用户名: 密码: 验证码:
铜锌超氧化物歧化酶的核酸酶活性和DNA对其聚集的加速作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌萎缩侧索硬化症(ALS)是一种发病机理未知的较常见成人神经退行性疾病。铜锌超氧化物歧化酶(SOD1)突变产生某种未知的获得性新功能被认为是导致ALS的原因之一,然而目前并不清楚SOD1在ALS发病过程中的作用。核酸作为贮存、传递遗传信息的物质,在生命活动中发挥极为重要的作用,轻微的损伤也会影响生物体的正常功能。由于目前已发现DNA损伤涉及某些神经退性行疾病,因此,本文从SOD1与DNA相互作用的角度,探讨SOD1的获得性新功能,取得如下主要结果:
     1.利用紫外-可见吸收光谱和SOD1内源荧光猝灭的方法测定了SOD1对DNA的亲和性,利用琼脂糖凝胶电泳研究了SOD1和apoSOD1在二价金属离子存在下将超螺旋质粒DNA断裂为缺口形式和线性形式,以及将线性DNA断裂为小片段的性质,结果表明在外源二价金属离子存在下SOD1具有断裂DNA的核酸酶活性。稳态动力学实验结果显示SOD1和apoSOD1断裂DNA符合米氏动力学规律。与其他蛋白质和酶比较,发现SOD1这种核酸酶活性具有相对特异性,并非所有蛋白质都具有这种性质。SOD1的这种核酸酶活性是其固有的性质,与催化超氧阴离子歧化的活性中心无关。
     2.利用生物化学方法研究了外源二价金属离子在SOD1核酸酶活性中所起的作用。基于“非等价多部位结合”模型,我们对金属离子滴定SOD1-DNA复合物的紫外-可见吸收光谱数据进行了拟合,结果显示复合物能够提供至少两个金属结合部位:一个强结合部位和一个弱结合部位,表明SOD1可能通过“双外源金属离子”的途径断裂DNA,即两个金属离子直接参与DNA断裂过程。另外,对pH-SOD1断裂DNA速率曲线进行拟合的结果显示催化过程中存在一个一般酸和一个一般碱。结合组氨酸特异性化学修饰结果,我们提出了SOD1在二价金属离子存在下水解DNA的模型:即通过组氨酸、金属结合水分子和双金属离子三者的协同作用水解DNA。
     3.将正常SOD1暴露于酸性环境模拟金属结合区域SOD1突变体因突变导致的蛋白质稳定性降低、聚集倾向增强的性质,探讨了DNA加速SOD1聚集机理。利用直角光散射(RALS)、激光动态光散射(DLS)、原子力显微镜(AFM)、荧光显微镜系统研究了低pH下DNA加速SOD1聚集的性质,结果表明在酸性条件下,DNA可以作为模板加速SOD1形成聚集体。由低pH和与DNA相互作用导致的SOD1疏水性增强和DNA的模板富集效应是SOD1快速聚集的两个决定性因素。
     4.利用透射电镜(TEM)、AFM、荧光显微镜系统研究了酸性条件下DNA加速SOD1形成的聚集体形态。在不同的DNA浓度下形成不同类型的聚集体(聚集单体,寡聚体,大聚集体等)。SOD1与DNA的比例影响聚集体的紧密程度,比例较高时DNA形成紧密的聚集态,比例较低时则形成较为松散的聚集态。结合聚集动力学等实验结果,证实DNA加速SOD1聚集的过程也是SOD1诱导DNA凝聚的过程,提出了SOD1与DNA相互作用导致SOD1聚集和DNA凝聚的反应模型。
     5.利用酸性条件(pH4.0)对SOD1金属结合性质和结构稳定性的影响,模拟SOD1突变的效果,由RALS、DLS、荧光显微镜、AFM、TEM系统研究了ssDNA(24碱基)加速SOD1聚集的性质。结果表明ssDNA可以作为SOD1聚集的模板,促进纳米和微米级ssDNA-SOD1聚集单体、寡聚体、微聚集体和大聚集体快速形成。因酸性环境和ssDNA相互作用导致的SOD1疏水性增强和蛋白质局部浓度增大是SOD1快速聚集的决定性因素。ssDNA加速SOD1快速形成不溶性的大聚集体,有可能作为一种潜在的途径避免SOD1寡聚体累积产生的毒性,成为治疗或预防包括ALS在内的神经退行性疾病的药物。
     6.利用琼脂糖凝胶电泳、RALS、DLS、TEM系统研究了近生理条件下DNA加速被氧化SOD1聚集的性质。结果表明,当SOD1与DNA共存于氧化环境中时,DNA显著加速SOD1聚集。该结果为DNA在酸性到中性的条件下均加速SOD1聚集的假设提供了证据,即氧化导致SOD1疏水性增强和DNA的模板富集效应是SOD1快速聚集的两个决定性因素。我们推测所有SOD1突变体都可能具有被DNA加速聚集的共同性质, SOD1与DNA异常相互作用加速蛋白质聚集的性质可能是SOD1导致ALS的一种获得性新功能。
Amyotrophic lateral sclerosis (ALS) is one of the most common adult neurodegenerative diseases with unknown causes. Although it is well established that SOD1 mutants involve development of ALS, and cause motor neuron death through an as-yet unidentified gain of one or more injurious properties, little is currently known about the roles of SOD1 in neurocytotoxicity. DNA is the source of genetic information and possesses many important roles in life process. Even the weak damage in DNA could have profound effect on viability and genetic stability. Moreover, DNA damage in human cells and organs has been found to be associated with neurodegenerative disease. Here, the research on the interaction between SOD1 and DNA has been carried out. The main results are as follows:
     1. A new activity that the SOD1 and its apo form possess a divalent metal-dependent nucleolytic activity was confirmed by UV-visible absorption titration of calf thymus DNA (ctDNA) with the SOD1, fluorescence quenching of SOD1 by ctDNA, and by gel electrophoresis monitoring conversion of DNA from the supercoiled DNA to nicked and linear forms, and fragmentation of a linearλDNA. Moreover, the DNA cleavage activity was examined in detail under certain reaction conditions. The steady state study indicates that DNA cleavage supported by both forms of SOD1 obeys Michaelis-Menten kinetics. On the other hand, the assays with some other proteins indicate that this new gain function is specific to some proteins including the SOD1. Therefore, this study reveals that the divalent metal-dependent DNA cleavage activity is an intrinsic property of SOD1, which is independent of its natural metal sites.
     2. The roles of exogenous divalent metals in the nucleolytic activity were explored in detail by a series of biochemical experiments. Based on a non-equivalent multi-site binding model, affinity of a divalent metal for the enzyme-DNA complex was determined by absorption titration, indicating that the complex can provide at least a high and a low affinity site for the metal ion. These mean that the SOD1 may use a‘‘two exogenous metal ion pathway’’as a mechanism in which both metal ions are directly involved in the catalytic process of DNA cleavage. In addition, the pH versus DNA cleavage rate profiles can be fitted to two ionizing group models, indicating the presence of a general acid and a general base in catalysis. A model that requires histidine residues, metal bound water molecules and two hydrated metal ions to operate in concert could be used to interpret the catalysis of DNA hydrolysis, supported by the dependences of loss of the nucleolytic activity on time and on the concentration of the specific chemical modifier to the histidine residues on the enzyme.
     3. The aggregation behavior of SOD1 in the presence of DNA were examined under acidic conditions, which could mimic the effect of mutations and reflect the practical process done under physiological conditions to a high extent. Several forms of double-stranded DNA were tested to trigger the SOD1 aggregation by light scattering, single- and double-fluorescence imaging with the dyes, atomic force microscopy, and direct observations under visible light. The results reveal that DNA acts as a template for accelerating the formation of SOD1 aggregates and is incorporated into SOD1 aggregates. A significant alteration in hydrophobicity of SOD1 caused by both low pH and interactions with DNA, and the enrichment in SOD1 along DNA double strands are two main reasons responsible for DNA-accelerated SOD1 aggregation.
