用户名: 密码: 验证码:
NDRG2在唾液腺组织中的表达和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人NDRG2(N-myc down-stream regulated gene 2)基因为本研究小组首先发现并报道,该基因可能与细胞增殖和分化相关,但其具体的生物学功能有待进一步研究。我们课题组前期研究的结果对本课题的深入研究有重要的提示作用:RNA点杂交实验表明NDRG2在人的唾液腺组织中表达量极高;免疫组化结果显示NDRG2在小鼠的舌下腺导管上皮细胞特异性高表达;酵母双杂交实验寻找能与NDRG2相互作用的分子,最终筛选到12个有正确读框的的克隆,其中有3个克隆是Na~+/K~+-ATPaseβ1的肽段;生物信息学预测,在NDRG2上游调控区存在潜在的雌激素受体(ER)结合位点。
     唾液腺导管细胞的重要生物学功能是重吸收唾液中的Na~+和Cl-等电解质,从而参与调节唾液(正常唾液渗透压为血浆渗透压的1/9)的生成,而唾液进入导管后Na~+的重吸收依赖导管细胞腔侧分布的上皮细胞钠通道(epithelial sodium channel, ENaC)。有文献报道非洲蟾蜍卵母细胞中,NDRG2可以激活ENaC。Na~+/K~+-ATPaseβ1是Na~+/K~+-ATPase(又称为钠钾泵)的亚基,是Na~+/K~+-ATPase发挥泵功能不可缺少的组成成分。存在于唾液腺导管细胞基底侧的Na~+/K~+-ATPase,以主动耗能的方式将细胞中的Na~+泵到细胞外,形成一定的细胞内外Na~+浓度阶差,进而影响唾液腺导管细胞腔侧ENaC对从腺泡分泌进入导管的原始唾液中Na~+的重吸收。临床口腔干燥症的好发人群为绝经后女性,50%以上的绝经后女性有自觉口干症状,口干病人的唾液电解质成分与正常人差异很大,唾液渗透压和电解质浓度往往明显增高、唾液粘稠。
     先前的研究结果强烈提示NDRG2在唾液腺组织中发挥重要的功能,特别是与唾液的生成可能高度相关,本课题将对此进行探讨和验证。
     【目的】
     1、明确NDRG2在唾液腺组织中的分布和定位;2、研究NDRG2在唾液腺细胞中的功能与Na~+/K~+-ATPaseβ1的关联性;3、探讨NDRG2在人唾液腺细胞中是否受到雌激素的调控;4、整体水平分析雌激素与唾液形成之间的关系以及NDRG2在其中可能发挥的功能。
     【方法】
     1、通过免疫组织化学和间接免疫荧光的方法明确NDRG2在唾液腺组织的分布与定位,RT-PCR分析正常人颌下腺NDRG1、NDRG2、NDRG3和NDRG4的表达情况。2、建立单层唾液腺导管细胞离子转运模型,检测NDRG2对各种离子和水分子转运的影响;运用哺乳动物双杂交和免疫共沉淀实验验证NDRG2与Na~+/K~+-ATPaseβ1的相互作用;间接免疫荧光观察NDRG2与Na~+/K~+-ATPaseβ1在细胞内是否存在共定位;分析NDRG2对Na~+/K~+-ATPase酶活性的影响;Real time PCR和Western Blot检测NDRG2对Na~+/K~+-ATPaseβ1表达的影响。3、Real time PCR和Western Blot分析17-β-雌二醇(E2)对NDRG2表达水平的影响;运用双报告基因、ChIP和EMSA等基因转录调控实验明确NDRG2是否受E2-ER转录复合物的调控。4、建立去势雌性大鼠模型(去卵巢手术)模拟绝经后女性体内雌激素水平,检测大鼠唾液流量、唾液电解质成分及颌下腺NDRG2、Na~+/K~+-ATPase和ENaC表达水平的变化。
     【结果】
     1、NDRG2蛋白在唾液腺导管细胞胞浆中特异性高表达
     NDRG2蛋白主要表达于人三对大唾液腺(腮腺、颌下腺和舌下腺)以及大鼠的颌下腺的导管细胞胞浆,而腺泡细胞中表达很弱。RT-PCR结果表明正常人颌下腺组织NDRG2 mRNA表达相对高,NDRG1和NDRG3的表达相对较低,而NDRG4几乎不表达、
     2、NDRG2可以结合并稳定Na~+/K~+-ATPaseβ1蛋白
