用户名: 密码: 验证码:
“窗式”X射线晶体谱仪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光等离子体发射的X射线谱中包含着十分丰富的信息,是研究等离子形成、发展并进行状态诊断的有力工具之一。为了获得更高精度激光等离子体的诊断数据、观察到理论所预言的现象和发现新的现象,这就客观上驱使人们不断地展开探究新型、更有效的X射线的成像技术、分光技术和探测技术的工作。新的Johann型、球面型和轮胎型等弯曲晶体谱仪不仅提高了谱仪的光谱分辨率和收集效率,而且不需要狭缝,能实现很高的空间分辨能力,但容易产生像散,晶体加工成型有一定难度。近几年来科研工作者逐渐将重点转移到了椭圆型弯曲晶体谱仪等其它晶体谱仪上,和球面型弯曲晶体谱仪相比,椭圆型晶体谱仪在测量谱范围、工作距离、调整、对准、操作和数据处理等方面有独特优势,另外没有像差。但在实测谱分辨率、信噪比上也存在一些不足,空间分辨还要靠狭缝来实现。本论文从X射线晶体衍射和椭圆自聚焦几何光学原理出发,剖析追究了椭圆型弯曲X射线晶体谱仪在实际应用中产生问题的根源,率先从技术上提出解决目前椭圆型弯曲X射线晶体谱仪存在问题的思路,论证了其相应实施方案的可行性。在此基础上,提出了基于椭圆型分光晶体的“窗式”X射线晶体谱仪,并研制完成了“窗式”X射线晶体谱仪。进一步以此为核心开发出了一种新型的X射线测量与诊断系统,取得了一些新的科研成果,可为王王淦淦昌昌院士、王大珩院士二老倡导研制成的用于国防科研、激光惯性约束聚变(ICF)、强激光与物质相互作用、X射线激光等物理研究的大型钕玻璃高功率“神光II”激光装置上的物理实验提供更有效的诊断X射线谱手段,扩充了其应用范围,也对激光等离子体辐射keV以上能区段的X光发射和吸收的原子物理过程与机制、占据动力学、谱形态结构等方面做了深入一步的理论和实验研究。
     具体研究内容如下:
     (1)针对“神光II”激光装置X激光靶室及物理实验研究的特殊需求,利用椭圆自聚焦几何光学原理,对X射线晶体谱仪中的关键参数,诸如椭圆离心率和谱线探测角等,与椭圆型分光晶体的线色散、谱分辨率和聚光度之间的关系进行了建模与数字计算;并采用光线追踪和光路函数方法,从既要提高光谱分辨能力,又要提高空间分辨能力的角度出发,对椭圆型X射线晶体谱仪的结构参数进行了优化、完成了谱仪设计;探讨了椭圆型分光晶体对X射线的聚焦能力问题,提出了基于椭圆型分光晶体的“窗式”X射线晶体谱仪设想。
     (2)针对“窗式”X射线晶体谱仪的特点,模拟研究了掠入射镜的镀层材料、分光晶体的积分反射系数和滤波材料膜片衰减的特性,优化设计了前置掠入射镜光学系统,加工制作成了大面积(Φ100mm)掠入射平面镜。依据“窗式”X射线晶体谱仪系统的光学特性,优化了“窗式”X射线晶体谱仪系统的光路,研制完成了“窗式”X射线晶体谱仪系统,定义了系统的线传递函数,并仿真了“能量窗”。
     (3)从像差理论出发,建立了“窗式”X射线晶体谱仪系统严格的波长判读误差理论模型,探讨了系统元件对波长判读误差的权重影响,并利用光线追踪程序模拟和定量计算了谱仪系统的波长判读误差,得到了谱仪系统的实际谱分辨本领,从而从理论上论证了“窗式”X射线晶体谱仪系统有高的谱分辨能力(λΔλ≥1000);与椭圆型X射线晶体谱仪相比,信噪比提高了约3倍。
     (4)基于自行设计研制的“窗式”X射线晶体谱仪、结合X射线CCD相机等设备,建立了“窗式”X射线晶体谱仪配X射线CCD相机的X射线测量与诊断系统,优化了系统的光路准直方案,分别对铝(Al)、钛(Ti)和金(Au)等激光等离子体的发射谱进行了实验测量,获得了清晰干净高信噪比的X射线谱图,并对实验谱图进行了谱线波长定标、辨认和归类,还给出了“窗式”X射线晶体谱仪的实测谱分辨能力,同时也提出了谱线强度校正新方案。
     (5)针对自行设计研制的“窗式”X射线晶体谱仪配X射线CCD相机的X射线测量与诊断系统中的应用问题,对晶体的积分反射系数、谱仪几何结构因子、X射线CCD相机的量子响应等进行了初步研究。并基于理论模型及实验结果、探讨了一些诊断激光等离子体状态参数的手段和方法。
The X-ray spectra emitted from laser-produced plasmas contain plentiful information. It is a powerful tool to carry out plasma diagnosis and to study the formation and evolution of the plasmas as well. In order to obtain the high precise experimental data, to detect the phenomenon which has been predicted by the theory, and to discover the new variation of line intensities in the laser-plasma spectral measurement, it is necessary for a novel effective x-ray spectrographs and detecting technology to be developed such as a novel Johann, and spherically or torroidally bent crystal spectrometer due to their increasing luminosity, and high spectral and spatial resolution. In recent years, research of the elliptically crystal spectrometer became hot topic gradually. Compare with the spherically curved crystal spectrometer, although the elliptically curved crystal spectrometer has shortcoming in the measured spectral resolution, signal-to-noise ratio, and spatial resolution,it has the merits of a large spectral range measurement, a large working distance to the source, a real crossover point, no aberration, and a feasible collimation. In this thesis, the theoretical system of the elliptically curved crystal spectrograph was studied by the Bragg equation and the elliptical self-focusing geometric principle, and it was analyzed for the drawback of the elliptically curved crystal spectrometer in the practical application. The idea was firstly proposed to solve the shortcming and demonstrated its feasibility accordingly. And then, a window-type novel