用户名: 密码: 验证码:
一维纳米ZnO及其复合材料的发光二极管
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO),作为一种重要的宽禁带半导体材料,具有优良的光电性能,目前已被广泛地研究应用到发光二极管、光伏电池、激光等光电领域。自从发现室温下ZnO纳米线的紫外激光发射以来,一维ZnO纳米材料如纳米棒、纳米管、纳米带等由于在纳米器件和光电器件中的潜在应用前景而受到了人们极大的关注。
     发光二极管由于具有高效节能的特点,很有可能取代传统的白炽灯和荧光灯,成为新一代的照明光源。ZnO是继GaN之后最有可能实现商业化的光电材料。如何将一维纳米ZnO材料更好地应用到发光二极管领域,已经成为研究的热点。
     本论文着重应用电化学方法,通过各种途径,提高ZnO纳米棒发光二极管的发光效率,调节一维纳米ZnO材料的电致发光谱段,主要进行了以下两方面的研究工作:(1)采用电化学方法分别制备ZnO纳米棒膜、ZnO纳米棒与聚3—甲基噻吩(PMT)复合膜及ZnO纳米棒与CuSCN复合膜,构建ZnO纳米棒发光二极管、ZnO纳米棒/PMT发光二极管、ZnO纳米棒/CuSCN发光二极管,研究其电致发光性能,探讨了其电致发光的机理。(2)采用电化学方法制备ZnO纳米管膜,探讨ZnO纳米管的形成机理;构建ZnO纳米管发光二极管,研究其电致发光性能及发射白光的特性。获得如下主要的研究结果:
     一、ZnO纳米棒膜的电化学制备以及ITO/ZnO/Al发光二极管的构建
     1.优化恒电流阴极还原法在ITO基底上电沉积ZnO纳米棒膜条件,使制备的ZnO纳米棒能均匀地覆盖在ITO基底上,高度较为一致,排列紧密,直径大约为130 nm;ZnO纳米棒锌氧元素的比例接近1:1,具有六方纤锌矿型的晶体结构,在ITO基底上有很好地沿c轴取向生长的优势;在340 nm单色光照射下,控电位O V(vs SCE)时产生阳极光电流,为n型半导体;ZnO纳米棒膜的荧光光谱由强的382 nm处的紫外发光和弱的500~600 nm波段的可见发光构成,紫外发光是ZnO纳米棒的激子复合发光,而可见光谱带主要是由缺陷引起的跃迁发光。构建了ITO/ZnO/Al发光二极管,其启动电压大约为8 V,电致发光谱带形状与ZnO纳米棒膜的荧光光谱相似。
     二、PMT/ZnO纳米棒复合膜的制备以及ITO/ZnO/PMT/Al发光二极管的构建
     1.以ZnO纳米棒/ITO为工作电极,在ZnO纳米棒膜上恒电流聚合了p型PMT膜。从光电流谱和荧光光谱图都可以看出当ZnO纳米棒与PMT复合之后,缺陷态有所增加。
     2.主要采用电化学方法构建ITO/ZnO/PMT/Al发光二极管,其I-V特性曲线图表现出了良好的p-n异质结的整流特性。与ITO/ZnO/Al发光二极管相比,ITO/ZnO/PMT/Al发光二极管的启动电压略小,为7 V,电致发光谱带的形状相似,但是紫外的发光强度增强了约三倍。电致发光增强主要是由于在相同的偏压下ITO/ZnO/PMT/Al发光二极管的电流明显增大,以及所增加的PMT层降低了空穴注入的势垒,较好地平衡了电子和空穴注入的速率所造成的。可见发光的强度随PMT聚合时间的增加而增大,这是由于在PMT的电聚合过程中能使ZnO纳米棒的缺陷态增多引起的。
     三、CuSCN/ZnO纳米棒复合膜的制备以及ITO/ZnO/CuSCN/Au发光二极管的构建
     1.以ZnO纳米棒/ITO为工作电极,在ZnO纳米棒膜上用恒电位阴极还原法电沉积了均匀、致密的p型β-CuSCN薄膜,制备了CuSCN/ZnO纳米棒复合膜。复合膜中ZnO的含量大约为CuSCN的7.9倍,Cu与SCN的比例大约为1.0。CuSCN/ZnO纳米棒复合膜的瞬态光电流谱出现了尖锐的前后峰,说明ZnO纳米棒在电沉积了CuSCN后,表面态增多。复合膜的荧光光谱也进一步证明了这一点。
     2.主要采用电化学方法构建ITO/ZnO/CuSCN/Au发光二极管,其I-V特性曲线图说明n型ZnO纳米棒与p型CuSCN之间形成了p-n异质结。ITO/ZnO/CuSCN/Au发光二极管在较低的正向偏压(7 V)下开始检测到电致发光信号,电致发光谱带覆盖了从350 nm到600 nm的波段,主要是由400nm附近弱的紫外峰和530 nm附近强的可见发光构成,与ITO/ZnO/Au发光二极管相比有较大的差别,这是由于CuSCN的电沉积使ZnO纳米棒的表面态增多引起的。电致发光强度与ITO/ZnO/Au发光二极管相比明显增强,原因主要是在相同的偏压下ITO/ZnO/CuSCN/Au发光二极管的电流显著增大,以及CuSCN作为良好的空穴传输材料,较好地平衡了发光二极管中电子和空穴的注入速率。
     四、ZnO纳米管膜的电化学制备以及ITO/ZnO纳米管/Au发光二极管的构建
     1.以ZnO纳米棒/ITO为工作电极,采用了三种不同的阴极电流1.35μA/cm~2、1.65μA/cm~2、2.00μA/cm~2刻蚀制备ZnO纳米管。ZnO纳米管的形成与自身的晶体结构特点密切相关。在刻蚀过程中虽然ZnO纳米管壁受到部分的溶解,但是由于极性(001)面的亚稳定性和乙二胺(EDA)分子对非极性的侧面的保护作用,OH-更容易吸附在(001)面反应,使得ZnO纳米棒在中心的刻蚀速率远远大于边缘的刻蚀速率,最终导致了ZnO纳米管的形成。
     2.制备的ZnO纳米管样品为纤锌矿型,直径大约为200~300 nm,管壁大约为10~20 nm厚,长度大约为1~1.5μm。ZnO纳米管的上半部分为纳米管结构,而底部还保留了纳米棒的形态。拉曼光谱、紫外-可见吸收光谱、光电流谱、荧光光谱都表明,当ZnO纳米棒刻蚀成纳米管的过程中,缺陷都明显增多。ZnO纳米管的荧光光谱图中,400 nm处的激子发光较ZnO纳米棒明显减弱,而在500~600 nm的可见发光却大大加强。
     3.主要采用电化学方法构建了ITO/ZnO纳米管/Au发光二极管。二极管启动电压7 V;在较低的偏压时,ZnO纳米管的电致发光谱图与其荧光光谱图相似;当进一步增大偏压时,ZnO纳米管的可见发光波段逐渐拓宽,在约12 V时,肉眼可以观测到ZnO纳米管发射白光;在20 V时,ZnO纳米管的电致发光强度达到最大,发光谱带几乎覆盖了整个可见光波段。
     4.在相同的偏压下,ITO/ZnO纳米管/Au发光二极管的电流明显大于ITO/ZnO纳米棒/Au发光二极管,这也是ITO/ZnO纳米管/Au发光二极管具有较强的电致发光强度的原因。ZnO纳米棒在刻蚀成纳米管的过程中,比表面增大,产生了许多表面态和体相缺陷,而且这些缺陷的能级分布较宽,在较高的正向偏压下,更多有效辐射的复合中心被激发,导致ZnO纳米管发光二极管的电致发光谱带变宽,能够发射白光。
Light-emitting diodes constructed by one-dimensionalnanostructural ZnO and its composite materials
     Zinc oxide(ZnO),as an important wide-band-gap semiconductor,hasbeen widely investigated for applications in light-emitting diodes(LEDs),photovoltaic cells and lasers,because of its excellent photoelectricproperties.Since the first report of ultraviolet lasing from ZnOnanowires,one-dimensional ZnO nanostructures such as nanorods,nanotubes,nanobelts etc.,have been especially focused on for theirpotential uses in nano devices and optoelectronics.