     4. The morphology of DNA-accelerated SOD1 aggregates was examined by transmission electron microscope, atomic force microscopy and fluorescence imaging of ThS. Several types of SOD1 aggregates were observed, which depend on the concentration of SOD1 and DNA, and the type of DNA molecules. DNA formed a compact structure in the high ratio of DNA to SOD1, and an incompact structure in the low ratio. The results reveal that both SOD1 aggregation and DNA condensation are coupled each other. Some DNA condensates could aggregate together to form fractal structures on mica and class, which followed the diffusion limited aggregation model.
     5. The acceleration effect of SOD1 aggregation in vitro upon addition of single-stranded DNA (ssDNA) of 24 nucleotides was examined under acidic conditions. ssDNA was tested to trigger the SOD1 aggregation by light scattering, single- and double-fluorescence imaging with the dyes, direct observations under visible light,atomic force microscopy and transmission electron microscope. The results reveal that ssDNA can accelerate the formation of ssDNA-SOD1 aggregate monomer, oligomeric aggregate, microaggregate, and macroaggregate. A significant alteration in hydrophobicity of SOD1 caused by both low pH and interactions with ssDNA, removal of the positive net charges of SOD1 by ssDNA, and the enrichment in SOD1 along ssDNA are driving forces for the rapid SOD1 aggregation. All these results indicate that the ssDNA-accelerated formation of insoluble SOD1 aggregates can act as a potential pathway to avoid accumulation of soluble SOD1 oligomeric intermediates. The small DNAs that are easily synthesized to target at protein oligomers might lower pathological consequences of SOD1.
     6. The acceleration effect of oxidized SOD1 aggregation in vitro upon addition of DNA was examined by gel electrophoresis, light scattering, and transmission electron microscope under physiological conditions. The results reveal that DNA can accelerate SOD1 aggregation when both SOD1 and DNA are in oxidative solution. A significant increase in hydrophobicity of SOD1 caused by oxidative modification, and the enrichment in SOD1 along DNA double strands are two main reasons responsible for the accelerated SOD1 aggregation. This result also implies that SOD1 of any one form with increased hydrophobicity, whatever caused by mutation or exogenous factor, may be accelerated to form aggregates due to the enrichment effect of DNA. This abnormal interaction with DNA may be a toxic gain of function of misfolded SOD1, which could cause ALS.
引文
1. Fridovich, I., Superoxide dismutase, Adv. Ezymol. Relat. Areas. Mol. Biol. 1974, 41, 35-79.
    2. Fridovich, I., Superoxide radical and superoxide dismutase, Ann. Rev. Bioche. 1995, 64, 97-112.
    3. Kim, F. J., Kim, H. P., Hah, Y. C., et al, Differential expression of superoxide dismutases containing Ni and Fe/Zn in streptomyces coelicolor, Eur. J. Biochem. 1996, 241, 178-189.
    4. Youn, H. D., Youn, H., Lee, J. W., et al, Unique isozymes of superoxide dismutase in streptomyces griseus, Arch. Biochem. Biophys. 1996, 334, 341-348.
    5. Wuerges, J., Lee, J. W., Yim, et al, Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc. Natl. Acad. Sci. USA 2004, 101, 8567-8574.
    6. Pacello, F., Langford, P. R., Kroll, J. S., et al, A novel heme protein, the Cu,Zn-superoxide dismutase from Haemophilus ducreyi, J. Biol. Chem. 2001, 276, 30326-30334.
    7. Fridovich, I., Superoxide anion radical, superoxide dismutases, and related matters, J. Biol. Chem. 1997, 272, 18515-18517.
    8. Sturtz, L. A., Diekert, K., Jensen, L. T., et al, A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria, J. Biol. Chem. 2001, 276, 38084-38089.
    9. Okado-Matsumoto, A., Fridovich, I., subcellular distribution of superoxide dismutases (SOD) in rat liver, J. Biol. Chem. 2001, 276, 38388-38393.
    10. Rowland, L. P., Shneider, N. A., Amyotrophic lateral sclerosis. N. Engl. J. Med. 2001, 344, 1688-1700.
    11.沈涛,张天乐,刘长林,铜锌超氧化物歧化酶的突变与神经退行性紊乱的生物无机化学.化学进展2004, 16, 813-819.
    12. Bryan, J., Mary, B., Clinical features of amyotrophic lateral sclerosis and airlie house diagnostic criteria, Arch. Neurol. 2000, 57, 1171-1175.
    13. Gerzoff, E. D., Tainer, J. A., Stempien, M. M., et al, Evolution of CuZn superoxide dismutase and the greek key b-barrel structural motif, Protein Struct. Funct. Genet. 1989, 5, 322-336.
    14. Spagnolo, L., T?r?, I., D'Orazio, M., et al, Unique features of the sod-encoded superoxide dismutase from mycobacterium tuberculosis, a fully functional copper-containing enzyme lacking zinc in the active site, J. Biol.Chem. 2004, 279, 33447-33455.
    15.方允中,李文杰,自由基与酶-基础理论及其在生物学和医学中的应用.第二版;科学出版社:北京, 1994.
    16. Getzoff, E. D., Tainer, John. A., Weiner, P. K., et al, Electrostatic recognition between superoxide and copper, zinc superoxide dismutases, Nature 1983, 306, 287-290.
    17. Bertini, I., Mangani, S., Viezzoli, M.S., Structure and properties of copper-zinc superoxide dismutase, Adv. Inorg. Chem. 1998, 45, 127-250.
    18. Tainer, J. A., Getzoff, E. D., Beem, K. M., et al, Determination and analysis of the 2 ? structure of copper, zinc superoxide dismutase, J. Mol. Biol. 1982, 160, 181-217.
    19. Tainer, J. A., Getzoff, E. D., Richardson, J. S., Structure and mechanism of copper,zincsuperoxide dismutase, Nature 1983, 306, 287-290.
    20. Bordo, D., Dijnovic-Carugo, K., Bolognesi, M., Conserved patterns in the Cu,Zn superoxide dismutase family, J. Mol. Biol. 1994, 238, 366-368.
    21. Bordo, D., Matak, D., Dijnovic-Carugo, K., et al, Evolutionary constraints for dimmer formation in prokaryotic Cu,Zn superoxide dismutase, J. Mol. Biol. 1999, 285, 283-294.
    22. Chang, E. C., Crawford, B. F., Hong, Z., et al, Genetic and biochemical characterization of Cu,Zn superoxide dismutase mutants in Saccharomyces cerevisiae, J. Biol. Chem. 1991, 266, 4417 - 4424.
    23. Hough, M. A., Hasnain, S. S., Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 ?, Structure, 2003, 11, 937-946.
    24. Hart, P. J., Balbirnie, M. M., Ogihara, N. L., et al, A structure-based mechanism for copper-zinc superoxide dismutase, Biochemistry 1999, 38, 2167-2178.
    25. Giuseppe, R., Lilia, C., Francesco, B., et al, Properties of the apoprotein and role of copper and zinc in protein conformation and enzyme activity of bovine superoxide dismutase, Biochemistry, 1972, 11, 2182-2187.
    26. Forman, H. J., Fridovich, I., On the stability of bovine superoxide dismutase, J. Biol. Chem. 1973, 248, 2645-2649.
    27. Liu, C. L., Xu, H. B, The metal site as a template for the metalloprotein structure formation, J. Inorg. Biochem. 2002, 88, 77-86.
    28.蒋明,沈涛,刘长林,金属离子对蛋白质的折叠、识别、自组装及功能的影响,化学进展2002, 14, 263-272.