x-ray crystal spectrometer was put forward based on the elliptically curved crystal analyzer. It was coupled to an x-ray CCD camera, and a set of system had been designed and constructed. The spectrograph is useful in the experiments of x-ray diagnostics, for example in x-ray lasers, inertial confinement fusion (ICF), laser-matter interaction, and so on. In this paper, the atomic physics mechanism, emission, absorbing and spectrum structure of the keV x-ray spectra were also studied in details both experimentally and theoretically. Detailed contents are given as follows:
     (1)In views of the x-ray laser target chamber on the SG-II high-power laser facility and the experimentally physical demands, the key influencing factors, such as the elliptical eccentricity and the spectral detection angle, on the angular dispersion, the spectral resolution,and the photometric parameter were studied by the elliptical self-focusing geometric principle. In order to increase the spectral and spatial resolution, using ray tracing code and optical path function, optimization calculation was carried out for an elliptical crystal spectrometer. For the requirements of the high spectral resolution and good signal-to-noise ratio, a window-type novel x-ray crystal spectrometer was presented according to the calculation results that the photometric parameter was simulated in the elliptically curved crystal analyzer.
     (2) Based on the distinguishing feature of a window-type novel x-ray crystal spectrometer, the characteristics of the coated material of the grazing incidence flat reflection mirror, the crystal integrated reflectivity, and the filter transmissivity were also studied, respectively. The optical system of the pre-grazing incidence mirror was designed. A large area (Φ100 mm) flat mirror was fabricated. It was optimized for the optical path of the window-type x-ray crystal spectromter/s system. The spectrograph was developed. The line transmission function for a spectrographic system, combining with a large area flat mirror as pre-positive optic system, and a filter, was given. The energy window was numerically simulated.
     (3) Beginning with basic principle of aberration theory, the strict theory model of wavelength error was established and the influencing factors on the errors of wavelength were analyzed in the window-type x-ray crystal spectrometer coupled to x-ray CCD, and a set of syetem, The wave front aberration theory and ray tracing code indicate that the spectrometric system has good spectral resolution (λΔλ) better than 1000. Compare with the elliptically curved crystal spectrometer, the improvement of signal-to-noise ratio is about 3 times.
     (4) On the basis of the self-designing window-type x-ray crystal spectrometer coupled to x-ray CCD, a window-type novel x-ray spectral measuremental and diagnostical system was set up, aligning scheme is designed, and the K-shell emissions of the laser-produced Al and Ti plasma, and M-band radiation of the laser-produced Au plasma were measured, respectively. The measured results presented high signal-to-noise ratio x-ray spectra. Some spectral lines were classified, and the measured spectral resolution of the spectrograph was given. At the same time, the error correction of the measured spectral line intensity was also proposed.