     LEDs have the potential to become the primary lighting method,replacing conventional light sources(incandescent light bulbs andfluorescent lamp) due to their low energy consumption and high efficiency.ZnO is the most promising optoelectronic material to be commercializedafter GaN.How to exploit one-dimensional nanostructural ZnO better forLED applications has become a popular topic.
     This dissertation focuses on improving the luminous efficiency of ZnOLED and tuning the electroluminescent(EL) spectrum of one-dimensionalnanostructural ZnO via electrochemical approaches.The work can bedivided into two parts:(1)Electrochemical preparation andcharacterization of ZnO nanorods、ZnO nanorods/poly(3-methylthiophene)(PMT) composite film、ZnO nanorods/CuSCN composite film.Fabrication ofZnO nanorod LED、ZnO nanorod/PMT LED、ZnO nanorod/CuSCN LED.Their ELmechanisms are also studied.(2)Electrochemical preparation andcharacterization of ZnO nanotubes.Fabrication of ZnO nanotube LEDs.Boththe growth and white light EL mechanisms of ZnO nanotubes are discussed.The following text is the details:
     (A)Electrochemical preparation of ZnO nanorods and fabrication of ZnOnanorod LED
     1.We electrodeposited ZnO nanorods galvanostatically on ITO substrates.During the electrodeposition process,the crystal structuralcharacteristics of ZnO play an important part in the formation of ZnOnanorod.The hexagonal ZnO nanorods can cover the entire ITO substrateuniformly with an average diameter of about 130 nm.The atomic ratioof zinc to oxygen of as-grown ZnO nanorods is about l:l.The ZnOnanorods are single crystals of wurtzite structure and orientedpreferably along c axis.When exposed to UV illumination at 340 nm undera O V bias(vs SCE),ZnO nanorods exhibit anode photocurrent,indicating that ZnO nanorods are n type semiconductor.Thephotoluminescence(PL) spectrum of ZnO nanorods is made up of two parts,strong UV peak and weak visible emission.The UV emission is centeredat 382 nm,related to exciton combination.The weak visible broad-bandluminescence over 500-600 nm region is ascribed to defect-relatedtransitions.
     2.We fabricated ITO/ZnO/Al LED by electrochemical approaches.Theturn-on voltage is about 8 V.The EL spectrum of ZnO nanorods showsnearly identical features with their PL spectrum.
     (B) Electrochemical preparation of ZnO nanorods/PMT composite film andfabrication of ZnO nanorod/PMT LED
     1.We electropolymerized p-PMT film galvanostatically on the surface ofZnO nanorods.Both photocurrent and PL spectra indicate that ZnO nanorods in composite films contain more defects after the growth ofPMT.
     2.We fabricated ITO/ZnO/PMT/A1 LED by electrochemical approaches.TheI-V curve of ITO/ZnO/PMT/Al LED shows a good rectificationcharacteristic of p-n heterojunction.Compared with ITO/ZnO/Al LED,ITO/ZnO/PMT/A1 LED has a lower turn-on voltage of 7 V.Its EL spectrumshows similar features with ITO/ZnO/M LED.However,the emissionintensity is greatly enhanced and the UV emission of ITO/ZnO/PMT/AlLED is about three times stronger than ITO/ZnO/Al LED.When increasingthe deposition time of PMT,the visible emission can be improved morethan the UV peak.That is because the growth process of PMT can generatemore defects of ZnO nanorods.The EL enhancement phenomenon can beexplained by the quicker growth rate of forward current and thepresence of PMT layer.The PMT layer can lower the barrier of holeinjection and balance the electrons and holes injection rates.
     (C) Electrochemical preparation of ZnO nanorods/CuSCN composite film andfabrication of ZnO nanorod/CuSCN LED
     1.We electrodeposited a compact and uniform layer of p typeβ-CuSCNon the surface of ZnO nanorods.In the composite film,the contentof ZnO is about 7.9 times of CuSCN and the molar ratio of Cu to SCNis about 1.0.The transient photocurrents of ZnO nanorods/CuSCNcomposite film exibit sharp peaks,indicating that ZnO nanorods incomposite films contain more surface states after the growth of CuSCN,which is also certified by their PL spectrum.
     2.We fabricated ITO/ZnO/CuSCN/Au LED by electrochemical approaches.TheI-V curve of the ITO/ZnO/CuSCN/Au LED shows a good rectificationcharacteristic of p-n heterojunction.When applied a forward direct voltage of 7 V,the EL signal of ITO/ZnO/CuSCN/Au LED becomesdetectable.The EL spectrum consists of a weak UV peak centered at400 nm and a strong visible broad-band emission centered at 530 nm,which shows quite different features from the ITO/ZnO/Au LED.Thatis because the growth process of CuSCN can generate more suface statesof ZnO nanorods.The EL enhancement phenomenon can be explained bythe quicker growth rate of forward current and the presence of CuSCNlayer.As a good hole transport material,the CuSCN layer can balancethe electrons and holes injection rates and increase the probabilityof their efficient recombination.