    29. Strothkamp, K. G., Lipard, S. J., Chemistry of the imidazolate-bridged bimetallic center in the copper-zinc superoxide dismutase and its model compounds, Acc. Chem. Res. 1982, 15, 318-326.
    30. Liao, Z. R., Liu, W. Q., Liu, J. P., et al, A study on superoxide dismutase activity of some model compounds, J. Inorg. Biochem. 1994, 55, 165-174.
    31. Mao, Z. W., Yu, K. B., Tang, W. X., et al, Molecular structure of imidazolate-bridged binuclear zinc complex and its single-crystal ESR spectra doped with bridged copper-zinc complex, Inorg. Chem. 1993, 32, 3104-3108.
    32. Fanlker, K. M., Stevens, R. D., Fridovich, I., Characterization of Mn(Ⅲ) complexes of linear and cyclic desferrioxamines as mimics of superoxide dismutase activity, Arch. Biochem. Biophys. 1994, 310, 341-346.
    33. Valentine, J. S., Doucette, P. A., Potter, S. Z., Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis, Annu. Rev. Biochem. 2005, 74, 563-593.
    34. Rosen, D. R., Siddique, T., Patterson, D., et al, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 1993, 362, 59-62.
    35. Deng, H. X., Hentati, A., Tainer, J. A., et al, Amyotrophic-lateral-sclerosis and structural defects in Cu, Zn superoxide-dismutase, Science 1993, 261, 1047-1051.
    36. Gurney, M. E., Pu, H., Chiu, A. Y., et al, Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science 1994, 264, 1772-1775.
    37. Bruijn, L. I., Houseweart, M. K., Kato, S., et al, Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1, Science 1998, 281, 1851-1854.
    38. Reaume, A. G., Elliott, J. L., Hoffiman, E. K., et al, Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury, Nat. Genet. 1996, 13, 43-47.
    39. Subramaniam, J. R., Lyons, W. E., Liu, J., et al, Mutant SOD1 causes motor neuron disease independent of copper chaperon-mediated copper loading, Nat. Neurosci. 2002, 5, 301-307.
    40. Borchelt, D. R., Lee, M. K., Slunt, H. S., et al, Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity, Proc. Natl. Acad. Sci. USA 1994, 91, 8292-8296.
    41. Cleveland, D. W., Rothstein, J. D, From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS, Nat. Rev. Neurosci. 2001, 2, 806-819.
    42. Anderson, P. M., Sims, K. B., Xin, W. W., et al, Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes, Amyotroph. Lateral. Scler. 2003, 4, 62-73.
    43. Potter, S. Z., Valentine, J. S., The perplexing role of copper-zinc superoxide dismutase in amyotrophic lateral sclerosis (Lou Gehrig’s disease), J. Biol. Inorg. Chem. 2003, 8, 373-380.
    44. Hayward, L. J., Jorge, A. R., Kim, J. W., et al, Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis, J. Biol. Chem. 2002, 277, 15923-15931.
    45. McCord, J. M., Fridovich, I., Superoxide dismutase, J. Biol. Chem. 1969, 244, 6049-6055.
    46. Chary, P., Hallewell, R. A., Natvig, D., Structure, exon pattern, and chromosome mapping of the gene for cytosolic copper-zinc superoxide dismutase (sod-1) from Neurospora crassa, J. Biol. Chem, 1990, 265, 18961– 18967.
    47. Valentine, J. S., Pantoliano, M. W., Protein-metal ion interactions in cuprozinc protein (superoxide dismutase), pp.291-358, New York: Wiley 1981.
    48. Beem, K. M., Rich. W., Rajagopalan, K.V., Total reconstitution of copper-zinc superoxide dismutase, J. Biol. Chem. 1974, 249, 7298-7305.
    49. Goto, J. J., Zhu, H., Sanchez, R. J., et al, Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis, J. Biol. Chem. 2000, 275, 1007-1014.
    50. Hwang, C., Sinskey, A. J., Lodish, H. F., Oxidized redox state of glutathione in the endoplasmic reticulum, Science 1992, 257, 1496-1502.
    51. Schulz, G. E., Schirmer, R. H., Principles of Protein Structure. New York/Heidelberg: Springer-Verlag, 1979, 314.
    52. Elam, J. S., Taylor, A. B., Stranger, R., et al, Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS, Nat. Struct. Biol. 2003, 10, 461-467.
    53. Tiwari, A., Hayward, L. J., Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction, J. Biol. Chem. 2003, 278, 5984-5992.
    54. Arnesano, F, Banci, L., Bertini, I., et al, The unusually stable quaternary structure of human SOD1 is controlled by both metal occupancy and disulfide status, J. Biol. Chem. 2004, 279, 47998-48003.
    55. Roe, J. A., Scholler, D. M., Valentine, J. S., et al, Differential scanning calorimetry of Cu,Zn-superoxide dismutase, the apoprotein, and its zinc-substituted derivatives, Biochemistry, 1988, 27, 950-958
    56. Rodriguez, J. A., Valentine, J. S., Eggers, D. K., et al, Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal stability of distinctly metallated species of human copper/zinc superoxide dismutase, J. Biol. Chem. 2002, 277, 15932-15937.
    57. Lyons, T. J., Gralla, E. B., Valentine, J. S., Biological chemistry of copper-zinc superoxide dismutase and its link to Amyotrophic Lateral Sclerosis, Metal. Ions Biol. Syst. 1999, 36, 125-177.
    58. Malinowski, D. P., Fridovich, I., Subunit association and side-chain reactivities of bovine erythrocyte superoxide dismutase in denaturing solvents, Biochemistry 1979, 18, 5055-5060.
    59. Senoo Y, Katoh, K., Nakai, Y., Hashimoto,Y., et al, Activity and stability of recombinant human superoxide dismutase in buffer solutions and hypothermic perfusates, Acta. Med. Okayama. 1998, 42, 169-74.
    60. Weser, U., Mummified enzymes, Nature 1989, 341, 696.
    61. Liu, H., Zhu. H., Eggers, D. K., et al, Copper(2+) binding to the surface residue cysteine 111 of His46Arg human copper-zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant, Biochemistry, 2000, 39, 8125-8132.
    62. Liochev, S. I., Chen, L. L., Hallewell, R. A., et al, Superoxide-dependent peroxidase activity of H48Q: a superoxide dismutase variant associated with familial amyotrophic lateral sclerosis Arch. Biochem. Biophys. 1997, 346, 263-268.
    63. Doucette, P. A., Cao, X., Schirf, V., et al, Dissociation of human copper-zinc superoxide dismutase dimers using chaotrope and reductant, J. Biol. Chem. 2004, 279, 54558-54566.
    64. Borchelt, D. R., Lee, M. K., Slunt, H. S., et al, Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity, Proc. Natl. Acad. Sci. USA 1994, 91, 8292-8296.
    65. Rabizadeh, S., Gralla, E. B., Borchelt, D. R., et al, Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells, Proc. Natl. Acad. Sci. USA 1995, 92, 3024-28.
    66. Corson, L. B., Strain, J. J., Culotta, V. C., et al, Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants, Proc. Natl. Acad. Sci. USA 1998, 95, 6361-6366.
    67. Ratovitski, T., Corson, L. B., Strain, J., et al, Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds, Hum. Mol.Genet. 1999, 8, 1451-1460.
    68. Wang, J., Xu, G., Gonzales, V., Coonfield, M., et al, Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disruptedcopper-binding site, Neurobiol. Dis. 2002, 10, 128-38.
    69. Wang, J., Slunt, H., Gonzales, V., et al, Copper-bindingsite-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum. Mol. Genet. 2003, 12, 2753-64.