     在单层唾液腺导管细胞离子转运模型中,感染NDRG2腺病毒或转染针对NDRG2的干涉片段,特异性过表达或沉默NDRG2,结果唾液腺导管细胞基底侧与腔侧Na~+和Cl-浓度比值明显与NDRG2表达量成正比,而细胞基底侧与腔侧K~+和Ca2~+浓度比值没有明显的变化,基底侧和腔侧的液体体积均未出现显著改变。哺乳动物双杂交和免疫共沉淀结果进一步证实NDRG2和Na~+/K~+-ATPaseβ1可以相互作用。间接免疫荧光结果显示NDRG2和Na~+/K~+-ATPaseβ1在人永生化唾液腺导管细胞HSG的核周胞浆存在部分共定位。HSG细胞中相同总蛋白中Na~+/K~+-ATPase的活性与NDRG2的表达水平成正比,并且NDRG2可以稳定Na~+/K~+-ATPaseβ1蛋白,延长Na~+/K~+-ATPaseβ1蛋白的半衰期。
     3、NDRG2受E2-ERβ转录复合物的调控,是雌激素的靶基因
     E2可以时间和剂量依赖的方式上调NDRG2的表达,并且NDRG2 mRNA和蛋白水平的表达均有所增加。间接免疫荧光实验表明:ERα和ERβ均主要分布于人唾液腺组织的导管细胞中,ERβ表达强度明显高于ERα,ERβ和NDRG2均高表达于唾液腺导管细胞。ERβ可以剂量依赖的方式增加NDRG2上游调控区报告基因的活性,而ERα不能激活报告基因,ERβ的特异性激动剂DPN能够增强报告基因活性,而ERα的特异性激动剂PPT不能激活报告基因,运用ERβ配体结合区截短突变体或干涉ERβ的表达均能显著降低报告基因的活性,并且将潜在的ERE(estrogen response elements)进行点突变,报告基因的活性明显降低。ChIP和EMSA实验检测到外源性ERβ或内源性ERβ均能结合于NDRG2上游调控区预测的ERE。
     4、NDRG2参与去势雌性大鼠口腔干燥
     去卵巢大鼠手术后体内雌激素水平明显迅速下降,去势雌性大鼠逐渐出现毛发枯疏、骨质疏松等与体内雌激素水平相关的表征;有明显的口腔干燥症状,即唾液流量减少、饮水增多及唾液中Na~+和Cl-浓度增高。PCR结果显示去卵巢大鼠颌下腺组织中NDRG2和ENaCβ的mRNA水平明显减少,Na~+/K~+-ATPaseβ1mRNA水平无明显变化;免疫组化结果表明NDRG2、Na~+/K~+-ATPaseβ1和ENaCβ的蛋白含量均明显降低。
     【结论】
     本课题揭示了NDRG2是受雌激素调控的下游靶基因之一,初步证实E2-ER转录复合物-NDRG2-Na~+/K~+-ATPaseβ1通路的存在,并且这个通路可能参与临床绝经后女性口腔干燥症。
NDRG2 (N-myc down-stream regulated gene 2), a novel gene which was discovered and reported firstly by our research group. Although NDRG2 is possibly related to cell proliferation and differentiation, the exactly biological function has not yet been completely elucidated. Our previous findings have showed some interesting phenomena and which have important implications for our future research: NDRG2 is detected highly expressed in human salivary gland tissue by RNA dot blot assay; and immunoreactivity could be seen mainly in duct cells of sublingual gland in mice by the immunohistochemistry; yeast two-hybrid approach was used to screen the proteins which can interact with NDRG2, and of these 12 final positive clones, 3 fragments encoded Na~+/K~+-ATPaseβ1; Bioinformatics analysis revealed that there exist potential binding sites of ER (estrogen receptor) in the regulatory region of NDRG2.