     (D) Electrochemical preparation of ZnO nanotubes and fabrication of ZnOnanotube LEDs
     1.The ZnO nanorods were selectively dissolved to form nanotubes byapplying a constant cathodic current density.In our experiments,wechosel.35μA/cm~2、1.65μA/cm~2、2.00μA/cm~2 as the etching cathodiccurrents.The structural characteristics of ZnO play an important partin the formation of ZnO nanotube.Although the tube wall is partiallydissolved,the protective function of the EDA molecules on the lateralsurfaces and the metastability of the(O001) plane make the etchingrate in the [0001] direction much faster than at the lateral surfaces,resulting in the formation of the hollow-structured ZnO nanotubes.
     2.As-prepared ZnO nanotubes show the hexagonally faceted morphology,maily 200-300 nm in diameter.The wall thickness of ZnO nanotubes isabout 10-20 nm and the length is about 1-1.5μm.The ZnO nanotubescontain sections that are tubular and sections that maintain their rodform.The raman spectra,absorption spectra,transient photocurrentsand PL spectra indicate that ZnO nanotubes contain more surface states and bulk defects,which are generated during the etching process.Compared with the ZnO nanorods,the excitonic emission of ZnO nanotubesis much weaker and centered at 400 nm.Meanwhile,the broad-bandvisible PL of ZnO nanotubes in the range of 500-600 nm,which originatesfrom defects,becomes much stronger.
     3.We fabricated ITO/ZnO nanotube/Au LEDs by electrochemical approaches.Their turn-on voltages is about 7 V.At low bias values,the EL spectraconsist of an excitonic emission centered at 400 nm and a broadluminescence from 450 to 600 nm.The characteristics of the EL spectraare nearly identical to those of the PL spectra.Further increasingthe bias causes the EL intensity to increase drastically,and thevisible emission region also broadens gradually.A white light ELemission is visible by the naked eyes above a voltage of ca.12 V.Ata high bias value of 20 V,the EL spectrum almost covers the entirevisible spectrum from 400 to 600 nm.
     4.ZnO nanotube LEDs show a much higher current growth rate than ZnOnanorod LEDs.Due to the large surface area,ZnO nanotube LEDs offera superior total electric current with the same forward bias,whichmight also account for the greatly enhanced EL.The high defect densityof ZnOnanotubes is generated during the etching process.In addition,the generation of surface states is favored by the large specificsurface of ZnO nanotubes.The energy levels of the defects may bedistributed over a relatively wide range.By increasing the appliedvoltage,more radiative recombination centers can be activated,resulting in a white light emission from the ZnO nanotubes.
引文
[1]姚凯,阮新波,王蓓蓓,顾琳琳,徐明,第四代新光源-发光二极管[J],电源世界,2008,3:21-26.
    [2]易安,半导体照明-21世纪的节能新光源[J],中国创业投资与高科技,2004,8:28-30.
    [3]黄春辉,李富友,黄岩谊,光电功能超薄膜[M],北京:北京大学出版社,2001.
    [4]王玉英,白光发光二极管的最新开发动向与未来展望[J],光机电信息,2007,7:32-36
    [5]Colvin V L,Schlamp M C,Alivisatos A P,Light emittingdiodes made from cadmium selenide nanocrystals and a semiconducting polymer[J],Nature,1994, 370:354-357.
    [6]Kumar N D,Joshi M P,Friends C S,Prasad P N,Burzynski R,Organic-inorganic heterojunction light emitting diodes based on poly(p-phenylene vinylene)/cadmium sulfide thin films[J],Appl.Phys.Lett.,1997,71:1388-1390.
    [7]Yang Y,Xue S H,Liu S Y,Huang J M,Shen J C,Fabrication and characteristics of ZnS nanocrystals/polymer composite doped with tetraphenylbenzidine single layer structure light-emitting diode[J],Appl.Phys.Lett.,1996,69:377-379.
    [8]Gao M Y,Sun J Q,Dulkeith E,Gaponik N,Lemmer U,Feldmann J,Lateral Patterning of CdTe Nanocrystal Filmsby the Electric Field Directed Layer-by-Layer Assembly Method[J],Langmuir,2002,18:4098-4102.
    [9]Dabbousi B O,Rodriguez-Viejo J,Mikulec F V,Heine J R,Mattoussi H,Ober R,Jensen K F,Bawendi M G,(CdSe)ZnS core-shell quantum dots:synthesis and optical and structural characterization of a size series of highly luminescent materials[J],J.Phys.Chem.B 1997,101:9463-9475.
    [10]Schlamp M C,Peng X G,Alivisatos A P,Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer[J],J.Appl.Phys.,1997,82:5837-5842.
    [11]Zhao J L,Bardecker J A,Munro A M,Liu M S,Niu Y,Ding I K,Luo J D,Chen B,Jen A K Y,Ginger D S,Efficient CdSe/CdS quantum dot light- emitting diodes using a thermally Polymerized hole transport layer[J],Nano Lett.,2006,6:463-467.
    [12]林传金,田强,王引书,氧化锌及纳米氧化锌研究进展[J],物理实验,2006,26:12-19.
    [13]gurroughes J H,Bradley D D C,Brown A R,Marks R N,Mackay K,Friend R H,Burns P L,Holmes A B,Light-emitting diodes based on conjugated polymers[J],Nature,1990,347:539-54l.
    [14]李荣金,李洪祥,胡文平,刘云圻,功能聚合物:从薄膜器件到纳米器件[J],物理,2006,35,476-486.
    [15]邹应萍,霍利军,李永舫,共轭聚合物发光和光伏材料研究进展[J],高分子通报,2008,8:146-173.
    [16]Braun D,Heeger A J,Visible light emission from semicon-ducting polymer diodes[J],Appl.Phys.Lett.,1991 ,58:1982-1984.
    [17]Zerza G,R(o|¨)thler B,Serdar Sariciftci N ,Photophysical Properties and Optoelectronic Device Applications of a Novel Naphthalene Vinylene Type Conjugated Polymer[J],J.Phys.Chem.B,2001,105:4099-4104.
    [18] Greenham N C, Moratti S C, Bradely D D C, Friend R H, Holmes A B, Efficient light-emitting diodes based on polymers with high electron affinities[J], Nature, 1993, 365:628-630.
