用户名: 密码: 验证码:
具有某种对称性的Sobolev紧嵌入定理及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Compact Sobolev Embeddings Involving Symmetry and Its Applications
  • 作者:高娟娟
  • 论文级别:博士
  • 学科专业名称:基础数学
  • 学位年度:2009
  • 导师:赵培浩 ; 李万同
  • 学科代码:070101
  • 学位授予单位:兰州大学
  • 论文提交日期:2009-04-01
摘要
在这篇博士学位论文中,我们主要考虑有界光滑的柱对称区域Ω上变指数Sobolev空间W_0~(1,p(x))(Ω)中特殊的紧嵌入定理,即W_0~(1,p(x))(Ω)空间中具有与Ω相同对称性的函数可以嵌入到加权的L~(q(x))(Ω)空间中,其中q(x)可以超越临界Sobolev指数p~*(x)=(?).从而,应用此嵌入定理,变分方法,以及椭圆方程的正则性理论,我们分别得到了具有超临界非线性项的如下三类椭圆问题和解的存在性,多重性和正则性.
In this doctoral dissertation, we consider the special compact embedding theorems in the domainΩwhich is bounded and regular with cylindrical symmetry.We prove that functions having the same symmetry asΩin the variableexponent Sobolev space W_0~(1,p(x))(Ω) can be embedded compactly into some weighted L~(q(x))(Ω) spaces, with q(x) superior to the critical Sobolev exponent. Furthermore, we apply the above compact embedding theorems to the followingelliptic equations with supercritical nonlinearitiesandBy variational arguments and regularity theory of elliptic equations, we show the existence, multiplicity and regularity of the solutions of the above problems.
引文
[1] A. Bahri, J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure. Appl. Math. 41(1988) 253-294. 1.2
    [2] Anouar Ben Mabrouk, Mohamed Lakdar Ben Mohamed, Phase plane analysis and classification of solutions of a mixed sublinear-superlinear elliptic problem, Non. Anal., in press. 1.2
    [3] A. Ambrosetti, H. Brezis, G. Cerami,Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519-543. 1.2, 1.3, 1.5, 4.2.3
    [4] A. Ambrosetti, Critical points and nonlinear variational problems, Mm. Soc. Math. Prance (N.S.) No. 49 (1992), 139 pp. 1.2
    [5] A. Ambrosetti, J. Garcia and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996) 219-242. 1.3
    [6] A. Ambrosetti, J. G. Azorero, I. Peral, Multiplicity results for some nonlinear elliptic equations: A Survey, Rendiconti diMatematica Univ. Roma, Seria Ⅶ Vol. 20 (Number in Honor to G. Fichera) (2000) 167-198. 1.3
    [7] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. 1.2
    [8] A. Coscia, G. Minggione, H(?)lder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris Ser. I 328 (1999) 363-368. 1.4
    [9] C. Budd, J. Norburg, Semilinear elliptic equation and supercritical growth, J. D. E. 68(1987), 169-197. 1.2
    [10] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of problems in RN involving the p(x)-Laplacian, Progr. Nonlinear Differential Equations Appl. 66 (2005) 17 - 32. 1.4, 1.4
    [11] Dimitrios A. Kandilakis, Athanasios N. Lyberopoulos, Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in R~1, Comment. Math. Univ. Carolinae 44, 4(2003) 645-658. 1.3
    [12] Dimitrios A. Kandilakis, Athanasios N. Lyberopoulos, Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in R~n, Comment. Math. Univ. Carolinae 44, 4(2003) 645-658. 4.3
    [13] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. P(?)rez, The boundedness of classical operators on variable L~P spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006) 239-264. 1.4, 3.1
    [14] D. D. Joseph, T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973) 241-269. 1.1, 1.2
    [15] D. E. Edmunds, J. Rakosnik, Sobolev embedding with variable exponent, Studia Math. 143 (2000) 267-293. 1.4, 3.1
    [16] D. E. Edmunds, J. R(?)kosn(?)k, Sobolev embedding with variable exponent,Ⅱ, Math. Nachr. 246/247 (2002) 53 - 67. 1.4, 3.1
    [17] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Oder, second ed. Springer-Verlag, Berlin, 1983. 3.2.1
    [18] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. math. J. 21 (1972) 979-1000. 1.3
    [19] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev ex- ponent in some contractible domains, Manuscripta Math. 65(2)(1989) 147-165. 1.2
    [20] D. Passaseo, Nontrival solutions of elliptic equations with supercritical exponent in contractible domains, Duke Math. J. 92(2)(1998) 429-457. 1.2