     The main function of salivary duct cells is to reabsorb Na~+ and Cl- from saliva, and involved in the forming of normal saliva (low osmotic pressure), while the reabsorption of Na~+ depend on the epithelial sodium channel (ENaC). It has been reported that NDRG2 can activate ENAC in Xenopus laevis Oocytes. Na~+/K~+-ATPaseβ1 is a subunit of Na~+/K~+-ATPase (the other name is Na~+/K~+-pump), which is the indispensable part of the pump function. Na~+/K~+-ATPase locate on the basolateral side of salivary duct cells can pump Na~+ outside by expending energy, and this can form the Na~+ concentration difference, then effect the absorption of Na~+ on luminal side by ENaC from saliva which is excreted from acinus to duct. Oral dryness usually occurs in post-menopause female, more than 50% post-menopause female have conscious oral dryness, and the electrolyte ingredients of oral dryness patients have great discrepancy compared with normal persons, osmotic pressure and electrolyte concentration increase obviously and the saliva become very viscous.
     The foregoing research suggest intensively that NDRG2 play a very important role in salivary tissue, especially closely related with the forming of saliva, so more investigation and verification will be done in the present research.
     【Objectives】
     (1) To clear the distribution and localization of NDRG2 in salivary gland;
     (2) to investigate the function of NDRG2 in salivary gland and the correlation with Na~+/K~+-ATPaseβ1; (3) to probe whether NDRG2 was regulated by estrogen in transcription level; (4) to further analyze the relationship between estrogen and saliva forming, and the possible roles of NDRG2 involved in it.
     【Methods】
     (1) Immunohistochemistry and Immunofluorescence were used to detect the distribution and localization of NDRG2 in salivary gland tissue, and RT-PCR was applied to analyze the expression of NDRG1, NDRG2, NDRG3 and NDRG4 in human normal submaxillary gland. (2) Set up the salivary duct cell monolayer ion transport model to detect the effects of NDRG2 on the ions and H2O transport; the physical interaction between NDRG2 and Na~+/K~+-ATPaseβ1 were further detected with mammalian two-hybrid and co-immunoprecipitation; immunofluorescence was used to observe to the possible co-localization between NDRG2 and Na~+/K~+-ATPaseβ1; analyze the effect of NDRG2 to the activity of Na~+/K~+-ATPase; Real time PCR and Western Blot were applied to detect the effects of NDRG2 on the expression and function of Na~+/K~+-ATPaseβ1. (3) Real time PCR and Western Blot were used to detect the effect of 17β-estradiol (E2) on NDRG2 expression; and we assessed that whether NDRG2 was transcription regulated by E2-NDRG2 transcription complex by the dual report luciferase assay, ChIP and EMSA. (4) Ovariectomized rats were used to mimic estrogen level of the post-menopause female, and the variations of saliva flow, saliva electrolyte ingredients and related molecules NDRG2, Na~+/K~+-ATPase and ENaC expression in submaxillary gland were observed after ovariectomy.
     【Results】
     1. NDRG2 protein is specific highly expressed in the duct cell cytoplasm of salivary gland
     NDRG2 immunoreactivity could be seen mainly in duct cell cytoplasm of human three pairs of main salivary glands (parotid, submaxillary gland and sublingual gland) and rat submaxillary gland, while a very weak stain in acinus cells. The result of RT-PCR showed NDRG2 mRNA expression is high in human salivary gland, while the expression of NDRG1 and NDRG3 are relatively low, and NDRG4 is hardly expressed.
     2. NDRG2 binds and stabilizes Na~+/K~+-ATPaseβ1 protein
     In salivary duct cell monolayer ion transport model, NDRG2 were over expressed or silenced in HSG cells by using adenovirus or siRNA and the ratios of basolateral Na~+ concentration to apical Na~+ concentration is directly proportional to the NDRG2 protein level. And Cl- has the similar change as Na~+, while K~+ and Ca2~+ haven’t obviously changes with NDRG2 expression change, meanwhile, the medium volume of both sides was not detected pronounced difference. The NDRG2-Na~+/K~+-ATPaseβ1 direct physical interaction was confirmed by mammalian two-hybrid and co-immunoprecipitation. NDRG2 and Na~+/K~+-ATPaseβ1 could co-localized in the perinuclear region of the cytoplasm in human immortalization salivary duct cell line—HSG. And we found Na~+/K~+-ATPase activity is directly proportional to NDRG2 protein level in the same total protein in HSG cells; and NDRG2 could increase the Na~+/K~+-ATPaseβ1 stability, and extend Na~+/K~+-ATPaseβ1 protein half-life.