    [19] Hsieh B R, Antoniadis H, Bland D C, Field W A, Chlorine precursor route (CPR) chemistry to poly(p-phenylene vinylene)-based light emitting diodes[J], Adv. Mater. ,1995, 7:36-38.
    [20] Zhou Y P, Tan S T, Xiao L, Yi J, Yu Z Q, Synthesis, characterizationand properties of a PPV conjugated polymer containing triphenylaminesegment[J]. Acta. Polym. Sinica., 2006, 2:129-135.
    [21] Zou Y P, Tan S T, Yuan Z L, Yu Z Q, A novel green light emitting material containing both hole and electron transporting units: synthesis and optical properties[J], J. Mater. Sci., 2005, 40:3561-3563.
    [22] Tan S T, Zou Y P, Zhu W G, Jiang C Y, Synthesis, photo-and electroluminescence properties of asymmetrical alternating copoly(p-phenylenevinylene) derivatives[J], Opt. Mater., 2006, 28:1108-1114.
    [23] Chen Z K, Lee N H S, Huang W, Xu Y S, Cao Y, New phenyl-substituted PPV derivatives for polymer light-emitting diodes- synthesis, characterization and structure-property relationship study[J], Macromolecules, 2003, 36:1009-1020.
    [24] Ahn T, Song S Y, Shim H K, Highly Photoluminescent and Blue-Green Electroluminescent Polymers: New Silyl- and Alkoxy- Substituted Poly (p-phenylenevinylene) Related copolymers Containing Carbazole and Fluorene Groups[J], Macromolecules, 2000, 33:6764-6711.
    [25] Ahn T, Ko S W, Lee J, Shim H K, Novel Cyclohexyl or Phenyl Silyl-Substituted Poly(p-phenylenevinylene)s via the Halogen Precursor Route and Gilch Polymerization[J] Macromolecules, 2002, 35:3495-3505.
    [26] Ko S W, Jung B J , Ahn T , Shim H K, Novel poly (p-phenylenevinylene) s with an electron-withdrawing cyanophenyl group[J], Macromolecules, 2002, 35:6217-6223.
    [27] Tang R P , Tan Z A , Cheng C X, Li Y F, Xi F, Synthesis, electroluminescence, and photovoltaic properties of dendronized poly-(p-phenylenevinylene) derivatives[J], Polymer, 2005, 46:5341-5350.
    [28] Tang R P , Chuai Y T , Cheng C X, Xi F, Zou D C, Syntheses and electroluminescence properties of conjugated poly(p-phenylene vinylene) derivatives bearing dendritic pendants[J],J.Polym.Sci.part A:Polym.Chem.,2005,43:3126-3140.
    [29]Grem G,Leditzky G,Ullrich B,Leising G,Realization of a blue light-emitting device using poly(p-phenylene)[J],Adv.Mater.,1992,4:36-37.
    [30]Grem G,Leditzky G,Ullrich B,Leising G,Blue electrolumi- nescent device based on a conjugated polymer[J],Synth.Met.,1992,51:383-389.
    [31]Yang Y,Pei Q,Heeger A J,Efficient blue polymer light-emitting diodes of soluble poly(paraiphenylene)s[J],J.Appl.Phys.,1996,79:934-939.
    [32]Gruner J ,Friend R H ,Huber J,Scherf U,A blue-luminescent ladder-type poly(para-phenylene) copolymer containing oxadiazole groups[J],Chem.Phys.Lett.,1996,251:204-210.
    [33]Leising G,Tasch S ,Meghdadi F ,Athouel L,Froyer G,Scherf U,Blue electroluminescence with ladder-type poly(para-phenylene) and para-hexaphenyl[J],Synth.Met.,1996,81:185-189.
    [34]Scherf U,Mullen K,A soluble ladder polymer via bridging of functionalized poly(p-phenylene)-precursors[J],Makromol.Chem.Rapid Commun.,1991,12:489-497.
    [35]Scherf U,Mullen K.Poly(arylene)s and Poly(arylenevinylene)s.11.Amodified two-step route to soluble phenylene-type ladder polymers[J],Macromolecules,1992,25:3546-3548.
    [36]Tasch S ,Niko A ,Leising G,Scherf U,Highly efficient electroluminescence of new wide band gap ladder-type poly(para-phenylene)[J],Appl.Phys.Lett.,1996,68:1090-1092.
    [37]TaschS,NikoA,LeisingG,etal.Electrical,Optical,and Magnetic Properties of Organic Solid State Materials,1996,413,71.
    [38]袁金磊,几种电致发光聚合物材料的研究进展[J],广州化学,2005,30:51-56.
    [39]赵华莱,闫康平,严季新,王建中,聚噻吩类有机聚合物材料光电性能研究进展[J],电子元件与材料,2007,26:4-7.
    [40]佟拉嘎,蹇锡高,藤井彰彦,烷基和烷氧基取代聚噻吩的合成、表征与光电性能[J],高分子学报,2004,5:628-633.
    [41]侯琼,牛于华,杨伟,芴与噻吩发光共聚物的合成及其电致发光性能[J],高分子学报,2003,2:161-166
    [42]Grell M,Bradley D D C,Inbasekaran M,Woo E P,A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications[J],Adv.Mater.,1997,9:798-802.
    [43]Ego C,Grimsdale A C,Uckert F,Yu G,Srdanov G,Mullen K,Triphenylamine-Substituted Polyfluorene - A Stable Blue-Emitter with Improved Charge Injection for Light-Emitting Diodes[J],Adv.Mater.,2002,14:809-811.
    [44]Wu F I ,Reddy D S ,Shu C F ,Liu M S,Jen A K Y,Novel oxadiazole-containing polyfluorene with efficient blue electroluminescence,Chem.Mater.,2003,15:269-274.
    [45]Shu C F,Dodda R,Wu F I,Liu MS,Jen A K Y,Highly efficient blue-light-emitting diodes from polyfluorene containing bipolar pendant groups[J],Macromolecules,2003,36:6698-6703.
    [46]Sano T,Fujita M,Fujii T,Nishio Y,Hamada Y,Shibata K,Kuroki K[P],US Patent 5,432:014,1995.
    [47]Tang C W,Vanslyke S A,Organic electroluminescent diodes[J],Appl.Phys.Lett.,1987,51:913-915.
    [48]Hamada Y,Sano T,Fujita M,Nishio Y,Shibata K,Organic electroluminescent devices with 8-hydroquinoline derivative-metal complexes as an emitter[J],Jpn.J.Appl.Phys.,1993,32:L514-L515.