     (5) Based on the self-designing window-type x-ray crystal spectrometer coupled to x-ray CCD, and a set of syetem, some issues related to the experimental measurements of the keV x-ray, such as the diffraction efficiency of crystal, the geometrical factors and x-ray CCD camera quantum efficiency, were discussed. According to the theoretical models, and measured spectral results, the diagnostic method of laser-produced plasma’s kinetic parameters was also pointed out.
引文
[1] N. G. Basov, K. Goetz, M. P. Kalashnikov, et al. Investigation of laser plasma dynamics using the x-ray spectra of multicharged ions[J]. Nucl. Instrum. Meth. B., 1985, 9:773 -780.
    [2] J. S. Wark,H.He, O.Renner, et al. Detailed hydrodynamic and x-ray spectroscopic analysis of a laser-produced rapidly-expanding[J], JQSRT., 1994,51: 397-406.
    [3] I. C. E. Turcu, M.Lawless, M.Williams, et al. X-ray emission from plasmas produced by Nd-laser on Fe target[J]. SPIE.,1987, 831: 211-216.
    [4] D. J. Negal, W. L. Pickles. Advances in X-ray Analysis. 18# Plenum, New York., 1975, P146.
    [5] A.Zigler, H.Zmora, and N.Spector. Identification of the spectra of HfXI_V,TaXI_VI,WXI_VII,and ReXI_VIII isoelectronic to Ni I in laser-produced plasmas[J]. J.Opt.Soc.Am., 1980,70(1): 129-132.
    [6] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys.Plasmas, 1995, 2(11):3933-4023.
    [7]王瑞荣,王伟,王琛,等.双驱动X射线激光等离子体能谱特性研究[J].物理学报,2003,52:556-560.
    [8] B.L.Henke and P.A.Jaanimagi. Two-channel, elliptical analyzer spectrograph for absolute, time-resolving time-integrating spectrometer of pulsed x-ray sources in the 100-10000-eV region[J]. Rev. Sci. Instrum., 1985, 56(8): 1537-1552.
    [9]王瑞荣,肖沙里,钱家渝,等.高分辨椭圆弯晶谱仪在激光等离子体实验中的应用[J].强激光与粒子束,2007,19(7):1163-1166.
    [10]汪艳,杨国洪,杨家敏,等.透射晶体谱仪及其理论计算[J].光学学报,2006,26(10):1507-1511.
    [11]毛楚生,顾援,吴江,等.用于激光等离子体实验的X光底片的相对标定[J].核聚变与等离子体物理,1983,3(2):285-290.
    [12]易荣清,冯杰,胡皙,等.软X射线条纹相机的静态性能研究[J].原子与分子物理学报,2000,17(3):421-425.
    [13]张杰,李赞良.一种宽波段谱晶体谱仪.G01N23/207,00205765.2001.4.18 .
    [14]范品忠,Fill E,关铁堂,等.软X射线晶体谱仪[J].光学学报,1995,15(7):923-926.
    [15]刘亚青.激光等离子体X光光谱诊断方法的研究[M].中国科学院上海光学精密机械研究所硕士学位论文,1995:17-19.
    [16]胡朝晖。平面晶体波长色散位置灵敏谱仪极其应用[J].核物理动态,1994,11(3):53-57).
    [17] G.V. Brown, P.Beiersdorfer, and K. Widmann. Wide-band high-resolution soft x-rayspectrometer for the electron beam ion trap[J]. Rev. Sci. Instrum., 1999, 70(1):280-283.
    [18] M. Koenig, J. M. Boudenne, P. Legriel, et al. A computer driven crystal spectrometer with charge coupled device detectors for–ray spectroscopy of laser plasmas[J]. Rev. Sci. Instrum., 1997, 68(6):2387-2392.
    [19] V. Arora, S. R. Kumbhare, P. A. Naik, et al. A simple high-resolution on-line x–ray imaging crystal spectrograph for laser-plasma interaction studies[J]., Rev. Sci. Instrum., 2000, 71(7):2644-2650.
    [20] L. T. Hudson, A. Henins, R. D. Deslattes, et al. A high-energy x-ray spectrometer diagnostic for the OMEGA laser[J]. Rev. Sci. Instrum. 2002,73(6):2270-2275.