     3. NDRG2 is regulated by E2-ERβtranscription complex, and NDRG2 is the target gene of estrogen
     E2 up-regulated NDRG2 expression in both mRNA and protein levels by time and dose dependent manners. Indirect immunofluorescence showed that ERαand ERβboth distributed in duct cells of salivary gland tissue, but the protein of ERβwas expressed much more than ERα, moreover, ERβand NDRG2 were both highly expressed in duct cells; ERβcould increase the activity of NDRG2 regulatory region report gene in a dose dependent manner, while ERαcouldn’t activate report gene, and ERβspecific agonist DPN could activate NDRG2 report gene, while ERαspecific agonist PPT hadn’t the same effect. ERβligand binding domain deletion mutant or silencing the expression of ERβby siRNA could both reduce the activity of NDRG2 report gene, and point mutation in potential ERE (estrogen response elements) reduced report gene remarkable. ChIP and EMSA assays showed exogenous or endogenous ERβcould bind with predicted ERE in NDRG2 regulatory region.
     4. NDRG2 involves in the oral dryness of ovariectomized rats
     The serum estradiol decreased quickly in ovariectomized rats, and ovariectomized rats appeared sparse hair and osteoporosis related with low estradiol level and showed apparent oral dryness symptoms including saliva flow diminishing, water intake increasing and saliva electrolyte ingredients Na~+ and Cl- concentration increasing. The protein level of NDRG2, Na~+/K~+-ATPaseβ1 and ENaCβin submaxillary gland were obviously decreased in ovariectomized rats as compared with control and sham operation animals, although the mRNA of Na~+/K~+-ATPaseβ1 wasn’t changed remarkably.
     【Conclusions】
     We identified NDRG2 is one target gene of estrogen and provided the preliminary evidence that there exists the E2-ER-NDRG2-Na~+/K~+-ATPaseβ1 pathway and which is probably associated with post-menopause women oral dryness.
引文
1.邓艳春,药立波,刘新平,聂晓燕,王吉村,张晓光,苏成芝.人脑内ACP样结构域新基因的发现.生物化学与生物物理进展2001; 28(1): 72-76.
    2. Deng Y, Yao L, Chau L, Ng SS, Peng Y, Liu X, Au WS, Wang J, Li F, Ji S, Han H, Nie X, Li Q, Kung HF, Leung SY and Lin MC. N-Myc downstream-regulated gene 2 (NDRG2) inhibits glioblastoma cell proliferation. Int J Cancer 2003; 106: 342-347.
    3. Hu XL, Liu XP, Deng YC, Lin SX, Wu L, Zhang J, Wang LF, Wang XB, Li X, Shen L, Zhang YQ and Yao LB. Expression analysis of the NDRG2 gene in mouse embryonic and adult tissues. Cell Tissue Res 2006; 325: 67-76.
    4. Wang L, Liu N, Yao L, Li F, Zhang J, Deng Y, Liu J, Ji S, Yang A, Han H, Zhang Y, Zhang J, Han W and Liu X. NDRG2 is a new HIF-1 target gene necessary for hypoxia-induced apoptosis in A549 cells. Cell Physiol Biochem 2008; 21: 239-250.
    5. Zhang J, Liu J, Li X, Li F, Wang L, Zhang J, Liu X, Shen L, Liu N, Deng Y, Yang A, Han H, Zhao M and Yao L. The physical and functional interaction of NDRG2 with MSP58 in cells. Biochem Biophys Res Commun 2007; 352: 6-11.
    6. Wu GQ, Liu XP, Wang LF, Zhang WH, Zhang J, Li KZ, Dou KF, Zhang XF and Yao LB. Induction of apoptosis of HepG2 cells by NDRG2. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2003; 19: 357-360.
    7.刘娜,刘新平,王立峰等.抑癌侯选基因NDRG2在乳腺肿瘤组织及乳腺癌细胞系中的表达分析.第四军医大学学报2004; 25(12): 1065-1068.
    8. Hu XL, Liu XP, Lin SX, Deng YC, Liu N, Li X and Yao LB. NDRG2 expression and mutation in human liver and pancreatic cancers. World J Gastroenterol 2004; 10: 3518-3521.