    70. Hoffman, E. K., Wilcox, H. M., Scott RW, et al, Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis, J. Neurol. Sci. 1996, 139, 15-20.
    71. Borchelt, D. R., Guarnieri, M., Wong, P. C., et al, Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity, J. Biol. Chem. 1995, 270, 3234-3238.
    72. Nakano, R., KikugawaK, Takahashi, H., et al, Instability of mutant Cu/Zn superoxide dismutase (Ala4Thr) associated with familial amyotrophic lateral sclerosis, Neurosci. Lett. 1996, 211, 129-131.
    73. Oeda, T., Kitagawa, N., Kohno, R., et al, Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans, Hum. Mol. Genet. 2001, 10, 2013-2023.
    74. Johnston, J. A., Dalton, M. J., Gurney, M. E., et al, Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. USA 2000, 97, 12571-12576.
    75. Hyun, D. H., Halliwell, B., Jenner, P., et al, Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins, J. Neurochem. 2003, 86, 363-373.
    76. Urushitani, M., Kurisu, J., Tsukita, K., et al, Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis, J. Neurochem. 2002, 83, 1030-1042.
    77. Simpson, E. P., Yen, A. A., Appel S. H., Oxidative Stress: a common denominator in the pathogenesis of amyotrophic lateral sclerosis, Curr. Opin. Rheumatol. 2003, 15, 730-736.
    78. Robberecht, W., Oxidative stress in amyotrophic lateral sclerosis, J. Neurol. Sci. 2000, 247 (Suppl. 1):2-6
    79. Kurahashi, T., Miyazaki, A., Suwan, S., Isobe, M., Extensive investigations on oxidized amino acid residues in H2O2-treated Cu,Zn-SOD protein with LC-ESI-Q-TOF-MS, MS/MS for the determination of the copper-binding Site, J. Am. Chem. Soc. 2001, 123, 9268-9278.
    80. Alvarez, B., Demicheli, V., Duran, R., et al, Inactivation of human Cu,Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical, Free Radic. Biol. Med. 2004, 37, 813-822.
    81. Auchere, F., Capeillere-Blandin, C., Oxidation of Cu, Zn-superoxidedismutase by the myeloperoxidase/hydrogen peroxide/chloride system: functional and structural effects, Free Radic. Res. 2002, 36, 1185-1198.
    82. Koji, U., Shunro, K., Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2, J. Biol. Chem. 1994, 269, 2405-2410.
    83. Salo, D. C., Pacifici, R. E., Lin, S. W., et al, Superoxide dismutase undergoes proteolysis andfragmentation following oxidative modification and inactivation, J. Biol. Chem. 1990, 265, 11919-11927.
    84. Grune, T., Merker, K., Sandig, G., et al, Selective degradation of oxidatively modified protein substrates by the proteasome, Biochem. Biophys. Res. Commun. 2003, 305, 709-718.
    85. Battistoni, A., Donnarumma, G., Greco R., et al, Overexpression of a hydrogen peroxide-resistant periplasmic Cu,Zn superoxide dismutase protects Escherichia coli from macrophage killing, Biochem. Biophys. Res. Commun. 1998, 243, 804-807.
    86. Gabbianelli, R., Signoretti, C., Marta I, et al, Vibrio cholerae periplasmic superoxide dismutase: isolation of the gene and overexpression of the protein, J. Biotechnol. 2004, 109, 123-130.
    87. Liu, R., Althaus, J. S., Ellerbrock, B. R., et al, Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis, Ann. Neurol. 1998, 44, 763-770.
    88. Andrus, P. K., Fleck, T. J., Gurney, M. E., et al, Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis, J. Neurochem. 1998, 71, 2041-2048.
    89. Valentine, J. S., Do oxidatively modified proteins cause ALS? Free. Radic Biol. Med. 2002, 33, 1314-1320.
    90. Beckman, J. S., Carson, M., Smith, C. D., et al, ALS, SOD and peroxynitrite, Nature 1993, 364, 584.
    91. Ferrante, R. J., Shinobu, L. A., Schulz, J. B., et al, Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation, Ann. Neurol. 1997, 42, 326-334.
    92. Bruijn, L. I., Beal, M. F., Becher, M. W., et al, Elevated free nitrotyrosine levels,bot not protein-bound nitrotyrosine or hydroxyl radical,throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant, Proc. Natl. Acad. Sci. USA 1997, 74, 7606-7611.
    93. Andrus, P. K., Fleck, T. J., Gurney, M. E., et al, Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis, J. Neurochem. 1998, 71, 2041-2048.
    94. Beal, M. F., Ferrante, R. J., Browne, S. E., et al, Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis, Ann. Neurol. 1997, 42, 644-654.
    95. Yim, M. B., Kang, J., Yim, H., et al, A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide, Proc. Natl. Acad. Sci. USA 1996, 93, 5709-5714.
    96. Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., et al, Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis, Science 1996, 271, 515-518.
    97. Bogdanov, M. B., Ramos, L. E., Xu, Z., et al, Elevated hydroxyl radical generation in vivo in an animal model of amyotrophic lateral sclerosis, J. Neurochem. 1998, 71, 1321-1324.
    98. Crow, J. P., Ye, Y. Z., Strong, M., et al, Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament, J. Neurochem. 1997, 69, 1945-1953.
    99. Estevez, A. G., Crow, J. P., Sampson, J. B., et al, Induction of nitric oxide-dependent apoptosis inmotor neurons by zinc-deficient superoxide dismutase, Science 1999, 286, 2498-2500.
    100. Bush, A. I., Is ALS caused by an altered oxidative activity of mutant superoxide dismutase? Nat. Neurosci. 2002, 5, 919-920.
    101. Liu, J., Jonsson, P. A., Vande, Velde, C., et al, Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria, Neuron 2004, 43, 5-17.
    102. Rae, T. D., Schmidt, P. J., Pufahl, R. A., et al, Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase, Science 1999, 284, 805-808
    103. Teter, S. A., Houry, W. A., Ang, D., et al, Polypeptide flux through bacterial HSP 70: Dnak cooperates with trigger factor in chaperoning nascent chains, Cell 1999, 97, 755-765.
    104. Dobson, C. M., Principles of protein folding, misfolding and aggregation, Semin. Cell Dev. Biol. 2004, 15 3-16.
    105. Dobson, C. M., Protein folding and misfolding, Nature 2003, 426, 884-890.
    106. Saibil, H.R., Ranson, N. A., The chaperonin folding machine, Trends Biochem. Sci. 2002, 27, 627-632.
    107. Ross, C. A., Pickart, C., The ubiquitin-proteasome pathway in Parkinson’s and other neurodegenerative diseases, Trends Cell Biol. 2004, 14, 703-711.
    108. Johnston, J. A., Ward, C. L., Kopito, R. R., Aggresomes: a cellular response to misfolded proteins, J. Cell Biol. 1998, 143, 1883-1898.
    109. Olanow, C. W., Perl, D. P., DeMartino, G. N., et al, Lewy-body formation is an aggresomerelated process: a hypothesis, Lancet Neurol. 2004, 3, 496-503.
    110. Levine, B., Eating oneself and uninvited guests: autophagy-related pathways in cellular defense, Cell 2005, 120, 159-162.
    111. Cohen, F. E., Kelly, J. W., Therapeutic approaches to protein-misfolding diseases, Nature 2003, 426, 905-909.
    112. Carrel, R. W., Lomas, D., Conformational disease, Lancet 1997, 350, 134-138.
    113.李文伟,蔡定芳,任惠民,神经变性构象病及其分子基础.生理科学进展2006, 37, 97-102.
    114. Ross, C. A., Poirier, M. A., What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 2005, 6, 891-898.
    115. Bruijn, L. I., Kato, S., Anderson, K. L., et al, Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1, Science 1998, 281, 1851-1854.
