用户名: 密码: 验证码:
掺杂ZnO稀磁半导体磁性的第一性原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自旋电子学是利用电子的电荷和自旋两个自由度作为信息载体,进而实现信息传输、处理和存储,目前已成为电子学、物理以及材料等多学科交叉研究中的热点之一,作为关键材料的稀磁半导体的研究备受关注。鉴于氧化锌半导体作为母体材料的稀磁半导体有可能实现较高的掺杂浓度,且掺杂离子的3d能带可以通过本征缺陷态而产生强铁磁耦合作用。因此,ZnO稀磁性半导体成为首选研究体系。结合寻求具有高居里温度的稀磁性半导体和分析稀磁性半导体内部磁性产生的机理这两个关键科学问题,本论文主要采用基于密度泛涵的第一性原理计算ZnO稀磁半导体的电子结构,并且分析和解释其磁性起源机理。在此基础上,研究第一性原理和蒙特卡洛方法耦合集成来计算ZnO稀磁半导体的居里温度,探讨居里温度的调控方法,重点讨论不同单掺杂和共掺杂体系对于ZnO稀磁半导体磁性的影响和作用机理。
     首先,阐明利用第一性原理赝势平面波方法和全势-缀加平面波方法计算ZnO稀磁性半导体电子结构理论的基础和计算方案,从能带角度研究氧化物磁性半导体中过渡金属的耦合作用,为解释磁性起源机理奠定了基础。进一步利用第一性原理和蒙特卡洛耦合集成算法,预测不同计算体系的居里温度,研究其调控方法。
     其次,利用全势-线性缀加平面波方法在广义梯度近似下计算了碳单掺杂的ZnO电子结构。结果表明,碳掺杂在氧位置或者是在间隙位置都会导致磁性,并且无论是间隙位置掺杂还是替代掺杂体系都具有半金属性,理论上具有较高的自旋极化率。利用第一性原理和蒙特卡洛耦合计算方法获得了碳掺杂ZnO的居里温度,在不同的掺杂浓度下,居里温度分布251~439 K之间。由此表明碳单掺杂的ZnO稀磁半导体在合适的制备条件下,可以得到室温铁磁性。
     利用全势-线性缀加平面波方法在库仑势修正下,计算了钕单掺杂的ZnO以及其分别含有一个V_(Zn)和一个V_o的电子结构和磁性。表明含有V_(Zn)缺陷的钕掺杂的ZnO可能具有较高的居里温度,而没有任何本征缺陷时则表现出顺磁性,含有V_o的体系具有弱反铁磁耦合。对于含有V_(Zn)缺陷的体系其磁性的起源,利用束缚极化子机理进行了相应地解释。
     最后,研究了过渡金属-金属共掺杂体系对于ZnO稀磁半导体的影响,分析交换作用产生磁性的载流子调控机理。研究了Co-Al掺杂ZnO体系,通过Al原子的引入,实现了共掺杂体系的反铁磁到铁磁性的转变。铁磁性的起源主要由于多余的电子调控下的Al-2p电子和近邻的Co-3d电子的相互作用,导致了体系的磁性,其相互作用符合载流子调控的p-d交换模型。Fe-Al掺杂ZnO体系的计算表明,Fe掺杂的ZnO体系在基态下表现出反铁磁性,当引入Al原子后,Al处于最近邻掺杂是Fe掺杂ZnO体系实现了反铁磁到铁磁态的转变,此时Al-2p电子和Fe-3d电子没有发生作用,铁磁性的产生是RKKY远程交换作用。
     研究了Cu-N过渡金属-非金属共掺杂ZnO稀磁半导体体系的载流子调控机理,通过N原子的引入,N-2p和Cu-3d发生了交换作用,这个交换作用使得掺杂系统更加稳定。同时在掺杂前后,体系的价带顶仍然都是有O-2p电子占据的,在导带顶中Cu-3d电子和4s电子占据了大部分的态。载流子调控模型被用来解释磁性的起源,由于N的掺入使得在掺杂体系中的载流子数量增加,磁性离子之间的交换作用通过自由载流子进行传递,导致了体系的磁有序。
     进一步研究了过渡金属-非金属共掺杂体系的居里温度调控方法和作用机理。表明Mn-N共掺杂的体系成功实现了基态下的铁磁性转变。从海森堡模型和平均场理论出发利用蒙特卡洛和第一性原理的方法预测得到共掺杂体系可以具有室温铁磁性。
     总之,通过第一性原理与蒙特卡洛方法耦合集成,计算了单掺杂和共掺杂的几种典型体系,表明其作用机理不尽相同,由此解释了稀磁半导体中磁性的起源和居里温度(T_c)提高的途径,为ZnO稀磁半导体掺杂工艺提供了实践设计方向。
Spintronics seek to exploit both spin and charge attributes of information carriers totransfer,process and store data,which has become a focused interdisciplinary fieldinvolving electronics,physics,materials science and other disciplines.As a crucial materialin this field,ZnO based diluted magnetic semiconductor has received a great deal ofattention.Zinc Oxide semiconductors base materials with high doping concentration and the3-d band of doped ions could generate strong ferromagnetic coupling interaction throughthe intrinsic defect states of the base material,which led to Zinc Oxide become the mostemerging hotspot in this field.Two key scientific problems in spintronics to both look formagnetic semiconductors with high Curie temperature and analyse the origin andmechanism of magnetism in these semiconductors could be sought for solution.Therefore,the electronic structure of diluted magnetic semiconductors