    9. Park MY, Choi SC, Lee HS, Kim D, Baek KE, Kim JT, Lim JS, Yeom YI, Chung JW, Kim JW, Myung PK, Lee HG, Kim JW and Song EY. Aquantitative analysis of N-myc downstream regulated gene 2 (NDRG 2) in human tissues and cell lysates by reverse-phase protein microarray. Clin Chim Acta 2008; 387: 84-89.
    10. Lee DC, Kang YK, Kim WH, Jang YJ, Kim DJ, Park IY, Sohn BH, Sohn HA, Lee HG, Lim JS, Kim JW, Song EY, Kim DM, Lee MN, Oh GT, Kim SJ, Park KC, Yoo HS, Choi JY and Yeom YI. Functional and clinical evidence for NDRG2 as a candidate suppressor of liver cancer metastasis. Cancer Res 2008; 68: 4210-4220.
    11. Lorentzen A, Vogel LK, Lewinsky RH, Saebo M, Skjelbred CF, Godiksen S, Hoff G, Tveit KM, Lothe IM, Ikdahl T, Kure EH and Mitchelmore C. Expression of NDRG2 is down-regulated in high-risk adenomas and colorectal carcinoma. BMC Cancer 2007; 7: 192.
    12. Lusis EA, Watson MA, Chicoine MR, Lyman M, Roerig P, Reifenberger G, Gutmann DH and Perry A. Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res 2005; 65: 7121-7126.
    13. Park Y, Shon SK, Kim A, Kim KI, Yang Y, Cho DH, Lee MS and Lim JS. SOCS1 induced by NDRG2 expression negatively regulates STAT3 activation in breast cancer cells. Biochem Biophys Res Commun 2007; 363: 361-367.
    14. Choi SC, Yoon SR, Park YP, Song EY, Kim JW, Kim WH, Yang Y, Lim JS and Lee HG. Expression of NDRG2 is related to tumor progression and survival of gastric cancer patients through Fas-mediated cell death. Exp Mol Med 2007; 39: 705-714.
    15. Zhao H, Zhang J, Lu J, He X, Chen C, Li X, Gong L, Bao G, Fu Q, Chen S, Lin W, Shi H, Ma J, Liu X, Ma Q and Yao L. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer. BMC Cancer 2008; 8: 303.
    16. Ma J, Jin H, Wang H, Yuan J, Bao T, Jiang X, Zhang W, Zhao H and Yao L. Expression of NDRG2 in clear cell renal cell carcinoma. Biol Pharm Bull 2008; 31: 1316-1320.
    17. Kaelin WG, Jr. Functions of the retinoblastoma protein. Bioessays 1999; 21: 950-958.
    18. Tong D, Kucera E, Schuster E, Schmutzler RK, Swoboda H, Reinthaller A, Leodolter S and Zeillinger R. Loss of heterozygosity (LOH) at p53 is correlated with LOH at BRCA1 and BRCA2 in various human malignant tumors. Int J Cancer 2000; 88: 319-322.
    19. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21: 5427-5440.
    20. Pollock PM, Stark MS, Palmer JM, Walters MK, Aitken JF, Martin NG and Hayward NK. Mutation analysis of the CDKN2A promoter in Australian melanoma families. Genes Chromosomes Cancer 2001; 32: 89-94.
    21.杨乐. RNA干扰技术阻遏NDRG2基因表达对宫颈癌Hela细胞化疗敏感性的调节作用.第四军医大学学位论文2008
    22. Wang L, Liu N, Yao L, Li F, Zhang J, Deng Y, Liu J, Ji S, Yang A, Han H, Zhang Y, Zhang J, Han W and Liu X. NDRG2 is a new HIF-1 target gene necessary for hypoxia-induced apoptosis in A549 cells. Cell Physiol Biochem 2008; 21: 239-250.
    23. Murray JT, Campbell DG, Morrice N, Auld GC, Shpiro N, Marquez R, Peggie M, Bain J, Bloomberg GB, Grahammer F, Lang F, Wulff P, Kuhl D and Cohen P. Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem J 2004; 384: 477-488.