    116. Bruijn, L. I., Lee, M. K., Anderson, K. L., et al, ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions, Neuron 1997, 18, 327-338.
    117. Wang, J., High molecular weight complexes of mutant superoxide dismutase 1: Age-dependent and tissue-specific accumulation, Neurobiol. Dis. 2002, 9, 139-148.
    118. Shibata, N., Hirano, A., Kobayashi, M., et al, MRI of adrenoleukodystrophy involving predominantly the cerebellum and brain stem, Neuroradiology 1996, 38, 788-791.
    119. Matsumoto, S., Kusaka, H., Ito, H., et al, Subcortical neurofibrillary tangles, sporadic amyotrophic lateral sclerosis with dementia and Cu/Zn superoxide dismutase-positive Lewy body-like inclusions, Clin. Neuropathol. 1996, 15, 41-46.
    120. Shibata, N., Asayama, K., Hirano, A., et al, Immunohistochemical study on superoxide dismutases in spinal cords from autopsied patients with amyotrophic lateral sclerosis, Dev. Neurosci. 1996, 18, 492-498.
    121. Bruijn, L. I., Becher, M. W., Lee, M. K., et al, ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions, Neuron 1997, 18, 327-338.
    122. Morrison, B. M., Morrison, J. H., Gordon, J. W., Superoxide dismutase and neurofilament transgenic models of amyotrophic lateral sclerosis, J. Exp. Zool. 1998, 282, 32-47.
    123. Sasaki, S., Warita, H., Murakami, T., et al, Ultrastructural study of aggregates in the spinal cord of transgenic mice with a G93A mutant SOD1 gene, Acta Neuropathol. (Berl.) 2005, 109, 247-255.
    124. Choi, J. S., Cho, S., Park, S. G., et al, Co-chaperone CHIP associates with mutant Cu/ Zn-superoxide dismutase proteins linked to familial amyotrophic lateral sclerosis and promotes their degradation by proteasomes, Biochem. Biophys. Res. Commun. 2004, 321, 574-583.
    125. Niwa, J., Hishikawa, N., Yamamoto, M., et al, Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity, J. Biol. Chem. 2002, 277, 36793-36798.
    126. Tateno, M. Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model, Hum. Mol. Genet. 2004, 113, 2183-2196.
    127. Bullis, B. L., Properties of the Na+/H+ exchanger protein detergent-resistant aggregation and membrane microdistribution, Eur. J. Biochem. 2002, 269, 4887-4895.
    128. Kazantsev, A., Preisinger, E., Dranovsky, et al, Insoluble detergentresistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl Acad. Sci. USA 1999, 96, 11404-11409.
    129. Shaked, G. M., Protease-resistant and detergent-insoluble prion protein is not necessarily associated with prion infectivity, J. Biol. Chem. 1999, 274, 17981-17986.
    130. Sherman, M. Y., Goldberg, A. L., Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases, Neuron 2001, 29, 15-32.
    131. Shibata, N., Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation, Neuropathology 2001, 21, 82-92.
    132. Lee, J. P., Gerin, C., Bindokas, V. P., et al, No correlation between aggregates of Cu/Zn superoxide dismutase and cell death in familial amyotrophic lateral sclerosis, J. Neurochem. 2002, 82, 1229-1238.
    133. Matsumoto, G., Structural properties and neuronal toxicity of amyotrophic lateral sclerosis-associated Cu/Zn superoxide dismutase 1 aggregates, J. Cell Biol. 2005, 171, 75-85.
    134. Shaw, B. F., Valentine, J. S., How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends in Biochem. Sci. 2007, 32, 78-85.
    135. Stine, E. J., Kevin, M., Rodriguez, J.A., et al, An alternative mechanism of bicarbonate-mediated peroxidation by copper-zinc superoxide dismutase, J. Biol. Chem. 2003, 278, 21032-21039.
    136. DiDonato, M., Craig, L., Huff, M. E., et al, ALS mutants of human superoxide dismutase formfibrous aggregates via framework destabilization, J. Mol. Biol. 2003, 332, 601-615.
    137. Furukawa, Y., O'Halloran, V. T., Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation, J. Biol. Chem. 2005, 280, 17266-17274.
    138. Urushitani, M., Kurisu, J., Tateno, M., et al, CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70, J. Neurochem. 2004, 90, 231-244.
    139. Jonsson, P. A., Andersen, P. M., Bergemalm, D., et al, Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis, Brain 2004, 127, 73-88.
    140. Wang, J., Xu, G., Li, H., Gonzales, V., et al, Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration, Hum. Mol. Genet. 2005, 14, 2335-2347.
    141. Khare, S. D., Caplow, M., Dokholyan, N. V., The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. USA 101 2004, 101, 15094-15099.
    142. Rakhit, R., Crow, J. P., Lepock, J. R., et al, Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis, J. Biol. Chem. 2004, 279, 15499-15504.
    143. Rakhit, R., Cunningham, P., Furtos-Matei, A., et al, Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis, J. Biol. Chem. 2002, 277, 47551-47556.
    144. Rodriguez, J. A., Shaw, B. F., Durazo, A., et al, Destabilization of apoprotein is insufficient to explain Cu,Zn-superoxide dismutase-linked ALS pathogenesis, Proc. Natl. Acad. Sci. USA 2005, 102, 10516-10521.
    145. Shaw, B. F., Local unfolding in a destabilized, pathogenic variant of superoxide dismutase 1 observed with H/D exchange and mass spectrometry, J. Biol. Chem. 2006, 281, 18167-18176.
    146. Canet, D., Tito, P., Sunde, M., et al, Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme, Nat. Struct. Biol. 2002, 9, 308-315.
    147. Dobson C. M., Protein misfolding, evolution and disease, Trends Biochem. Sci. 1999, 24, 329-332.
    148. Lindberg, M., Normark, J., Holmgren, A., et al, Folding of human superoxide dismutase: disulfide reduction prevents dimerization and produces marginally stable monomers, Proc. Natl. Acad. Sci. USA 2004, 101, 15893-15898.
    149. Rodriguez, J. A., Valentine, J. S., Eggers, D. K., et al, Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal stability of distinctly metallated species of human copper/zinc superoxide dismutase, J. Biol. Chem. 2002, 277, 15932-15937.
    150. Dyson, H. J., Wright, P.E., Intrinsically unstructured proteins and their functions, Nat. Rev. Mol. Cell Biol. 2005, 6, 197-208.
    151. Assfalg, M., Banci, L., Bertini, .I, et al, Superoxide dismutase folding/unfolding pathway: Role of the metal ions in modulating structural and dynamical features, J. Mol. Biol. 2003, 330, 145-158.
    152. Elam, J. S., Taylor, A. B., Stranger, R., et al, Amyloid-like filaments and water-filled nanotubesformed by SOD1 mutant proteins linked to familial ALS, Nat. Struct. Biol. 2003, 10, 461-467.
    153. Banci, L., Bertini, I., D'Amelio, et al, Fully metallated S134N Cu, Zn-superoxide dismutase displays abnormal mobility and intermolecular contacts in solution, J. Biol. Chem. 2005, 280, 35815-35821.
    154. Gitlin, I., Carbeck, J. D., Whitesides, G. M., Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis, Angew. Chem. Int. Ed. Engl. 2006, 45, 3022- 3060.
    155. Zbilut, J. P., Giuliani, A., Colosimo, A., et al, Charge and hydrophobicity patterning along the sequence predicts the folding mechanism and aggregation of proteins: a computational approach, J. Proteome Res. 2004, 3, 1243-1253.
    156. Calamai, M., Taddei, N., Stefani, M., et al, Relative influence of hydrophobicity and net charge in the aggregation of two homologous proteins, Biochemistry 2003, 42, 15078-15083.