    [49]程晓红,傅长金,鞠秀萍,古昆,有机电致发光材料研究新进展[J],云南化工,2005,32:1-6.
    [50]Bates C H,White W B,Roy R,New High-Pressure Polymorph of Zinc Oxide[J],Science,1962,137:993-993.
    [51]Bragg W L,Darbyshier J A,The structure of thin films of certain metallic oxides[J],Trans.Faraday Soc.,1932,28:522-529.
    [52]Maki H,Ichinose N,Ohashi N,Haneda H,Tanaka J,Lattice relaxation of a ZnO(O001) surface accompanied by a decrease in antibonding feature[J],J.Crystal.Growth.,2001,229:114-118.
    [53]温晓莉,陈长乐,陈钊,韩立安,高国棉,ZnO基半导体薄膜材料的研究进展[J],材料导报,2007,21:47-49.
    [54]刘诩纶,基础元素化学[M],北京:高等教育出版社,1992.
    [55]杨作新,张霖霖,无机化学[1M],广州:广东高等教育出版社,2000.
    [56]Pearton S J,Norton D P,IP K,Heo Y W,Steiner T,Recent progress in processing and properties of ZnO[J],Superlattices Microstruct.2003,34:3-32.
    [57]Iijima S,Helical microtubules of graphitic carbon[J],Nature,1991,354:56-58.[58]Hu J T ,Odom T W,Lieber C M.Chemistry and physics in one dimension:synthesis andproperties of nanowires and nanotubes[J],Acc.Chem.Res.,1999,32:435-445.
    [59]侯铁翠,曾昭桓,于霖,张锐,卢红霞,新型ZnO一维纳米材料的制备及其应用[J],人工晶体学报,2008,37:710-720.
    [60]张黎,陈尔凡,一维ZnO纳米材料的制备技术与应用[J],当代化工,2007,36:411-416.
    [61]Guo L,Ji Y L,Xu H B,Simon P,Wu Z Y,Regularly shaped single crystalline ZnO nanorod with Wurtzite structure[J],J.Am.Chem.Soc.,2002,124:14864-14865.
    [62]Cui J B,Gibson U J,Enhanced nucleation,growth rate and dopant incorporation of ZnO nanowires[J],J.Phys.Chem.B 2005,109:22074-22077.
    [63]Tang Y,Luo L,Chen Z,Jiang Y,Li B,Jia Z,Xu L,Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates[J],E1ectrochem.Commun.,2007,9:2784-2788.
    [64]Huang M H,Mao S,Feick H,Yah H,Wu Y,Kind H,Weber E,Russo R,Yang P D,Room-temperature ultraviolet nanowire nanolasers[J],Science,2001,292:1897-1899.
    [65]Yan H Q,He R R,Johnson J,Law M,Saykally R J,Yang P D,Dendritic nanowire ultraviolet laser array[J],J.Am.Chem.Soc.,2003,125:4728-4729.
    [66]Johnson J C,Yan H Q,Yang P D,Saykally R J,Optical Cavity Effects in ZnO Nanowire Lasers and Waveguide[J],J.Phys.Chem.B,2003,107:8816-8828.
    [67]Yan H Q,Johnson J,Law M,He R R,Knutsen K,McKinney J R,Pham J,Saykally R,Yang P D,ZnO Nanoribbon Microcavity Lasers[J],Adv.Mater.,2003,15:1907-1911.
    [68]Law M,Sirbuly D J,Johnson J C,Law M,Sirbuly D J,Johnson J C,Goldberger J,Saykally R J,Yang P D,Nanoribbon waveguides for subwavelength photonics integration[J],Science,2004,305:1269-1273.
    [69]park W I,Yi G,Kim J W,park S M,Schottky Nanocontacts on ZnO Nanoflow Arrays[J],Appl.Phys.Lett.,2003,82:4358-4360.
    [70]Ip K,Heo Y W,Baik K H,Norton D P,Pearton S J,Kim S,Laroche J R,Ren F,Temperature-dependent characteristics of Pt Schottky contacts on n-type ZnO[J],Appl.Phys.Lett.,2004,84:2835-2837.
    [71]Heo Y W,.Norton D P,Tien L C,Kwon Y,Kang B S,Ren F,Pearton S J,Laroche J R,ZnO nanowire growth and devices[J],Materials Science and Engineering R 2004,47:1-47.
    [72]Kong J,Franklin N R,Zhou C W,Chapline M G,Peng S,Cho K J,Dai H J,Nanotube molecular wires as chemical sensors[J],Science,2000,287:622-625.
    [73] Kolmakov A, Zhang Y X, Cheng G S, Moskovits M, Detection of CO and O_2 using tin oxide nanowire sensors[J], Adv. Mater., 2003, 15:997-1000.
    [74] Li C, Zhang D H, Liu, X L, Han S, Tang T, Han J, Zhou C W, In_2O_3 Nanowires as Chemical Sensors[J], Appl. Phys. Lett., 2003, 82:1613-1615.
    [75] Zhou X T, Hu J Q, Li C P, Ma D D, Lee C S, Lee S T, Silicon nanowires as chemical sensors[J], Chem. Phys. Lett., 2003, 369:220-224.
    [76] Seiyama T, Kato A, Fulishi K, Nagatani M, A new detector for gaseous components using semiconductive thin films[J], Anal. Chem., 1962,34:1502-1503.
    [77] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P, Lin C L, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J], Appl. Phys. Lett., 2004, 84:3654-3656.
    [78] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Gao X G, Li J P, Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires[J], Appl. Phys. Lett., 2004, 84:3085-3087.
    [79] [86] Fan Z Y, Wang D W, Chang P C, Tseng W Y, Lu J G. ZnO nanowire field-effect transistor and oxygen sensing property[J], Appl. Phys. Lett., 2004,85:5923-5925.
    [80] Wen X G, Fang Y, Pang Q, Yang C, Wang J, Ge W, Wong K S, Yang S. ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Applications[J], J. Phys. Chem. B, 2005,109:15303-15308.
    [81] Rout C S, Krishna S H, Vivekchand S R C, Govindaraj A, Rao C N R, Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes[J], Chem. Phys. Lett., 2006, 418:586-590.
    [82] Wang C H, Chu X F, Wu M M, Detection of H_2S down to ppb levels at room temperature using sensors based on ZnO nanorods[J], Sensors and Actuators B, 2006, 113:320-323.
    [83] Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H, Lee H J. Field emission from well-aligned zinc oxide nanowires grown at low temperature[J], Appl. Phys. Lett., 2002, 81:3648-3650.