    24. Lang, F. and Cohen, P, Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms, Science STKE 2001; 108: 17
    25. Firestone, G. L., Giampaolo, J. R. and O’Keeffe, B. A, Stimulus-dependent regulation of serum and glucocorticoid-induced protein kinase (SGK) transcription, sub-cellular location and enzymatic activity. Cell. Physiol. Biochem 2003; 13: 1–12
    26. Mitchelmore C, Buchmann-Moller S, Rask L, West MJ, Troncoso JC and Jensen NA. NDRG2: a novel Alzheimer's disease associated protein. Neurobiol Dis 2004; 16: 48-58.
    27. Takahashi K, Yamada M, Ohata H, Honda K and Yamada M. Ndrg2 promotes neurite outgrowth of NGF-differentiated PC12 cells. Neurosci Lett 2005; 388: 157-162.
    28. Takahashi K, Yamada M, Ohata H, Momose K, Higuchi T, Honda K and Yamada M. Expression of Ndrg2 in the rat frontal cortex after antidepressant and electroconvulsive treatment. Int J Neuropsychopharmacol 2005; 8: 381-389.
    29. Burchfield JG, Lennard AJ, Narasimhan S, Hughes WE, Wasinger VC, Corthals GL, Okuda T, Kondoh H, Biden TJ and Schmitz-Peiffer C. Akt mediates insulin-stimulated phosphorylation of Ndrg2: evidence for cross-talk with protein kinase C theta. J Biol Chem 2004; 279: 18623-18632.
    30.沈岚. Ndrg2在胰岛β细胞中的表达及其功能的初步研究.第四军医大学学位论文2008
    31. Boulkroun S, Fay M, Zennaro MC, Escoubet B, Jaisser F, Blot-Chabaud M, Farman N and Courtois-Coutry N. Characterization of rat NDRG2 (N-Myc downstream regulated gene 2), a novel early mineralocorticoid-specific induced gene. J Biol Chem 2002; 277: 31506-31515.
    32. Wielputz MO, Lee IH, Dinudom A, Boulkroun S, Farman N, Cook DI, Korbmacher C and Rauh R. (NDRG2) stimulates amiloride-sensitive Na+ currents in Xenopus laevis oocytes and fisher rat thyroid cells. J Biol Chem 2007; 282: 28264-28273.
    33. Boulkroun S, Le Moellic C, Blot-Chabaud M, Farman N and Courtois-Coutry N. Expression of androgen receptor and androgen regulation of NDRG2 in the rat renal collecting duct. Pflugers Arch 2005; 451: 388-394.
    34. Zhang J, Li F, Liu X, Shen L, Liu J, Su J, Zhang W, Deng Y, Wang L, Liu N, Han W, Zhang J, Ji S, Yang A, Han H and Yao L. The repression ofhuman differentiation-related gene NDRG2 expression by Myc via Miz-1-dependent interaction with the NDRG2 core promoter. J Biol Chem 2006; 281: 39159-39168.
    35. Liu N, Wang L, Li X, Yang Q, Liu X, Zhang J, Zhang J, Wu Y, Ji S, Zhang Y, Yang A, Han H and Yao L. N-Myc downstream-regulated gene 2 is involved in p53-mediated apoptosis. Nucleic Acids Res 2008; 36: 5335-5349.
    36. Svensson E, Vidovic K, Olofsson T, Vallon-Christersson J, Borg A and Gullberg U. The Wilms' tumor gene 1 (WT1) induces expression of the N-myc downstream regulated gene 2 (NDRG2). DNA Cell Biol 2007; 26: 589-597.
    37. Zhang J, Liu J, Li X, Li F, Wang L, Zhang J, Liu X, Shen L, Liu N, Deng Y, Yang A, Han H, Zhao M and Yao L. The physical and functional interaction of NDRG2 with MSP58 in cells. Biochem Biophys Res Commun 2007; 352: 6-11.
    38.车红磊. NDRG2(371)相互作用分子筛选.第四军医大学学位论文2008
    39.吴军正,司徒镇强. (主编)口腔生物学. (口腔医学专业五年制、七年制教材) 1999
    40. Garty H and Palmer LG. Epithelial sodium channels: function, structure, and regulation. Physiol Rev 1997; 77: 359-396.
