J].煤炭科学技术, 2004, 32(4): 44-47.
    [103]许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共采”技术研究[J].煤炭学报, 2004, 29(2): 129-132.
    [104]国家安全生产监督管理局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社, 2006.
    [105]刘林.高瓦斯煤层群矿井开采保护层理论研究与工程实践[A].中国煤炭学会煤矿安全专业委员会2004年学术年会论文集,2004.
    [106]重庆市煤炭学会.重庆地区煤与瓦斯突出防治技术[M].北京:煤炭工业出版社, 2005.
    [107]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版社, 1999.
    [108]陈建民,王景辉.俯伪斜柔性掩护支架采煤法的应用与发展[J].煤炭科学技术, 2004, 32(12): 8-10.
    [109]煤炭科学研究总院北京开采所. MT38~50-80—1981.煤和岩石物理力学性质试验规程[S].北京:中华人民共和国煤炭工业部, 1981.
    [110]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的研究[J].岩土工程学报, 1995, 17(3): 26-31.
    [111] Jaeger J. C., Cook N. G. W..岩石力学基础[M].中国科学院工程力学所译.北京:科学出版社, 1981.
    [112] Walsh J B. Effect of pore pressure and confining pressure on fracture permeability [J]. International Journal of Rock Mechanic & Mining Science, 1981, 18: 429-439.
    [113] Borisenko A A. Effect of gas pressure on stress in coal strata [J]. Soviet Mining Science, 1985, (1): 88-91.
    [114]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报, 1988, 17(2): 87-93.
    [115]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报, 1993, 16(5): 26-32.
    [116]李传亮.油藏工程原理[M].北京:石油工业出版社, 2008.
    [117] Chan DYC, Hughes BD. Transient gas flow around the boreholes [J]. Transport Porous Media, 1993, 10: 137-152.
    [118] Klinkenberg L J. The permeability of porous media to liquids and gases[C]// Drill Production Practices. New York:American Petroleum Institute, 1941: 200–213.
    [119]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社, 1997.
    [120]重庆大学.南桐矿业公司急倾斜多煤层俯伪斜保护层开采保护范围的划定的研究报告[R].重庆:重庆大学, 2008.
    [121]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发, 1997, 24(3): 61–65.
    [122]谭学术,鲜学福,张广洋等.煤的渗透性研究[J].西安矿业学院学报, 1994, 14(1): 22-25.
    [123]张广洋,胡耀华,姜德义等.煤的渗透性实验研究[J].贵州工学院学报, 1995, 24(4): 65-68.
    [124] SaghafiA, FaizM, RobertsD. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia [J]. International Journal of Coal Geology, 2007, 70: 240–254.
    [125] Langmuir L.. The constitution and fundamental properties of solid and liquids [J]. J. Am. Chem. Soc., 1975, 36(2): 221-95.
    [126]王宏图,杜云贵,鲜学福等.地球物理场中的煤层瓦斯渗流方程[J].岩石力学与工程学报, 2002, 21(5): 644-646.
    [127]刘保县.延迟突出煤的物理力学特征和煤延迟突出机理研究[D].重庆:重庆大学, 2000.
    [128] Saghafi, A.. Numerical simulation of coalbed gas flow and its application in the prediction of gas emission and extracting gas [A]. In: Proceedings of the 22 th International symposium on Mining science and Safety Technology [C]. Beijing: China Coal Industry Publisher House, 1987.
    [129] Y. Zhou, R. K. N. D. Rajapakse, J. Graham. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration [J]. International journal of solids and structures, 1998, 35(34): 4 659-4 683.
    [130]丁继辉,麻玉鹏,赵国景等.有限变形下的煤与瓦斯突出的固流两相介质耦合失稳理论[J].河北农业大学学报, 1998, 21(1): 74-82.
    [131]马淑芝,贾洪彪,易顺民等.罗湖断裂带地应力场三维有限元模拟分析[J].岩石力学与工程学报, 2006, 25(Supp.2): 3 898-3 903.
    [132]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [133]孙培德,万华根.煤层气越流固-气耦合模型及可视化模拟研究[J].岩石力学与工程学报, 2004, 23(7):1179-1185.
    [134]梁运培.邻近层卸压瓦斯越流规律的研究[J].矿业安全与环保, 2000, 27(1): 32-37.
    [135] Huntush, M.S., and C.E. Jacob. Flow to an eccentric well in a leaky circular aquifer [J]. Journal of Geophys. Research, 1960, 65: 3425–3431.
    [136]刘志河,马其华,曹建军.煤矿采空区在数值模拟中的处理方法[J].煤矿开采, 2005, 10(6): 4-12.
    [137] Softbrain Software Co.,Ltd. User Manual for 3D-σ[Z]. Japan:Softbrain Software Co.,Ltd,1996.
    [138]谢和平,周宏伟,王金安,等. FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报, 1999, 18(4):397-401
    [139]李明好.下保护层开采卸压范围及卸压程度的研究[D].淮南:安徽理工大学, 2005.
    [140]王宏图,鲜学福,尹光志,等.煤矿深部开采瓦斯压力计算的解吸算法[J].煤炭学报, 1999, 24(3): 279-283.
    [141] SUN P D. A numerical approach for coupled gas leak flow and coal/rock deformation in parallel coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(supp.1): 2A 21 1-6.
    [142]林柏泉,崔恒信.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社, 1998: 60-63.
    [143] SOMERTON W H. Effect of stress on permeability of coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1974, 12(1): 129-145.
    [144]吕闰生,张子戌.提高测压钻孔瓦斯压力测定成功率分析[J].煤炭工程, 2004, (11): 46-48.
    [145]中华人民共和国煤炭工业部.煤矿井下煤层瓦斯压力的直接测定方法[S]. 1996.
    [146]程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报, 2004, 33 (2): 132-136.
    [147]丙绍发,韩进波.芦岭煤矿远距离下保护层开采的瓦斯处理[J].煤矿安全,2002, 33(8): 9-10.
    [148]马丕梁.近距离上邻近层瓦斯抽放的研究[J].煤炭工程师, 1994, (1): 17-22.
    [149]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报, 2003, 32(5): 471-475.
    [150]徐建伏.浅析矿井卸压瓦斯抽放[J].煤矿开采, 2002, 52: 72-74.
    [151]刘泽功,袁亮.首采煤层顶底板围岩裂隙内瓦斯储集及卸压瓦斯抽采技术研究[J].中国煤层气, 2006, 3(2): 11-15.
    [152]夏红春,程远平,柳继平.远程覆岩卸压变形及其渗透性研究[J].西安科技大学学报, 2006, 26(1): 10-14.
    [153]程远平,俞启香,袁亮.上覆远程卸压岩体移动特性与瓦斯抽采技术[J].辽宁工程技术大学学报, 2003, 22(4): 483-486.
    [154]孙培德,鲜学福.煤层气越流的固气耦合理论及其应用[J].煤炭学报, 1999, 24(1): 60-64.
    [155]易丽军,俞启香.低透气性煤层瓦斯抽采增流技术[J].矿业安全与环保, 2005, 32(6): 46-48.
    [156]林海飞.采动裂隙椭抛带中瓦斯运移规律及其应用分析[D].西安:西安科技大学, 2004.
    [157]重庆市煤炭学会.重庆地区煤与瓦斯突出防治技术[M].北京:煤炭工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700