    [21] D. Passaseo, Existenza e molteplicit(?) di soluzioni positive per equazioni ellittiche con nonlinearit(?) sopracritica, Rend. Acc. Naz. Sci. XL Mem. Mat. (5)(16)(1992), 77-98. 1.2, 1.3
    [22] D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity, Differential Integral Equations 8(3)(1995) 577-586. 1.2, 1.3
    [23] D. Passaseo, Nonexistence results for elliptic problems with supercritical non-linearity in nontrivial domains, J. Funct. Anal. 114(1)(1993) 97-105. 1.2
    [24] E. Acerbi, G.Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002) 213-259. 1.4
    [25] E. Acerbi, G.Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal. 156 (2001) 121 - 140. 1.4
    [26] E. Acerbi, G.Mingione, Regularity results for stationary electro-rheological fluids: the stationary case, C. R. Acad. Sci. Paris Ser. I 334 (2002) 817-822. 1.4
    [27] E. Acerbi, G.Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002) 213-259. 1.4
    [28] E. Di Benedetto, C~(1,α) local regularity of weak solutions of degenerate elliptic equations, Non. Anal. TMA 7 (1983) 827-850. 1.3
    [29] E. N. Dancer, K. Zhang, Uniqueness of solutions for some elliptic equations and systems in nearly star-shaped domains, Non. Anal. 41(5-6)(2000), 745-761. 1.2
    [30] E. N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20(6)(1988) 600-602. 1.2
    [31] Gabriella Bogn(?)r, Parel Dr(?)bek, The p-Laplacian equation with superlinear and supercritical growth, multiplicity of radial solutions, Non. Anal. 60 (2005) 719-728. 1.3
    [32] G. B. Li, S. S. Yan, Eigenvalue problems for quasilinear elliptic equations on R~N, Comm. Partial Differential Equations 14 (1989) 1291 - 1314. 1.4
    [33] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponents, Ann. Inst. H. Poincar(?), Anal. Nonlin(?)aire 9 (1992) 281-304. 1.2
    [34] F. Brock, L. Iturriaga and P. Ubilla, A multiplicity result for the p-Laplacian involving a parameter, Ann. Henri. Poincar(?) 9 (2008) 1371-1386. 1.3
    [35] F. J. S. A. Correa, On pairs of positive solutions for a class of sub-super-linear elliptic problem, D. I. E. 5(2)(1992), 387-392. 1.2
    [36] F. Merle, L. A. Peletier, Positive solutions of elliptic equations involving supercritical growth, Proc. Roy. Soc. Edinburgh. 118A(1991), 49-62. 1.2
    [37] F. Merle, L. A. Peletier, Asymptotic behaviour of positive solution of elliptic equation with critical and supercritical growth, I, The radial case, Arch. Rational Mech. Math. 112(1990), 1-19. Ⅱ, The nonradial case, J. D. E. 105(1992), 1-41. 1.2
    [38] F. Pacard, Convergence and partial regularity for weak solution of some nonlinear elliptic equation: the supercritical case, Ann. Inst. H. Poincare Anal. Non Lineaire 11(5)(1994), 537-551. 1.2
    [39] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Non. Anal. 12 (1988) 1203-1219. 1.3
    [40] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477. 1.1, 1.2
    [41] H. Brezis, L. Nirenburg, H~1 versus C~1 local minimizers, C. R. Acad. Sci. Paris Sr. I Math. 317(5)(1993) 465-472. 1.3, 4.2
    [42] J. G. Azorero, I. Peral, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43, No. 3, (1994) 941-957. 1.3
    [43] J. G. Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term, Trans. Amer. Math. Soc. 323, No. 2, (1991) 877-895. 1.3
    [44] J. G. Azorero, I. Peral, Existence and non-uniqueness for the p-Laplacian: nonlinear eigenvalues, Comm. Partial Defferential Equations 12 (1987) 1389-1430. 1.3
    [45] J. Garcia Azorero, J. J. Manfredi, I. Peral Alonso, Sobolev versus H(?)lder local minimizer and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math. 2 (2000) 385-404. 1.3
    [46] J. Kazdan, F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure. Appl. Math. 28(5) (1975) 567-597. 1.2
    [47] Jann-Long Chern, Eiji Yanagida, Structure of the sers of regular and singular radial solutions for a semilinear elliptic equation, J. Differential equations 224(2006) 440-463. 1.2
    [48] J. L. Lions, Quelques M(?)thodes de R(?)solution des Probl(?)ms aux Limites Non Lin(?)aires, Dunrod Gauthier-Villars, Paris, 1969.