through first-principlecalculation was firstly carried out,and the results were utilized to analyze and explain theorigin of ferromagnetism.Base on the result achieved in first-principles,a new couplingintegration algorithm to calculate the Curie temperature of ZnO DMS and discusse thecontrolling method of it was put forward.Then the effects of interaction mechanism ofdifferent single-doping and co-doping diluted magnetic semiconductor systems wereextensively discussed in detail.
     Firstly,the electronic structure of ZnO-based diluted magnetic semiconductor wascalculated by first-principles according to the Pseudopotential Plane Wave method (PP-PW)and Full Potential Augmented Plane Wave method (FP-LAPW).The coupling interactionbetween transition metals in oxide magnetic semiconductors were analysed fromperspectives of energy bands theory,which described the origin of magnetism about dilutedmagnetic semiconductor.Furthermore,the coupling computations of first-principles andMonte Carlo method were developed by calculation code in our study,which was used toestimate Curie temperature of several diluted magnetic semiconductor systems and studiedthe further controlling method of it.
     Secondly,the electronic structure of carbon doped ZnO was calculated by the full potential linearized augmented plane wave method (FP-LAPW) with general gradualapproximation (GGA).The results showed that the single carbon doping led toferromagnetism both in Oxygen position and in interstitial position,and they both result inhalf-metallic property,which theoretically had a high rate of spin-polarization.The Curietemperature of carbon doped ZnO was also predicted through a combination of first-principles and Monte Carlo coupling integrated calculation method.The results showedthat the Curie temperature of carbon doped ZnO system changed ranges from 251 to 439 Kas the concentration variation.As a result,room-temperature ferromagnetism of carbondoped ZnO could be derived in proper preparing conditions.
     With full potential linearized augmented plane wave method (FP-LAPW) and Coulombpotential amendment,electronic structure and magnetism of neodymium doped ZnO,theneodymium doped ZnO with an oxygen vacancy ( Vo ) and neodymium doped ZnO a Zincvacancy ( V_(Zn)) were calculated,respectively.The results indicated that neodymium dopedZnO with V_(Zn) defects might have high Curie temperature,while those without intrinsicdefects are paramagnetic,and those with Vo defects get weak anti-ferromagnetism.Furthermore,bound magnetic polaron theory can be employed to explain the origin ofmagnetism in systems with Zn vacancy.