    [84] Zhu Y W, Zhang H Z, Sun X C, Feng S Q, Xu J, Zhao Q, Xiang B, Wang R M, Yu D P. Efficient field emission from ZnO nanoneedle arrays[J], Appl. Phys. Lett., 2003, 83:144-146.
    [85] Wang R C, Liu C P, Huang J L, Chen S J, Tseng Y K, Kung S C, ZnO Nanopencils: Efficient Field Emitters[J], Appl. Phys. Lett., 2005, 87:013110-013112.
    [86]Banerjee D,Jo S H,Ren Z F,Enhanced Field Emission of ZnO Nanowires[J],Adv.Mater.,2004,16:2028-2032.
    [87]Song J H,Zhou J,Wang Z L.Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire.A Technology for Harvesting Electricity from the Environment[J],Nano Lett.2006,6:1656-1662.
    [88]Song J H,Wang X D,Liu J,Liu H B,Li Y L,Wang Z L,Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer[J],Nano Lett.,2008,8:203-207.
    [89]Jeong M C,Oh B Y,Ham M H,Myoung J M,Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes[J],Appl.Phys.Left.,2006,88:2021051-2021053.
    [90]谌小斑,贺英,张文飞,ZnO纳米线及其器件研究进展[J],微纳电子技术,2008,45:590-597.
    [91]Zaera R T,Ryan M A,Abou K,et al.Fabrication and characterization of ZnO nanowires/ CdSe/ CuSCN eta2solar cell[J],Compets.Rendus.Chimie.,2006,9:717-729.
    [92]Pradhan B,Batabyal S K,Pal A J.Vertically aligned ZnO nanowire arrays in Rose Bengal based dye-sensitized solar cells [J],Solar Energy Materials & Solar Cells,2007,91:769-773.
    [93]张立德,牟季美,纳米材料学[M],沈阳:辽宁科技出版社,1994.
    [94]徐国财,张立德,纳米复合材料[M],北京:化学工业出版社,2002.
    [95]张立德,纳米材料[M],北京:化学工业出版社,2000.
    [96]Kokatnur V R[P],US Patent No.2,111:100,1935.
    [97]Hoar T P,Schulman J H,Transparent water-in-oil dispersion :the oleopathich hydro-micelle[J],Nature,1943,152:102-103 .
    [98]Schulman J H,Stoeckenius W,Prince L M,Mechanism of formation and structure of microemulsions by electron microscopy[J],J.Phys.Chem.1959,63,1677-1680.
    [99]Leung R,Hou M J,Manohar C,Washington DC:Am.Chem.Soc.,1985,pp 325-344.
    [100]Shama M K,Shah D O,Macro- and Microemulsions,Washington,DC:Am.Chem.Soc.,1985,pp1-18.
    [101]Mitchell D J,Ninham B W,Micelles,Vesicles and Microemulsions[J],J.Chem.Soc.Faraday Trans.Ⅱ,1981,77:601-629.
    [102]Vriezema D M,Aragone M C,Elemans J A A W,Cornelissen J J L M,Rowan A E,Nolte R J M,Self-Assembled Nanoreactors[J],Chem.Rev.,2005,105:1445-1490.
    [103]贺英,王均安,谌小斑,张文飞,曾勖妤,顾秋文,硅衬底上聚丙烯酰胺/氧化锌纳米线薄膜蓝色发光二极管[J],高分子学报,2009,1:1-6.
    [104]Takanezawa K,Hirota K,Wei Q S,Tajima K,Hashimoto K,Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices[J],J.Phys.Chem.C,2007,111:7218-7223.
    [105]Olson D C,Lee Y,White M S,Kopidakis N,Shaheen S E,Ginley D S.,Voigt J A,Hsu J W P,Effect of Polymer Processing on the Performance of Poly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices[J],J.Phys.Chem.C,2007,111:16640-16645.
    [106]王世敏 许祖勋 傅晶 纳米材料制备技术 北京:化学工业出版社,2001.
    [107]张玉龙 李长德 纳米技术与纳米塑料 北京:中国轻工业出版社,2001.
    [108]Lee J H,Leu I C,Hsu M C,Chung Y W,Hon M H,Fabrication of aligned TiO_2 one-dimensional nanostructured arrays using a one-step templating solution approach[J],J.Phys.Chem.B 2005,109:13056-13059.
    [109]吴自勤,王兵 薄膜生长 北京:科学出版社,2001.
    [110]文自立,应用化学溶液沉积法制备薄膜[J],青海师范大学学报(自然科学版)2003,2:47-49.
    [111]Tena-Zaera R,Katty A,Bastide S,L(?)vy-Cl(?)ment,o' Regan B,Mu(?)oz-Sanjos (?) V,ZnO/CdTe/CuSCN,a promising heterostructure to act as inorganic eta-solar cell[J],Thin Solid Films 2005,483:372-377.
    [112]刘英麟,刘益春,杨桦,张丁可,张吉英,吕有明,申德振,范希武用电化学沉积法制备ZnO/Cu_2O异质p-n结发光学报[J],2004,25:533-536.
    [113]Wang Y D,Zang K Y,Chua S J.Catalyst-free growth of uniform ZnO nanowire arrays on prepatterned substrate[J],Appl.Phys.Lett.,2006,89:263116-1-263116-3.
    [114]Xu F,Yuan Z Y,Du G H,Ren T,Volcke C,Thiry P,Su B,A low-temperature aqueous solution route to large-scale growth of ZnO nanowire arrays[J],J.Non-Cryst.Solids,2006,352:2569-2574.
    [115]周健伟,覃东欢,罗潺,韩丽丽,曹镛,纳米ZnO-共轭聚合物MEH-PPV异质结太阳能电池的制备和研究真空与低温[J],2006,12:9-14.
    [116]Kazuko T,Kouska H,Wei Q S,Keisuke T,Kazuhito H,Efficient Charge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices[J],J.Phys.Chem.C ,2007,111:7218-7223.
    [117] Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P, ZnO-Al_2O_3 and ZnO-TiO_2 Core-Shell Nanowire Dye-Sensitized Solar Cells[J], J. Phys. Chem.C , 2006, 110:22652-22663.
    [118] Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R., Norris D J, Aydil E S, Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices[J], Nano Lett. 2007,7:61793-1798.
    [119] Tak Y, Hong S J, Lee J S, Yong K, Solution-Based Synthesis of a CdS Nanoparticle/ZnO Nano wire Heterostructure Array[J], Cryst. Growth Des., 2009, 9:2627-2632.