    [49] J. L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, vol. 1, Springer, Berlin, 1972.
    [50] J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris 299 series Ⅰ (1984), 209-212. 1.2
    [51] J. Musielak, Orlicz spaces and modular spaces, in: A. Dold, B. Eckmann (Eds.), Lecture Notes in Math, Vol. 1034, Springer-Verlag, Berlin, 1983. 1.4, 2.3
    [52] J. Serrin, Local behavior of solutions of quasi-linear elliptic equations, Acta Math. 111 (1964) 247-302. 1.3
    [53] L. Boccardo, M. Escobedo, I. Peral, A Dirichlet problem involving critical exponents, Non. Anal. TMA, Vol. 24, No. 11, (1995) 1639-1648. 1.3
    [54] L. C. Evans, Partial Differential Equations, GSM 19, 1998.
    [55] L. Diening, P. H(?)st(?), A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces , in: P. Dr(?)bek, J. R(?)kosn(?)k (Eds.), FSDONA04 Proceedings, Milovy, Czech Republic, 2004, pp. 38-58. 1.4
    [56] Lynn Erbe, Moxun Tang, Structure of positive radial solutions of semilinear elliptic equations, J. Differential Equations 133(1997) 179-202. 1.2
    [57] M. del Pino, Nonlinear elliptic problems above criticality, Milan J. Math. 74(2006) 313-338. 1.2
    [58] M. del Pino, Juncheng Wei, Supercritical elliptic problems in domains with small holes, Ann. I. H. Poincar(?)-AN 24(2007) 507-520. 1.2
    [59] Maria do Ros(?)rio Grossinho, Stepan Agop Tersian, An Introduction to Mini-max Theorems and Their Applications to Differential Equations, Kluwer Academic Publications, 2001. 2.2
    [60] M. Del Pino, R. F. Manasevich, Global bifurcation from the eigenvalues of the p-Laplacian, J. D. E. 92 (1991) 226-251. 1.3
    [61] M. Guedda, L. V(?)ron, Bifurcation phenomenon associated to p-Laplace operator, Trans. Amer. Math. Soc. 310 (1988) 414-431. 1.3
    [62] M. Guedda, L. V(?)ron, Quasilinear elliptic equations involving critical Sobolev exponents, Non. Anal. TMA 13 (1989) 879-902. 1.3
    [63] M. K. Kwong, J. B. Mcleod, L. A. Peletier and W. C. Troy, On ground state solutions of -△u = u~p - u~q, J. D. E. 95(1992), 218-239. 1.2
    [64] M. Mih(?)ilescu, V. R(?)dulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007) 2929 - 2937. 1.4
    [65] M. Mih(?)ilescu, V. R(?)dulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A 462 (2006) 2625 - 2641. 1.4
    [66] M. Mih(?)ilescu, V. R(?)dulescu, Continuous spectrum for a class of nonhomogeneous differential operators, Manuscripta Math. 125 (2008) 157 - 167. 1.4
    [67] M. R(?)i(?)ka, Electrorheological Fluids: Modeling and Mathematical Theory, Spinger, Berlin, 2000. 1.4
    [68] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977. 1.2, 2.2, 4.3
    [69] Michael Struwe, Variational Mathods, Springer Verlag, 2000. [70] M. Willem, Minimax Theorems, Birkh(?)user, Boston, 1996. 1.4
    [71] M. Xu, Y. Z. Chen, H(?)lder continuity of weak solutions for parabolic equations with nonstandard growth conditions, Acta. Math. Sinica (E. S.) 20 (2006) 793-806. 1.4
    [72] Norimichi Hirano, Existence of nontrival solutions for a semilinear elliptic problem with supercritical exponent, Non. Anal. 55 (2003) 543-556. 1.2