    157. Chiti, F., Taddei, N., Stefani, M., et al, Studies of the aggregation of mutant proteins in vitro provide insights into the enetics of amyloid diseases, Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. 4), 16419-16426.
    158. Choi, J., Rees, H. D., Weintraub, S. T., et al, Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases, J Biol Chem. 2005, 280, 11648-11655.
    159. Wenisch, E., Vorauer, K., Jungbauer, A., et al, Purification of human recombinant superoxide dismutase by isoelectric focusing in a multicompartment electrolyzer with zwitterionic membranes, Electrophoresis 1994, 15, 647-653.
    160. Schmittschmitt, J. P., Scholtz, J. M., The role of protein stability, solubility, and net charge in amyloid fibril formation, Protein Sci. 2003, 12, 2374-2378.
    161. Urushitani, M., Sik, A., Sakurai, T., et al, Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis, Nat. Neurosci. 2006, 9, 108-118.
    162. Porcelli, A. M., Zanna, C., Pinton, P., et al, pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant, Biochem. Biophys. Res. Commun. 2005, 326, 799-804.
    163. Paroutis, P., Touret, N., Grinstein, S., The pH of the secretory pathway: measurement, determinants, and regulation, Physiology (Bethesda) 2004, 19, 207-215.
    164. Zhao, H., Jutila, A., Nurminen, T., et al, Binding of endostatin to phosphatidylserine-containing membranes and formation of amyloid-like fibers, Biochemistry 2005, 44, 2857-2863.
    165. Zhao, H., Tuominen, E. K. J., Kinnunen, P. K. J., Formation of amyloid fibres triggered by phospho-tidylserine-containing membranes, Biochemistry 2004, (43), 10302-10307.
    166. Shiao, Y. J., Lupo, G., Vance, J. E., Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine, J. Biol. Chem. 1995, 270, 11190-11198.
    167. Tiwari, A., Xu, Z., Hayward, L. J., Aberrantly increased hydrophobicity shared by mutants ofCu,Zn-superoxide dismutase in familial amyotrophic lateral sclerosis, J. Biol. Chem. 2006, 280, 29771-29779.
    168. Borchelt, D. R., Guarnieri, M., Wong, P. C., Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunit function, J. Biol. Chem. 1995, 270, 3234-3238
    169. Bruening, W., Roy, J., Giasson, B., et al, Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis, J. Neurochem. 1999, 72, 693-699.
    170. Shinder, G. A., Minotti, S., Durham, H. D., et al, Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of myotrophic lateral sclerosis, J. Biol. Chem. 2001, 276, 12791-12796.
    171. Hart, P. J., Pathogenic superoxide dismutase structure, folding, aggregation and turnover, Curr. Opin. Chem. Biol. 2006, 10, 131-138.
    172. Sumi, H., Inverse correlation between the formation of mitochondria-derived vacuoles and Lewy-body-like hyaline inclusions in G93A superoxide-dismutase-transgenic mice, Acta. Neuropathol.(Berl.) 2006, 112, 52-63.
    173. Hervias, I., Mitochondrial dysfunction and amyotrophic lateral sclerosis, Muscle Nerve 2006, 33, 598-608.
    174. Han, Y., Shen, T., Jiang, W., et al, DNA Cleavage Mediated by Copper Superoxide Dismutase via Two Pathways, J. Inorg. Biochem. 2006.
    175. Valentine, J. S., Doucette, P. A., Potter, S. Z., Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis, Annu. Rev. Biochem. 2005, 74, 563-593.
    176. Bruijn, L. I., Miller, T. M., Cleveland, D. W., Unraveling the mechanisms involved in motor neuron degeneration in ALS, Annu. Rev. Neurosci. 2004, 27, 723-749.
    177. Boillee, S., Velde, C.V., Cleveland, D.W., ALS: a disease of motor neurons and their nonneuronal neighbors, Neuron 2006, 52, 39-59.
    178. Lu, T., Pan, Y., Kao, S.Y., et al, Gene regulation and DNA damage in the ageing human brain, Nature 2004, 429, 883-891.
    179. Hideaki, K., Junichi, F., Keiichiro, S., et al, DNA cleavage induced by glycation of Cu,Zn-superoxide dismutase, Biochem. J. 1994, 304, 219-225.
    180. Jung, H. K., Won, S. E., Enhanced oxidative damage by the familial amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutants, Biochim. Biophys. Acta. 2000, 1524, 162-170.
    181. Park, J. W., Floyd, R. A., Glutathione/Fe3+/O2 mediated DNA strand breaks and 8-hydroxydeoxyguanosine formation, Enhancement by copper, zinc superoxide dismutase, Biochim. Biophys. Acta 1997, 1336, 263-268.
    182. Yoon, S. J., Koh, Y. H., Floyd, R.A., et al, Copper, zinc superoxide dismutase enhances DNA damage and mutagenicity induced by cysteine/iron, Mutation. Res. 2000, 448, 97-104.
    183. Dowjat, W. K., Kharatishvili, M., Costa, M., DNA and RNA strand scission by copper, zinc and manganese superoxide dismutases, BioMetals 1996, 9, 327-335.
    184. Ling, J., Gao, X., Liu, W.Y., et al, DNA-cleaving activity of superoxide dismutase specific for circular supercoiled double-stranded DNA in vitro, Int. J. Biochem. Cell Biol. 1998, 30, 1123-1127.
    185. Kushner, S. R., Nucleases, in Encyclopedia of Life Sciences, Macmillan Publishers Ltd, Nature Publishing Group. 2002.
    186. Galvan, L., Galvan, L., Huang, C. H., et al, Inhibition of bleomycin-induced DNA breakage by Superoxide Dismutase, Cancer Research 1981, 41, 5103-5106.
    187. McGhee, J. D., Von Hippel, P. H., Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice, J. Mol. Biol. 1974, 86, 469-489.
    188. Zhao, N. M., Zhou, H. M., Biophysics, 1st ed, China Higher Education Press, Beijing, and Springer-Verlag, Heidellberg, 2000, pp.73-98.
    189. Liu, D., Wen, J., Liu, J., The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidantion of protein, DNA, and membrane phospholipids, FASEB J. 1999, 13, 2318-2328.
    190. Campbell, V. W., Jackson, D. A., The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA, J. Biol. Chem. 1980, 255, 3726-3735.
    191. Freifelder, D., Trumbo, B., Matching of single-strand breaks to double-strand breaks in DNA. Biopolymers 1969, 7, 681-693.
    192. Povirk, L. F., Wübker, W., K?hnlein,W. et al, DNA double-strand breaks and alkali-labile bonds produced by bleomycin, Nucleic. Acids. Res. 1977, 4, 3573-3580.
    193. Povirk, L. F., Houlgrave, C. W., Effect of apurinic/apyrimidinic endonucleases and polyamines on DNA treated with bleomycin and neocarzinostatin: specific formation and cleavage of closely opposed lesions in complementary strands, Biochemistry 1998, 27, 3850-3857.
    194. ?kerman, B., Tuite, E., Single- and double-strand photocleavage of DNA by YO, YOYO and TOTO, Nucleic. Acids. Res. 1996, 24, 1080-1090.
    195. Pan, C. Q., Lazarus, R. A., Hyperactivity of human DNase I variants, dependence on the number of positively charged residues and concentration, length, and environment of DNA, J. Biol. Chem. 1998, 273, 11701-11708.
    196. Getzoff, E. D., Weiner, P. K., Kollman, P. A., et al, Electrostatic recognition between superoxide and copper, zinc superoxide dismutase, Nature 1983, 306, 287-90.
    197. Rodgers, M. T., A Thermodynamic“vocabulary for metal ion interactions in biological systems", Acc. Chem. Res. 2004, 37, 989-998.