    41. Alvarez dlR, Canessa CM, Fyfe GK and Zhang P. Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 2000; 62: 573-594.
    42. Pradervand S, Vandewalle A, Bens M, Gautschi I, Loffing J, Hummler E, Schild L and Rossier BC. Dysfunction of the epithelial sodium channel expressed in the kidney of a mouse model for Liddle syndrome. J Am Soc Nephrol 2003; 14: 2219-2228.
    43. Thomas CP, Zhou J, Liu KZ, Mick VE, MacLaughlin E and Knowles M. Systemic pseudohypoaldosteronism from deletion of the promoter regionof the human Beta epithelial na(+) channel subunit. Am J Respir Cell Mol Biol 2002; 27: 314-319.
    44. Staruschenko A, Patel P, Tong Q, Medina JL and Stockand JD. Ras activates the epithelial Na(+) channel through phosphoinositide 3-OH kinase signaling. J Biol Chem 2004; 279: 37771-37778.
    45. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N and Vallon V. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006; 86: 1151-1178.
    46. Skou JC. The Na,K-pump. Methods Enzymol 1988; 156: 1-25.
    47. Jorgensen PL. Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+ +K+)-ATPase. Biochim Biophys Acta 1982; 694: 27-68.
    48. Kurihara K, Hosoi K, Kodama A and Ueha T. A new electrophoretic variant of alpha subunit of Na+/K(+)-ATPase from the submandibular gland of rats. Biochim Biophys Acta 1990; 1039: 234-240.
    49. Jensen JL. and Barkvoll P. Clinical implications of the dry mouth. Oral mucosal diseases. Ann N Y Acad Sci 1998; 842: 156-162.
    50. Pajukoski H, Meurman JH, Halonen P and Sulkava R. Prevalence of subjective dry mouth and burning mouth in hospitalized elderly patients and outpatients in relation to saliva, medication, and systemic diseases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 92: 641-649.
    51. Leimola-Virtanen R, Helenius H and Laine M. Hormone replacement therapy and some salivary antimicrobial factors in post- and perimenopausal women. Maturitas 1997; 27: 145-151.
    52. Eliasson L, Carlen A, Laine M and Birkhed D. Minor gland and whole saliva in postmenopausal women using a low potency oestrogen (oestriol). Arch Oral Biol 2003; 48: 511-517.
    53. Yager JD and Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354: 270-282.
    54. Pfeffer U, Fecarotta E, Castagnetta L and Vidali G. Estrogen receptor variant messenger RNA lacking exon 4 in estrogen-responsive human breast cancer cell lines. Cancer Res 1993; 53: 741-743.
    55. Moore JT, McKee DD, Slentz-Kesler K, Moore LB, Jones SA, Horne EL, Su JL, Kliewer SA, Lehmann JM and Willson TM. Cloning and characterization of human estrogen receptor beta isoforms. Biochem Biophys Res Commun 1998; 247: 75-78.
    56. Imamov O, Morani A, Shim GJ, Omoto Y, Thulin-Andersson C, Warner M and Gustafsson JA. Estrogen receptor beta regulates epithelial cellular differentiation in the mouse ventral prostate. Proc Natl Acad Sci U S A 2004.; 101: 9375-9380.
    57. Wang L, Andersson S, Warner M and Gustafsson JA. Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain. Proc Natl Acad Sci U S A 2003; 100: 703-708.
    58. Balfe PJ, McCann AH, Welch HM and Kerin MJ. Estrogen receptor beta and breast cancer. Eur J Surg Oncol 2004; 30: 1043-1050.
    59. Pearce ST and Jordan VC. The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol Hematol 2004; 50: 3-22.
    60. Murphy L, Cherlet T, Lewis A, Banu Y and Watson P. New insights into estrogen receptor function in human breast cancer. Ann Med 2003; 35: 614-631.
    61. Hanstein B, Djahansouzi S, Dall P, Beckmann MW and Bender HG. Insights into the molecular biology of the estrogen receptor define novel therapeutic targets for breast cancer. Eur J Endocrinol 2004;150: 243-255.
    62. Roger P, Sahla ME, Makela S, Gustafsson JA, Baldet P and Rochefort H. Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 2001; 61: 2537-2541.