    [120] K(?)nenkamp R, Word R C, Godinez M, Ultraviolet electroluminescence from ZnO/polyer heterjunction light-emitting diodes[J], Nano lett., 2005,5:2005-2008.
    [121] Sun X W, Huang J Z, Wang J X, Z. Xu, A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm[J], Nano Lett.., 2008,8:1219-1223.
    [122] Xi Y Y, Hsu Y F, Djuri(?)i(?) A B, Ng A M C, Chan W K, Tarn H L, Cheah K W, NiO/ZnO light emitting diodes by solution-based growth[J], Appl. Phys. Lett., 2008,92:1135051-1135053.
    [123] Ling B, Sun X W, Zhao J L, Tan S T, Dong Z L, Yang Y, Yu H Y, Qi K C, Electroluminescence from a n-ZnO nanorod/p-CuA102 hetero junction light-emitting diode[J], Physica E, 2009, 41:635-639.
    [1]Argun A A,Aubert P H,Thompson B C,Schwendeman I,Gaupp C L,Hwang J,Pinto N J,Tanner D B,MacDiarmid A G,Reynolds J R.Multicolored electrochromism polymers:Structures and devices[J].Chem.Mater.,2004,16:4401-4412.
    [1]K(o|¨)nenkamp R,Word R C,Schlegel C,Vertical nanowire light-emitting diode[J],Appl.Phys.herr.,2004,85:6004-6006.
    [2]K(o|¨)nenkamp R,Word R C,Godinez M,Ultraviolet electroluminescence from ZnO/polyer heterjunction light-emitting diodes[J],Nano.Lett.,2005,5:2005- 2008.
    [3]Sun H,Zhang Q,Wu J,Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure[J],Nanotechnology,2006,17:2271-2274.
    [4]Xi Y Y,Hsu Y F,Djuri(?)i(?) AB,Ng A M C,Chan W K,Tam H L,Cheah K W,NiO/ZnO light emitting diodes by solution-based growth[J],Appl Phys Lett,2008,92:113505-1-113505-3.
    [5]Ling B,Sun X W,Zhao J L,Tan S T,Dong Z L,Yang Y,Yu H Y,Qi K C,Electroluminescence from a n-ZnO nanorod/p-CuAl02 heterojunction light-emitting diode[J],Physica E,2009,41:635-639.
    [6]Leclerc M,Diaz F M,Wegner G,Structural analysis of poly(3-alkylthiophene)s, Makromol.Chem.1989,190:3105-3116.
    [7]Tena-Zaera R,Katty A,Bastide S,L(?)vy-Cl(?)ment,o' Regan B,Mu(?)oz-Sanjos(?) V,ZnO/CdTe/CuSCN,a promising heterostructure to act as inorganic eta-solar cell[J],Thin Solid Films,2005,483:372-377.
    [8]Ni Y,JinZ,Yu K,Fu Y,Liu T,WangT,Electrochemical deposition characteristics of p-CuSCN on n-ZnO rod arrays films[J],Electrochim.Acta,2008,53:6048-6054.
    [9]Xu L,Guo Y,Liao Q,Zhang J,Xu D,Morphological control of ZnO nanostructures by electrodeposition[J],J.Phys.Chem.B,2005,109:13519-13522.
    [10]Cui J B,Gibson U J,Enhanced nucleation,growth rate and dopant incorporation of ZnO nanowires[J],J.Phys.Chem.B 2005,109:22074-22077.
    [11]Yu L,Zhang G,Li S,Xi Z,Guo D,Fabrication of arrays of zinc oxide nanorods and nanotubes in aqueous solution under an exernal voltage[J],J.Cryst.Growth,2007,299:184-188.
    [12]袁吉仁,李要球,邓新华,纳米ZnO的光吸收特性研究[J],南昌大学学报·工科版,2006,28:329-331.
    [13]周杰,苏达根,钟明峰,纳米氧化锌的溶剂热法合成及其光学性能[J],化工新型材料,2008,36:50-51.
    [14]刘然,章婷,赵谡玲,徐征,张福俊,袁广才,徐叙容,一维有序Zn0纳米棒阵列的制备与表征[J],光谱学与光谱分析, 28:2249-2253.
    [15]李万程,杜国同,杨小天,刘博阳,张源涛,赵佰军,姜秀英,ZnO薄膜的XPS价带谱研究[J],高等学校化学学报, 2004,25:2078-2081
    [16]于灵敏,张克良,马雪红,范新会,严文,ZnO纳米线的光致发光性及拉曼散射性能[J],机械工程材料,2007,3 1:64-66.
    [17]李春萍,郭林,王广胜,吕玉珍,徐惠彬,ZnO纳米棒的拉曼和发光光谱研究[J],光散射学报,2006,18:54-58.
    [18]Peng W,Qu S,Cong G,Wang Z,Synthesis and structure of morphology-controlled ZnO nano and microcrystals[J],Cryst.Growth Des.,2006,6:1518-1522.
    [19]梅增霞,张希清,王志坚,王晶,李庆福,徐叙容,ZnO薄膜受激发射特性的研究[J],光谱学与光谱分析,2003,23:461-464.
    [20]Travnikov V V,Freiberg A,Savikhin S F,Surface excitons in ZnO crystals[J], J.Lumin.,1990,47:107-112.
    [21]Dijken A V,Meulenkamp E A,Vanmaekelbergh D,Meijerink A,The luminescence of nanocrystalline ZnO particles:the mechanism of the ultraviolet and visible emission[J],J.Lumin.,2000,87-89:454-456.
    [22]Monticone S,Tufeu R,Kanaev A V,Complex nature of the.U V and visible fluorescence of colloidal ZnO nanoparticles[J],J.Phys.Chem.B,1998,102:2854-2862.
    [23]Kumar N D,Joshi M P,Friend C S,Prasad P N,Organic - inorganic heterojunction light emitting diodes based on poly(p-phenylene vinylene)/cadmium sulfide thin films[J],Appl.Phys.Lett.,1997,71:1388-1390.
    [24]王艳新,张琦锋,孙晖,常艳玲,吴锦雷,ZnO纳米线二极管发光器件制备及特性研究[J],物理学报,2008,57:1141-1144.
    [25]Vu Q,Pavlik M,Hebestreit N,Rammelt U,Plieth W,Pfleger J,nanocomposites based on titanium dioxide and polythiophene:structure and properties[J],React.Funct.Polym.,2005,65:69-77.