    198. O’Brien, P. J., Catalytic promiscuity and the divergent, evolution of DNA repair enzymes, Chem. Rev. 2006, 106, 720-752.
    199. Suck D, L. A., Oefner C., Structure refined to 2 ? of a nicked DNA octanucleotide complex with DNase I, Nature 1988, 332, 464-468.
    200. Liochev, S. I., Fridovich, I., Bicarbonate-enhanced peroxidase activity of Cu,ZnSOD is the distal oxidant bound or diffusible? Arch. Biochem. Biophys. 2004, 421, 255-259.
    201. Cowan, J. A., Metal activation of enzymes in nucleic acid biochemistry, Chem. Rev. 1998, 98, 1067-1087.
    202. Weston, S. A., Suck, D., X-ray structure of the DNase I-d(GGTATACC)2 complex at 2.3 ? resolution, J. Mol. Biol. 1992, 226, 1237-1256.
    203. Marshall, A. G., Biophysical Chemistry, Principles, Techniques, and Applications, Wiley, New York, (1978) pp 70-84.
    204. Wolfe, A., Shimer, G. H. Jr., Meehan T., Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA, Biochemistry 1987, 26, 6392-6396.
    205. Campbell, V. W., Jackson, D. A., The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA, J. Biol. Chem. 1980, 255, 3726-3735.
    206. Groll, D. H., Eltsch, A., Selent, U., et al, Does the restriction endonuclease EcoRV employ a two-metal-ion mechanism for DNA cleavage, Biochemistry 1997, 36, 11389-11401.
    207. Tipton, K. F., Dixon, H. B., Methods in Enzymology. Academic Press: New York, 1979; Vol. 63, p pp. 183-234.
    208. Lippard, S. J., Burger, A. R., Ugurbil, K., et al, Nuclear magnetic resonance and chemical modification studies of the role of the metal in yeast aldolase, Biochemistry 1977, 16 1136-1141.
    209. Ovádi, J. L., Elodi, P., Spctrophotometric determination of histidine in proteins with diethylpyrocarbonate, Acta. Biochim. Biophys. Acad. Sci. Hung. 1967, 2 455-458
    210. Rigo, A., Terenzi, M., Viglino, P., et al, The binding of copper ions to copper-free bovine superoxide dismutase, Biochem. J. 1977, 16, 31-35.
    211. Dominici, P., Tancini, B., Borri, V. C., Chemical modification of pig kidney 3,4-dihydroxyphenylalanine decarboxylase with diethyl pyrocarbonate, evidence for an essential histidyl residue, J. Biol. Chem. 1985, 260, 10583-10589.
    213. Mitic, N., Smith, S. J. N., Guddat, A., et al, The catalytic mechanisms of binuclear metallohydrolases, Chem. Rev. 2006, 106, 3338-3363.
    214. Conlan, L. H., Dupureur, C. M., Multiple metal ions drive DNA association by PvuII endonuclease, Biochemistry 2002, 41, 14848-14855.
    215. Steitz, T. A., Steitz, J., A general two-metal-ion mechanism for catalytic RNA, Proc. Natl. Acad. Sci. USA 1993, 90, 6498-6502
    216. Cotton, F. A., Wilkinson, G., Advanced Inorganic Chemistry, 5th ed. Wiley, New York, (1988) pp 1288-1289.
    217. Nowotny, M., Yang, W., Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release, EMBO J. 2006, 25, 1924-1933.
    218. Mikael, J., Lindberg, L., Oliveberg, M., et al, Common denominator of Cu,Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis: Decreased stability of the apo state, Proc. Natl. Acad. Sci. USA 2002, 99, 16607-16612.
    219. DiDonato, M., Craig, L., Huff, M. E., et al, ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization, J. Mol. Biol. 2003, 332, 601-615.
    220. Khare, S. D., Caplow, M., Dokholyan, N. V., The rate and equilibrium constants for a multistepreaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 15094-15099
    221. Rakhit, R., Cunningham, P., Furtos-Matei, A., et al, Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis, J. Biol. Chem. 2002, 277, 47551-47556.
    222. Cordeiro, Y., Juliano, L. Juliano, M. A., et al, DNA converts cellular prion protein into the -Sheet conformation and inhibits prion peptide aggregation, J. Biol. Chem. 2001, 276, 49400-49409.
    223. Rakhit, R., Lepock, J. R., Kondejewski, L. H., et al, Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis, J. Biol. Chem. 2004, 279, 15499-15504.
    224. DiDonato, M., Huff, M.E., hayer, M. M., et al, ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization, J. Mol. Biol. 2003, 332, 601-615.
    225. Nandi1, P. K., Leclerc, E., Nicole, J.-C., et al, DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid, J. Mol. Biol. 2002, 322, 153-161.
    226. Choi, J., Susan, T., Weintraub, A. I., et al, Oxidative modifications and aggregation of Cu,Zn-Superoxide dismutase associated with Alzheimer and Parkinson diseases, J. Biol. Chem. 2005, 280, 11648-11655.
    227. Nandi, P. K., Polymerization of human prion peptide HuPrP 106-126 to amyloid in nucleic acid solution, Arch. Virol. 1998, 143, 1251-1263.
    228. Nandi, P. K., Sizaret, P-Y., Murine recombinant prion protein induces ordered aggregation of linear nucleic acids to condensed globular structures, Arch. Virol. 2001, 146, 327-345.
    229. Nandi, P. K., Interaction of prion peptide HuPrP106-126 with nucleic acid, Arch. Virol. 1997, 142, 2537-2545.
    230. Nandi, P. K., Nicole, J.-C., Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent, J. Mol. Biol. 2004, 344, 827-837.
    231. Stathopulos, P. B., Scholz, G. A., Irani, R. A., et al, Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro, Proc. Natl. Acad. Sci. USA 2003, 100, 7021-7026.
    232. Ross, C. A., Poirier, M. A., Opinion: What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 2005, 6, 891-898.
    233. LeCamE, Delain, E., Nucleic acid ligand interaction, Nucleic Acids Sci., 1995, 42, 331-356.
    234. Bloomfield, V. A., DNA condensation by multivalent cations, Nucleic Acids Sci. 1998, 44, 269-282.
    235. Flink, I., Pettijhon, D.E., Polyamines stabilise DNA folds, Nature 1975, 253, 62-64.
    236. Laemmli, U. K., Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine, Proc. Natl Acad. Sci. USA, 1975, 72, 4288-4292.
    237. Erie, D. A., Yang, G., Schultz, H.C., Bustanmante, C., DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity, Science 1994, 266, 1562-1566.
    238. Ceci, P., Cellai, S., Falvo, E., et al, DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus, Nucleic Acid Res. 2004, 32, 5935-5944.
    239. Hsiang, M. W., Cole, R. D., Structure of histone H1-DNA complex: Effect of histone H1 on DNA condensation, Proc. Natl. Acad. Sci. USA 1977, 74, 4852-4856.
    240. Garcia-Ramirez, M., Subirana, J., Condensation of DNA by basic proteins does not depend on protein composition, Biopolymers 1994, 34, 285-292.
    241. Widom, J., Baldwin, R.L., Cation-induced toroidal condensation of DNA, J. Mol. Biol. 1980, 144, 431-453.
    242. Widom, J., Baldwin, R.L., Monomolecular condensation of lambda-DNA induced by cobalt hexamine, Biopolymers 1983, 22, 1595-1620.
    243. Bloomfield, V. A., Condensation of DNA by multivalent cations: considerations on mechanism, Biopolymers 1991, 31, 1471-1481.
    244. Sikorav, J.-L., Pelta, J., Livolant, F., A liquid crystalline phase in spermidine-condensed DNA, Biophys. J. 1994, 67, 1387-1392.