    [21]张利,卢杰,陈杰夫.在HL-1M装置上用弯晶谱仪测量离子温度[J].核聚变与等离子体物理,1996,16(4):31-35.
    [22] S. Muto, S. Morita, and K. Kondo. Radial profiles of 2p-1s helium-like oxygen lines measured from the compact helical system using a vacuum crystal spectrometer[J]. Rev. Sci. Instrum., 1997,68(1):1039-1042.
    [23] A. P. Shevelko, Yu. S. Kasyanov, O. F. Yakushev, et al. Compact focusing von Hamos spectrometer for quantitative x-ray spectroscopy [J]. Rev. Sci. Instrum., 2002, 73(10):3458-3463.
    [24] U. Andiel, K. Eidmann, F. Pisani, et al. Conical x-ray crystal spectrometer for time integrated and time resolved measurements [J]. Rev. Sci. Instrum., 2003, 74(4):2369-2374.
    [25] A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, et al. Portable tunable high-luminosity spherical crystal spectrometer with an x-ray charge coupled device for high-resolution x-ray spectromicroscopy of clusters heated by femtosecond laser pulses[J]. Rev. Sci. Instrum., 2001,72(4):1956-1962.
    [26] F. Pisani, M. Koenig, D. Batani, et al. Toroidal crystal spectrometer for time-resolved x–ray absorption diagnostic in dense plasmas [J]. Rev. Sci. Insreum., 1999, 70(8):2388-2397.
    [27] R. Barnsley, N. J. Peacock, J.Dunn, et al. Versatile high resolution crystal spectrometer with x–ray charge coupled device detector [J]. Rev.Sci. Instrum., 2003, 74(4):2388-2397.
    [28] B. M. Song, S. A. Pikuz, T. A. Shelkovenko,et al.. Focusing x-ray spectrograph with crossed dispersion[J]. Rev. Sci. Instrum., 2003, 74(3): 1954-1957.
    [29] S. G. Lee, J. G. Bak, M. Bitter et al.. Imaging x-ray crystal spectrometers for KSTAR[J]. Rev. Sci. Instrum. 2003, 74(3): 1997-2000.
    [30] D. L. Robbins, H. Chen and P. Beiersdorfer. High resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap[J]. Rev. Sci. Instrum. 2004, 75(10): 3717-3719.
    [31] L. N. Koppel.Active-recording x-ray crystal spectrometer for laser-induced plasmas[J]. Rev. Sci. Instrum.,1976, 47(9):1109-1112.
    [32] B. Yaakobi, R. E. Turner, H. W. Schnopper, et al.. Focusing x-ray spectrograph for laser fusion experiments[J]. Rev. Sci. Instrum., 1979, 50(12):1609-1611.
    [33] L.S. Birks. Convex curved crystal x-ray spectrograph [J]. Rev. Sci. Instrum., 1970, 41(8):1129-1132.
    [34] S.L.Xiao, Y.J.Pan, X.X.Zhong, et al. High-resolution x-ray focusing concave (elliptical) curved crystal spectrograph for laser-produced plasma[J]. Opt. Lett, 2004, 2(8): 495-496
    [35] F. N. Beg, J. Ruiz-Camacho, M. G. Haines et al..Plasma dynamics during the evolution of two wire Z-pinch[J]. Plasma Phys. Control. Fusion. 2004, 46(4): 1-10.
    [36] J. A. Koch, Y. Aglitskiy, C. Brown, et al.. 4.5- and 8-keV emission and absorption x-ray imaging using spherically bent quartz 203 and 211 crystals .invited[J]. Rev. Sci. Instrum., 2003, 74(3): 2130-2135.
    [37] B. A. Hammel, and L. E. Ruggles. Elliptical spectrograph gated microchannel-plate detector for time resolved spectral measurements in the x-ray region[J]. Rev. Sci. Instrum., 1988, 59(8):1828-1830.
    [38] B. L. Henke, H. T. Yamada, T. J. Tanaka. Pulsed plasma source spectrometry in the 80 ~ 8000 eV X-ray region [J]. Rev. Sci. Instrum. 1983, 54 (10): 1311 ~ 1315.
    [39]熊先才,钟先信,高洁,等.双通道椭圆弯晶谱仪的光学设计[J].光学精密工程,2004,12(3):62-67.
    [40]孙景文著.高温等离子体X射线谱[M].北京:国防工业出版社,2003.
    [41]李树棠著.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990.