    63. Murphy LC and Watson PH. Is oestrogen receptor-beta a predictor of endocrine therapy responsiveness in human breast cancer? Endocr Relat Cancer 2006; 13: 327-334.
    64. Umekita Y, Souda M, Ohi Y, Sagara Y, Rai Y, Takahama T and Yoshida H. Expression of wild-type estrogen receptor beta protein in human breast cancer: specific correlation with HER2/neu overexpression. Pathol Int 2006; 56: 423-427.
    65. Omoto Y, Eguchi H, Yamamoto-Yamaguchi Y and Hayashi S. Estrogen receptor (ER) beta1 and ERbetacx/beta2 inhibit ERalpha function differently in breast cancer cell line MCF7. Oncogene 2003; 22: 5011-5020.
    66. Park BW, Kim KS, Heo MK, Yang WI, Kim SI, Kim JH, Kim GE and Lee KS. The changes of estrogen receptor-beta variants expression in breast carcinogenesis: Decrease of estrogen receptor-beta2 expression is the key event in breast cancer development. J Surg Oncol 2006; 93: 504-510.
    67. Hu K, Zhong G and He F. Expression of estrogen receptors ERalpha and ERbeta in endometrial hyperplasia and adenocarcinoma. Int J Gynecol Cancer 2005; 15: 537-541.
    68. Lindgren PR, Cajander S, Backstrom T, Gustafsson JA, Makela S and Olofsson JI. Estrogen and progesterone receptors in ovarian epithelial tumors. Mol Cell Endocrinol 2004; 221: 97-104.
    69. Lazennec G. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Lett 2006; 231: 151-157.
    70. Tsurusaki T, Aoki D, Kanetake H, Inoue S, Muramatsu M, Hishikawa Y and Koji T. Zone-dependent expression of estrogen receptors alpha and beta in human benign prostatic hyperplasia. J Clin Endocrinol Metab 2003; 88: 1333-1340.
    71. Zhu X, Leav I, Leung YK, Wu M, Liu Q, Gao Y, McNeal JE and Ho SM. Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 2004; 164: 2003-2012.
    72. Fixemer T, Remberger K and Bonkhoff H. Differential expression of the estrogen receptor beta (ERbeta) in human prostate tissue, premalignantchanges, and in primary, metastatic, and recurrent prostatic adenocarcinoma. Prostate 2003; 54: 79-87.
    73. Egawa C, Miyoshi Y, Iwao K, Shiba E and Noguchi S. Quantitative analysis of estrogen receptor-alpha and -beta messenger RNA expression in normal and malignant thyroid tissues by real-time polymerase chain reaction. Oncology 2001; 61: 293-298.
    74. Cho MA, Lee MK, Nam KH, Chung WY, Park CS, Lee JH, Noh T, Yang WI, Rhee Y, Lim SK, Lee HC and Lee EJ. Expression and role of estrogen receptor alpha and beta in medullary thyroid carcinoma: different roles in cancer growth and apoptosis. J Endocrinol 2007; 195: 255-263.
    75. Keegan L, Gill G and Ptashne M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 1986; 231: 699-704.
    76. Brent R and Ptashne M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 1985; 43: 729-736.
    77. Fu L and Liang JJ. Detection of protein-protein interactions among lens crystallins in a mammalian two-hybrid system assay. J Biol Chem 2002; 277: 4255-4260.
    78. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228: 1315-1317.
    79. Kim JH, Hahm B, Kim YK, Choi M and Jang SK. Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J Mol Biol 2000; 298: 395-405.
    80. Kishimoto A, Ogura T and Esumi H. A pull-down assay for 5' AMP-activated protein kinase activity using the GST-fused protein. Mol Biotechnol 2006; 32: 17-21.
    81.杨谦,张景,张莹莹,何鹏,刘新平,药立波,赵慧贤.人NDRG1的GST融合表达、纯化及相互作用蛋白检测.第四军医大学学报, 2005; 26 (20):1837-1839.
    82. McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD and Cole MD. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 1998; 94: 363-374.
    83. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A and Matsuda M. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 2001; 411: 1065-1068.
    84.马慧莲,刘含智,王丽萍,徐淑坤,李惟.量子点的荧光共振能量转移在生物分析中的应用.分析化学, 2005; 33(9):1335-1338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700