    245. He, S., Kinetics of DNA condensation by hexaammine cobalt(III), University of Minnesota, St. Paul, 1992, 1-228.
    246. Chattoraj, D. K., Gosule, L. C., Schellman, J. A., DNA condensation with polyamines: II. electron microscopic studies, J. Mol. Biol. 1978, 121, 327-337.
    247. Wilson, R. W., Bloomfield, V. A., Counterion-induced condensation of deoxyribonucleic acid, a light-scattering study, Biochemistry 1979, 18, 2192-2196.
    248. Gosule, L. C. Schellman, J. A., Compact form of DNA induced by spermidine, Nature 1976, 259, 333-335.
    249. Gosule, L. C., Schellman, J. A., DNA condensation with polyamines: I. spectroscopic studies, J. Mol. Biol. 1978, 121, 311-326.
    250. Manning, G. S., Packaged DNA: an elastic model, Cell Biophys. 1985, 7, 57-89.
    251. Manning, G. S., Thermodynamic stability theory for DNA doughnut shapes induced by charge neutralization, Biopolymers 1980, 19, 37-59.
    252. Manning, G. S., Limiting laws and counterion condensation in polyelectrolyte solutions, the approach to the limit and the extraordinary stability of the charge fraction, Biophys. Chem. 1977, 7, 95-102.
    253. Marx, K. A., Ruben, G. C., Evidence for hydrated spermidine-calf thymus DNA toruses organized by circumferential DNA wrapping, Nucleic Acids Res. 1983, 11, 1839-1854.
    254. Marx, K. A., Reynolds, T. C., Spermidine-condensed phi-X-174 DNA cleavage by micrococcal nuclease: torus cleavage model and evidence for unidirectional circumferential DNA wrapping, Proc. Natl Acad. Sci. USA 1982, 79, 6484-6488.
    255. Hud, N. V., Downing, K. H., Balhorn, R., A constant radius of curvature model for the organization of DNA in toroidal condensates, Proc. Natl Acad. Sci.USA 1995, 92, 3581-3585.
    256. Rau, D. C., Parsegian, V. A., Direct measurement of the intermolecular forces between counterion-condensed DNA double helices: Evidence for long-range attractive hydration forces,Biophysical J. 1992, 61, 246-259.
    257. Lin, Z., Wang, C., Feng, X., et al, The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies, Nucleic Acids Res. 1998, 26, 3228-3234.
    258. Pelta, J., Livolant, F., Sikorav, J. L., DNA aggregation induced by polyamines and cobalthexamine, J. Biol. Chem. 1996, 271, 5656-5662.
    259. Kim, Y-J., Nakatomi, R., Akagi, T., et al, Unsaturated fatty acids induce cytotoxic aggregate formation of amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutants, J. Biol. Chem. 2005, 280, 21515-21521.
    260. Jiang, W., Han, Y., Zhou, R., Zhang, L., Liu, C., DNA is a template for accelerating the aggregation of Cu, Zn Superoxide dismutase, Biochemistry 2007, 46, 5911-5923.
    261. Gaggelli, E., Kozlowski, H., Valennsin, D., Valensin, G., Copper homeostasis and neurodegenerative disorders (Alzheimer's, Prion, and Parkinson's diseases and amyotrophic lateral sclerosis), Chem. Rev. 2006, 106, 1995-2044. .
    262. Valentine, J. S., Hart, P. J., Misfolded CuZnSOD and amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. USA 2003, 100, 3617-3622.
    263. Cohen, E., Bieschke, J., Perciavalle, R. M., et al, Opposing activities protect against age-onset proteotoxicity, Science 2006, 313, 1604-1610.
    264. Lashuel, H. A., Hirling, H., Rescuing defective vesicular trafficking protects against synuclein toxicity in cellular and animal models of Parkinson's disease, Nature 2006, 443, 774-779.
    265. Haass, C., Selkoe, D. J., Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloidβ-peptide, Nat. Rev. Mol. Cell Biol. 2007, 8, 101-112.
    266. Arrasate, M., Mitra, S., Schweitzer, E. S., et al, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death, Nature 2004, 431, 805-810.
    267. Lesne, S., Koh, M. T., Kotilinek, L., et al, A specific amyloid-beta protein assembly in the brain impairs memory, Nature 2006, 440, 352-357.
    268. Bucciantini, M. Calloni, F., Chiti, L., et al, Prefibrillar amyloid protein aggregates share common features of cytotoxicity, J. Biol. Chem. 2004, 279, 31374-31382.
    269. Kayed, R., Head, E., Thompson, J. L., et al, Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis, Science 2003, 300, 486-489.
    270. Cleary, J. P., Walsh, D. M., Hofmeister, J. J., et al, Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function, Nat. Neurosci. 2005, 8, 79-84.
    271. Bodner, R. A., Outeiro, T. F., ltmann, S. A, et al, Kazantsev, A. G., Pharmacological promotion of inclusion formation: A therapeutic approach for Huntington's and Parkinson's diseases, Proc. Natl. Acad. Sci. USA 2006, 103, 4246 - 4251.
    272. Rakhit, R., Crow J. P., Lepock J. R., et al, Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis, J. Biol. Chem. 2004, 279, 15499-15504.
    273. Edward, D., Hall, P. K., Andrus, J. A., et al, Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS, J.Neurosci. Res. 1998, 53, 66-77.
    274. Mastrangelo, I. A., Ahmed, M., Sato T., et al, High-resolution atomic force microscopy of soluble Abeta42 oligomers, J. Mol. Biol. 2006, 358, 106-119.
    275. Dong, J., Shokes, J. E., Scott, R. A., et al, Modulating amyloid self-assembly and fibril morphology with Zn(II), J. Am. Chem. Soc. 2006, 128, 3540-3542.
    276. Kodali, R., Wetzel, R., Polymorphism in the intermediates and products of amyloid assembly, Curr. Opin. Struct. Biol. 2007, 17, 1-10.
    277. Bruijn L. I., Houseweart M. K., Kato S., et al, Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1, Science 1998, 281, 1851-1854.
    278. Cherny, D., Hoyer, W., Subramaniam, V., et al, Double-stranded DNA stimulates the fibrillation of a-synuclein in vitro and is associated with the mature fibrils: an electron microscopy study, J. Mol. Biol. 2004, 344, 929-938.
    279. Calamai, M., Kumita, J. R., Mifsud, J., et al, Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes, Biochemistry 2006, 45, 12806-12815.
    280. Ignatova, Z., Gierasch, L. M., Extended polyglutamine tracts cause aggregation and structural perturbation of an adjacent barrel protein, J. Biol. Chem. 2006, 281, 12959-12967
    281. Lee, C.-H., Kim, H. J. Lee, J.-H., et al, Dequalinium-induced protofibril formation of synuclein, J. Biol. Chem. 2006, 281, 3463-3472.
    282. Isaacs, A. M., Senn, D. B., James, M. Y., et al, Acceleration of amyloid-peptide aggregation by physiological concentrations of calcium, J. Biol. Chem. 2006, 281, 27916-27923.
    283. Uversky, V. N., Li, J., Fink, A. L., Metal-triggered structural transformations, aggregation, and fibrillation of human-synuclein, J. Biol. Chem. 2001, 276, 44284-44296
    284. Wiseman, R. L., Johnson, S. M., Kelker, M. S., et al, Kinetic stabilization of an oligomeric protein by a single ligand binding event, J. Am. Chem. Soc. 2005, 127, 5540-5551.
    285. Lansbury, P. T., Lashuel, H. A., A century old debate on protein aggregation and neurodegeneration enters the clinic, Nature 2006, 443, 774-779.
    286. Scarpa, M., Stevanato, R., VigIinoS, P., et al, Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen, J. Biol. Chem. 1983, 258. 6695-6697

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700