    [42] L.S.勃克斯著. X射线光谱分析[M].北京:科学出版社,1973.
    [43]项志遴,俞昌旋著.高温等离子体诊断技术[M].上海:上海科学技术出版社,1982
    [44] G. A. Kyrala, V. L. Jacobs, E. K. Wahlin, et al. X-ray generation by high irradiance sub-picosecond lasers[J]. Appl. Phys. Lett, 1992, 60: 2195-2197.
    [45]王瑞荣,陈伟民,董佳钦,等.高分辨X射线晶体谱仪及其在激光等离子体中的应用研究[J].光学学报,2008,28(6):1220-1224.
    [46] B. L. Henke. Low energy x-ray spectroscopy with crystal and multi-layers. The Conference on Low Energy X-ray Diagnostics[N]. 1981, Monterey, California, Proc. AIP 75: 85-88.
    [47]杨福家.原子物理学(第三版)[M].北京:高等教育出版社,2000.
    [48] D. H. Kalantar, S. W. Haan, B. A. Hammel, et al. X-ray backlit imaging measurement of in-flight pusher density for an indirect drive capsule implosion[J]. Rev. Sci. Instrum., 1997, 68(1):814-816.
    [49] [苏]K. H.塔拉索夫著.光谱仪器[M].北京:机械工业出版社, 1984.
    [50] J.Nuckolls, L.Wood, A.Thieseen, et al. Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications.Nature, 1972,239:139-142.
    [51] E.Storm, J.D.Lindl, et al. UCRL-preprint“Progress in Laboratory High Gain ICF prospects for the future”Submittal to Eighth Session of the International Seminars on Nuclear War[N]. Italy. August.1988.
    [52] W.L.Kruer. Physics of laser Plasma Interactions[N]. Redwood city CA: Addison-Wesley, 1988.
    [53] H.A.Baldis, E.M.Campbell, and W.L.Kruer. Laser-Plasma interactions In Physics of Laser Plasma[N]. edited by M.N.Rosenbluth and R.Z.Sagdeev. Amsterdam-London–NewYork -Tokyo: North-Holland, 1991, 3: 361-434.
    [54]常铁强,张钧,张家泰,林德文,赖东显,沈隆钧,许林宝,陈光南著.激光等离子体相互作用与激光聚变[M].长沙:湖南科学技术出版社,1991.
    [55]汪卫星,常铁强,苏秀敏.非均匀等离子体中受激Raman散射非线性行为[J].物理学报,1994,43(5):766-771.
    [56]张钧,常铁强著.激光核聚变靶物理基础[M].北京:国防工业出版社,2004
    [57] D.G.Colombnt, K.G.Whimey, and D.A.Tidman. Laser target model[J]. Phys.Fluids.,1975, 18:1687-1697.
    [58]王薇,张杰,V.K.Senecha.对激光等离子体中X射线的产生与辐射加热研究[J].物理学报,2002,51(3): 590-594.
    [59] G.C.Pomraning. The equations of radiation hydrodynamics[J]. Radiation Hydrodynamics, 1973,173-175.
    [60] R.M.More. Electronic energy-levels in dense plasmas[J].JQSRT, 1982, 27: 345-357.
    [61] R.M.More. Atomic Physics in inertial comfinement fusion[J]. 1981,UCRL-84991.
    [62] A.S.Gouveia, M.E.Faldon, and J.R.Taylor. Modulational instability for normal dispersion[J]. Phys. Rev. A., 1990, 42: 682-685.
    [63]蓝可,张毓全.高温高密度等离子体速率方程组的求解及离子布居的研究[M].强激光与粒子束,1995,7(2):225-234.
    [64] J.W.Bond,K.M.Watson and J.A.Wesh,Atomic Theory of Gas Dynamics[M]. Addison-Wesley Educational Publishers Inc., Us, 1965.
    [65] W.A.Lokke,and W.H.Grasberger. A non-LTE emission and absorption coefficient subroutine [J]. 1977,UCRL-52276.
    [66] C.A.Back, C.C.Chenais-Popovics, P.Renaudin,et al. Study of Kαabsorption structures in a subcritical-density laser-produced plasma[J]. Phys. Rev. A., 1992,46(6):3405-3412.
    [67] L.B.Da-Silva, B.J.Macgowan, D.R.Kania, et al. Absorption measurements demonstrating the importance ofΔn=0 transitions in the opacity of iron[J]. Phys. Rev. Lett., 1992, 69(3):438-441.