    [26]Furukawa Y,Electronic absorption and vibrational spectroscopies of conjugated conducting polymers[J],J.Phys.Chem.,1996,100:15644-15653.
    [27]Shi G,Xu J,Fu M,Raman spectroscopic and electrochemical studies on the doping level changes of polythiophene films during their electrochemical growth processes[J],2002,J.Phys.Chem.B,106:288-292.
    [28]武文俊,郝彦忠,聚3—甲基噻吩的光电化学研究[J],感光科学与光化学,2004,22:378-382.
    [29]Xi Y,Zhou J,Guo H,Cai C,Lin Z,Enhanced photoluminescence in core-sheath CdS/PANI coaxial nanocables:A charge transfer mechanism[J],Chem.Phys.Lett.,2005,412:60-64.
    [30]黄昆,固体物理学[M],北京:高等教育出版社,2004.
    [31]沈觊华 朱文章,半导体光电性质[M],厦门:厦门大学出版社,1995.
    [32]Ni Y,Jin Z,Fu Y,Electrodeposition of p-Type CuSCN thin films by a new aqueous electrolyte with triethanolamine chelation[J],J.Am.Ceram.Soc.,2007,90:2966-2973.
    [33]武卫兵,靳正国,华填,邱继军,电化学沉积法制备CuSCN固体电解质薄膜的研究[J],太阳能学报,2006,27:141—145.
    [34]付亚楠,靳正国,武卫兵,电沉积工艺对p-CuSCN薄膜结构及半导体性质的影响[J],硅酸盐学报,2006,34:1060—1065.
    [35]武卫兵,靳正国,华缜,付亚楠,邱继军,高透光p型CuSCN薄膜的电沉积制备及机理研究[J],无机化学学报,2005,21:383-388.
    [36]武卫兵,靳正国,华缜,邱继军,p型CuSCN半导体薄膜电沉积特征的研究[J],硅酸盐学报,2004,32:1088—1093.
    [37]Yang M,Zhu J,Li J,Synthesis and characterizations of porous spherical CuSCN nanoparticles[J],Mater.Lett.,2005,59:842-845.
    [38]racconi N,Son J Y,Rajeshwar K,Electrochemical behavior,raman characterization,and photoelectrochemistry of cuprous thiocyanate-polypyrrole bilayers and films[J],J.Phys.Chem.,1993,97:1042-1049.
    [39]Haight S M,Schwartz D T,In situ imaging raman spectroscopy of electrochemically deposited CuSCN[J],J.Electrochem.Soc.,1995,142:L156-158.
    [40]O'Regan B,Schwartz D T,Zakeeruddin S M,Gr(a|¨)tzel M,Electrodeposited nanocomposite n-p heterojunctions for Solid-State Dye-Sensitized photovoltaics[J],Adv.Mater.,2000,12:1263-1267.
    [41]Tennakone K,Kumara G R R A,Kottegoda I R M,Perera V P S,Aponsu G M L P,Nanoporous n-TiO2/selenium/p-CuCNS photovoltaic cell[J],J.Phys.D:Appl.Phys.,1998,31:2326-2330.
    [1]Gao S,Zhang H,Deng R,Wang X,Sun D,Zheng G,Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method[J],Appl.Phys.Lett.,2006,89:1231251-3.
    [2]Uthirakumar P,Lee Y,Suh E,Hong C,Hybrid flurescent°polymer-zinc oxide nanoparticles:Improved efficiency for luminescence conversion LED[J],J.Lumin.,2008,128:287-296.
    [3]Bolink H,Coronado E,Sessolo M,White hybrid organic-inorganic light-emitting diode using ZnO as the air-stable cathode[J],Chem.Mater.,2009,21:439-441.
    [4]Chichibu S,Ohmori T,Shibata N,Koyama T,Fabrication of p-CuGaS2/n-ZnO:Al heterojunction light-emitting diode grown by metalorganic vapor phase epotaxy and helicon-wave-excited-plasma sputtering methods[J],J.Phys.Chem.Solids.,2005,66:1868-1871.
    [5]Yuan X,Zhang B,Niitsuma J,Cathodoluminescence characterization of ZnO nanotubes grown by MOCVD on sapphire substrate[J],Sekiguchi T,Mat.Sci.Semicon.Proc.,2006,9:146-150.
    [6]Yu L,Zhang G,Li S,Xi Z,Guo D,Fabrication of arrays of zinc oxide nanorods and nanotubes in aqueous solution under an external voltage[J],J.Crystal.Growt.,2007,299:184-188.
    [7]Xu L,Liao Q,Zhang J,Ai X,Xu D,Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposition ZnO nanorods[J],J.Phys.Chem.C,2007,111:4549-4552.
    [8]Vayssieres L,Keis K,Hengfeldt A,Lindquist S,Three-dimensional array of highly oriented crystalline ZnO mictrotubes[J],Chem.Mater.,2001,13:4395-4398.
    [9]She G,Zhang X,Shi W,Fan X,Chang J,Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanobube arrays on transparent conductive substrates[J],Electrochem.Commun.,2007,9:2784-2788.
    [10]李万程,杜国同,杨小天,刘博阳,张源涛,赵佰军,姜秀英,ZnO薄膜的XPS价带谱研究[J],高等学校化学学报,2004,25:2078-2081.
    [11]Peng W,Qu S,Cong G,Wang Z,Synthesis and structure of morphology-controlled ZnO nano and microcrystals[J],Cryst.Growth Des.,2006,6:1518-1522.
    [12]宋洋,阎研,邢英杰,俞大鹏,张树霖,ZnO纳米管的拉曼光谱学研究[J],光散射学报,2004,16:103-106.
    [13]梅增霞,张希清,王志坚,王晶,李庆福,徐叙容,ZnO薄膜受激发射特性的研究[J],光谱学与光谱分析,2003,23:461-464.
    [14]查全性,电极过程动力学导论[M],北京:科学出版社,2002.
    [15]Dijken A V,Meulenkamp E A,Vanmaekelbergh D,Meijerink A,The luminescence of nanocrystalline ZnO particles:the mechanism of the ultraviolet and visible emission[J],J.Lumin.,2000,87-89:454-456.
    [16]Dijken A V,Meulenkamp E A,Vanmaekelbergh D,Meijerink A,Identification of the transition responsible for the visible emission in ZnO using quantum size effects[J],J.Lumin.,2000,90:123-128.
    [17]王艳新,张琦锋,孙晖,常艳玲,吴锦雷,ZnO纳米线二极管发光器件制备及特性研究[J],物理学报,2008,57:1141-1144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700