    [73] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press (New York), 1968. 1.2, 1.3, 1.4
    [74] O. Kov(?)ik, J. R(?)kosn(?)k, On spaces L~(p(x))(Ω) and W~(k,p(x))(Ω), Czechoslovak Math. J. 41 (116) (1991) 592-618. 1.4, 2.3, 2.5.2, 3.1
    [75] O. Rey, On a variational problem with lack of compactness: the effect of small holes in the domain, C. R. Acad. Sc. Paris s(?)r. I. Math. 308 no. 12(1989), 349-352. 1.2
    [76] P. H. Rabinowitz, On a class of nonlinear Schr(?)dinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291. 1.4
    [77] P. L. Lions, On the existence of positive solutions of semilinear elliptic equation, SIAM Review, Vol. 24, No. 4, October 1982, 441-467. 1.2
    [78] P.L. Lions, The concentration - compactness principle in the calculus of variations. The locally compact case. Part 1, Ann. Inst. H. Poincare Anal. Non Lin(?)aire 1 (1984) 109-145. 1.4, 3.1
    [79] P.L. Lions, The concentration - compactness principle in the calculus of variations. The locally compact case. Part 2, Ann. Inst. H. Poincar(?) Anal. Non Lin(?)aire 1 (1984) 223-283. 1.4, 3.1
    [80] P. L. Lions, Sym(?)trie et compacit(?) dans les espaces de Sobolev, J. Funct. Anal. 49 (1982) 315-334. 3.1
    [81] P. Marcellini, Regularity and existence of solutions of elliptic equations with (p,q)-growth conditions, J. D. E. 90 (1991) 1-30.
    [82] P. Tolksdorff, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150. 1.3
    [83] Q. Y. Yu, T. Ma, Positive solution and bifurcation of nonlinear elliptic equation involving supercritical Sobolev exponents, Chinese J. Math. (Taiwan, R. O. C.)22(2)(1994),99-109. 1.2
    [84] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. 3.1, 3.2.2
    [85] Rafael D. Benguria, Classification of the solutions of semilinear elliptic problems in a ball, J. D. E. 167 (2000) 438-466. 1.2
    [86] R. Molle, D. Passaseo, Multiple solutions of supercritical elliptic problems in perturbed domains, Ann. I. H. Poincare-AN 23 (2006) 389-405. 1.2
    [87] R. Molle, D. Passaseo, Nonlinear elliptic equations with large supercritical exponents, Calc. Var. (2006) 26(2):201-225. 1.2
    [88] R. Molle, D. Passaseo, On the existence of positive solutions of slightly supercritical elliptic equations, Adv. Nonlinear Stud.3(3)(2003), 301-326. 1.2
    [89] R. Molle, D. Passaseo, Positive solutions of slightly supercritical elliptic equations in symmetric do- mains, Ann. I. H. Poincar(?)-AN 21 (2004) 639-656. 1.2
    [90] R. Molle, D. Passaseo, Positive solutions for slightly super-critical elliptic equations in contractible do- mains, Preprint Dip. Matem. Univ. Lecce, n.6,2001 and C. R. Acad. Sci. Paris ser I Math. 335(5)(2002), 459-462. 1.2
    [91] S. Antontsev, S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard conditions, in: M. Chipot, P. Quittner (Eds.), Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 3, Elsevier B.V., North-Holland, 2006, pp. 1 - 100. 1.4
    [92] S. G. Deng, Eigenvalue of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl. 339(2008), 925-937. 1.4