    [68]陆同兴,赵献章,崔执风等.用发光光谱测量激光等离子体的电子温度与电子密度[J].原子与分子物理学报,1994,11(2):120-128.
    [69]陆同兴,路轶群著.激光光谱技术原理及应用[M].合肥:中国科学技术大学出版社,1999.
    [70]张国威,王兆民著.激光光谱学原理与技术[M].北京:北京理工大学出版社,1991.
    [71] N.Schweitzer, M.Klapisch, J.I.Schwob,et al. Nickel-like spectra of elements YXII to AgXX from a vacuum spark[J]. J.Opt.Soc.Am., 1981, 71(3): 219-226.
    [72]李世昌著.高温辐射物理与量子辐射理论[M].北京:国防工业出版社,1992.
    [73] G.C.Pomraning. The Equations of Radiation Hydrodynamics[N]. Oxford, Pergamon,1973.
    [74]于敏著.于敏论文集[M].北京:北京应用物理与计算数学研究所,1996.
    [75]周裕清,张保汉,杨国洪,等.高Z元素类镍离子谱研究[J].物理学报,1994,43(10):1623-1628.
    [76]项志遴,俞昌旋编著.高温等离子体诊断技术[M].上海:上海科学技术出版社,1982.
    [77] M.N antel, A.Klisnick, G.Jamelot, et al. Spectroscopic characterization of prepulsed x-ray laser plasmas[J]. Phys. Rev. E., 1996, 54(3): 2852-2861.
    [78] A.V.Vinogradov, Yu.I.Skobelov, E.A.Yokov. Determination of plasma density from spectra of helium-like ions[J]. Sov. J. Quant. Electron., 1975, 5(6):630-633.
    [79] G.B.Ma, S.J.Wang, Y.Gu, et al. Diagnostic of laser-produced Ge plasma[J]. Phys. Rev.A.,1991, 43(2):1972-1975.
    [80] B.La.Fontaine, J.Dunn, H.A.Baldis, et al. Electron-temperature inhomogeneities along an x-ray laser plasma[J]. Phys. Rev.E., 1993,47:583-590.
    [81] G.P.Gupta and B.K.Sinha. Parametric dependence of X-ray laser plasmas for 3P-3S transitions in neon-like kypton ions[J]. J.Appl.Phys., 1995,77:2287-2290.
    [82] A.Bar-Shalom, J.Orey, M.Kapisch, et al. Phys. Collisional radiative model for heavy atoms in hot non-local-thermodynamical-equilibrium plasmas[J]. Rev.E., 1997, 56:R70-73.
    [83] O.Peyrusse. Atomic configuration averages and non-local thermodynamical equilibrium plasma spectroscopy calculations[J]. J.Phys.B., 1999, 32: 683-700.
    [84]王瑞荣,陈伟民.椭圆型晶体谱仪谱测量的解谱研究[J].光学精密工程, 2009, 17(2):274-279.
    [85]相里斌,赵葆常,薛鸣球.光谱估计方法FAT的强度修正及品质因子[J].光学学报,1996,16(4):430-434.
    [86]张令清,韩申生,曹春宏.高分辨X光光谱的数据处理[J].光学学报,1994,14(4):785-790.
    [87] B.L.Henke, H.T.Yamada and T.J.Tanaka. Pulsed plasma source spectrometry in the 80-8000-eV x-ray region[J]. Rev. Sci. Instrum., 1983, 54(10):1311-1330.
    [88] Glfrich J V, Brown D B, Burkhalter P G. Integral reflection coefficient of X-ray spectrometer crystals[J]. Appl Spectrosc, 1975, 29(4):322-326.
    [89] M.Nantel, A.Klisnick, G.Jamelot, et al. Spectroscopic characterization of pre-pulsed x-ray laser plasmas[J]. Phys. Rev.E., 1996, 54(3):2852-2861.
    [90] T.J.Andrea, B.K.Sinha, K.P.Rohr, et al. Experimental investigations of quenching of ionization states in a freely expanding, recombining laser-produced plasma[J]. Phys. Rev.E., 2000, 61(3): 3063-3077.
    [91] S.H.Glenzer, K.B.Fournier, C.Dedcker, et al. Accuracy of K-shell spectra modeling in high-density plasmas[J]. Phys. Rev. E., 2000, 62(B2): 2728-2738.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700