    [93] S. S. Lin, Positive singular solution for semilinear elliptic equation with supercritical growth, J. D. E. 114(1994), 57-76. 1.2
    [94] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators, Integral Transforms Spec. Funct. 16 (2005) 461 - 482. 1.4
    [95] S. Tokushi, Positive solution qith weak isolated singularities to some semilinear elliptic equation, Tohoku Mth. J. 47(20)(1995), 55-80. 1.2
    [96] T. Bartsch, M. Willem, On an elliptic equation with concave and convex non-linearities, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3555-3561. 1.2
    [97] T. L. Dinu, On a nonlinear eigenvalue problem in Sobolev spaces with variable exponent, Sib. Elektron. Mat. Izv. 2 (2005) 208 - 217. 1.4
    [98] V. V. Zhikov, Averaging of functional of the calculus of variations and elasticity theory, Math. USSR. Izv. 29 (1987) 33-66. 1.4, 2.5.5
    [99] V. V. Zhikov, On passing to the limit in nonlinear variational problem, Mat. Sb. 183(8), 47-84 (1992). 1.4
    [100] V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems. 1.4
    [101] V. V. Zhikov, On Lavrentiev' s phenomenon, Russ. J. Math. Phys. 3 (1995) 249-269. 1.4
    [102] V. V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997) 105-116. 1.4
    [103] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162. 3.1
    [104] W. Orlicz, (?)ber konjugierte exponentenfolgen, Studia Math. 3 (1931) 200-212. 1.4
    [105] W. Y. Ding, Positive solutions of △u + (?) =0 on contractible domains, J. Partial Differntial Equations 2(4)(1989) 83-88. 1.2
    [106] W. Z. Wang, Sobolev embeddings involving symmetry, Bull. Sci. math. 130 (2006) 269-278. 1.1, 1.5, 3.1, 4.1.1
    [107] X. Cabre, P. Majer, Truncation of nonlinearities in some supercritical elliptic problems, C. R. Acad. Sci. Paris S(?)r. I Math. 322 (1996), no. 12, 1157-1162. 1.2
    [108] X. L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005) 464-477. 1.4, 2.3.3, 2.5
    [109] X. L. Fan, Some results on variable exponent analysis, in: Proceedings of 5-th ISAAC Congress, University of Catania, Italy, July 25-30, 2005.
    [110] X. L. Fan, D. Zhao, On the spaces L~(p(x))(Ω) and W~(m,p(x))(Ω), J. Math. Anal. Appl. 263 (2001) 424-446. 1.4, 1.5, 2.3.1, 2.3, 2.3.2, 2.3.4, 2.3.5, 2.3.6, 2.3,2.3.7, 2.4.3, 2.5.2, 2.5.3, 2.5.4, 2.5, 3.1
    [111] X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spaces W~(k,p(x))(Ω), J. Math. Anal. Appl. 262 (2001) 749-760. 1.4, 2.5, 3.1, 3.3
    [112] X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Non. Anal. 52 (2003) 1843-1952. 1.4, 1.4, 2.5
    [113] X. L. Fan, S. G. Deng, Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations, Non. Anal. 67 (11) (2007) 3064-3075. 1.4
    [114] X. L. Fan, D. Zhao, Compact imbedding theorems with symmetry of Strauss-Lions type for the space W~(1,p(x))(Ω), J. Math. Anal. Appl. 255, (2001) 333-348. 1.4, 1.4, 2.5.1, 3.1
    [115] X. L. Fan, The regularity of Lagranians f(x,ξ) = |ξ|~(α(x)) with Holder exponents α(x), Acta math. sin. 1.4
    [116] X. L. Fan, Regularity of nonstandard Lagrangians f(x,ξ), Non. Anal. Vol. 27, No. 6, (1996) 669-678. 1.4
    [117] X. L. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, JMAA, 339(2008)1395-1412. 1.4
    [118] X. L. Fan, D. Zhao, A class of De Giorgi type and Holder continuity, Non. Anal. 36 (1999) 295-318. 1.4
    [119] X. L. Fan, D. Zhao, The quasi-minimizer of integral functions with m(x) growth conditions, Non. Anal. 39 (2000) 807-816. 1.4
    [120] X. L. Fan, Global C~(1,α) regularity for variable exponent elliptic equations in devergence form, JDE 235 (2007) 397-417. 1.4
    [121] X. L. Fan, Q. H. Zhang, D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, JMAA (2005) 306-317. 1.4
    [122] X. L. Fan, Eigenvalues of the p(x)-Laplacian Neumann problems, Non. Anal. 67 (2007) 2982-2992. 1.4
    [123] X. L. Fan, X. Y. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in R~N , Non. Anal. 59 (2004) 173-188. 1.4
    [124] X. L. Fan, C. Ji, Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian, JMAA 334 (2007) 248-260. 1.4
    [125] X. L. Fan, D. Zhao, Regularity of quasi-minimizers of integral functionals with discontinuous p(x)-growth conditions, Non. Anal. 65 (2006) 1521-1531. 1.4
    [126] X. L. Fan, On the sub-supersolution method for p(x)-Laplacian equations, JMAA 330 (2007) 665-682. 1.4
    [127] X. L. Fan, A constrained minimization problem involving the p(x)-Laplacian in R~N, Non. Anal. 69 (2008) 3661-3670. 1.4
    [128] X. L. Fan, p(x)-Laplacian equations in R~N with periodic data and nonperiodic perturbations, JMAA 341 (2008) 103-119. 1.4
    [129] X. L. Fan, Remarks on eigenvalue problems involving the p(x)-Laplacian, J. Math. Anal. Appl., 352(2009), 85-98. 1.4
    [130] X. L. Fan, Y. Z. Zhao, Nodal solutions of p(x)-Laplacian equations, Non. Anal. 67 (2007) 2859 - 2868. 1.4
    [131] Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006) 1383-1406. 1.4
    [132] Y. T. Shen, S. S. Yan, The Variational Methods for Quasilinear Elliptic Equations, South China Univ. of Technology Press, Guang Zhou, 1995 (in Chinese). 1.4
    [133] Z. M. Guo, H. Zhang, Large positive solutions of semilinear elliptic equations with critical and supercritical growth, J. Mth. Anal. Appl. 270 (2002) 107-128. 1.2
    [134] Z. M. Guo, Z. T. Zhang, W~(1,p) versus C~1 local minimizers and multiplicity results for quasilinear elliptic equations, JMAA.286 (2003) 32-50. 1.3
    [135] Z. M. Guo, Asymptotic behaviour of small solutions of quasilinear elliptic equations with critical and supercritical growth, Non. Anal. 52 (2003) 1005- 1016.
    [136] Z. M. Guo, H. F. Li, Structrue of positive solutions of quasilinear with critical and supercritical growth, J. Partial Differential Equations 15 (2002), no. 3, 1-22.
    [137] Z. Tan, Z. Yao, The existence of multiple solutions of p-Laplacian elliptic equation, Acta Math. Sci. 21B (2001) 203-212. 1.3
    [138] 郭大钧,非线性泛函分析(第二版),山东科学技术出版社,2002.
    [139] 张恭庆,林源渠,泛函分析讲义,北京大学出版社,2005.
    [140] 钟承奎,范先令,陈文源,非线性泛函分析引论,兰州大学出版社,1998.
    [141] 赵培浩,兰州大学博士论文,1997.1.2
    [142] 邓绍高,兰州大学博士论文,2008.
    [143] 刘越里,兰州大学硕士论文,2007.1.4
    [144] 王晓燕,兰州大学硕士论文,2008.
    [145] 孙明正,首都师范大学硕士论文,2006.
    [146] 吴波,浙江师范大学硕士论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700