     Finally,after the single doped ZnO was presented,the effect of metal-transition metalco-doped ZnO systems were extensively examined to described the mechanism of the inter-exchange and the origin of magnetism.Hence,Al-Co co-doped ZnO systems were alsoinvestigated;the calculated results showed that by co-doping with Al,the systems weretransferred from anti-ferromagnetism to ferromagnetism.The origin of ferromagnetismmainly attributes to the interaction between Al-2p electron and nearest Co-3d electronmodulated by extra electrons,and the inter-exchange effect can be explained by p-dexchange model.Al-Fe co-doped ZnO system is also investigated,and the results indicatethat by co-doping with Al the system is transferred from anti-ferromagnetism toferromagnetism.But the Al-2p and Fe-3d electrons do not have interaction with each other,and the origin of ferromagnetism can be explained by long range Ruderman-Kittel- Kasuya-Yoshida (RKKY) exchange interaction.
     In order to describe the different interaction mechanism of DMS,the influence of metal-non metal co-doping system were analyzed.Hence,the Cu-N co-doped ZnO systemswere also investigated.By introducing nitrogen,the interaction between N-2p and Cu-3delectrons stabilize the magnetism of the system.In the meanwhile,both before and after co-doping,the VBM is always occupied by O-2p electrons,while in conduction band states aremostly occupied by Cu-3d and 4s electrons.Carrier mediated model was employed toexplain the origin of magnetism.As nitrogen co-doping improved the density of chargecarriers in system,interaction mediated by free carriers between magnetic ions led toferromagnetic order as a whole.
     To obtain the Curie temperature controling method and the interaction mechanism,metal-nonmetal co-doped systems were also studied by co-doping nitrogen the Manganesedoped system showed stable ferromagnetism.Based on Heisenberg model and mean fieldtheory,with Monte Carlo and first-principles method,we predict that room-temperatureferromagnetism can achieve in ideal conditions theoretically.
     As a result,through the combination of first-principles and Monte Carlo method,single-doped and co-doped systems were extensively discussed.The results showed thatdifferent doped system has different inter-exchange mechanism.Our calculation can explainthe origin of magnetism in some doped systems and the way to increase the Curietemperature.All these can give a guide for the preparation techniques of ZnO dilutedmagnetic semiconductors.
引文
[1]Dietl T.Spintronics[M].Academic Press,2008.
    [2]Awschalom D,Epstein R,Hanson R.The diamond age of spintronics[J].Scientific American Magazine,2007,297(4):84-91.
    [3]Gregg J F.SpintronicsA growing science[J].Nature Materials,2007,6(11):798-799.
    [4]刘学超,施尔畏,张华伟,et al.ZnO基稀磁半导体薄膜材料研究进展[J].无机材料学报,2006,21(003):513-520.
    [5]刘邦贵.纳米级自旋电子学材料取得重要进展[J].物理,2003,32(012):780-782.
    [6]Furdyna J K.Diluted magnetic semiconductors[J].Journal of Applied Physics,1988,64:R29.
    [7]Dietl T.Ferromagnetic semiconductors[J].Semiconductor Science and Technology,2002,17(4):377-392.
    [8]Xu F,Yuan Z Y,Du G H,et al.Simple approach to highly oriented ZnO nanowire arrays:large-scale growth,photoluminescence and photocatalytic properties[J].Nanotechnology,2006,17(2):588-594.
    [9]Look D C.Recent advances in ZnO materials and devices[J].Materials Science & Engineering B,2001,80(1-3):383-387.
    [10]Desgreniers S.High-density phases of ZnO:Structural and compressive parameters[J].Physical Review B,1998,58(21):14102-14105.
    [11]钟文定,铁磁学[M].北京,科学出版社,2000.
    [12]宛德福,马兴隆.磁性物理学[M].哈尔滨,黑龙江科学技术出版社,1990.
    [13]姜寿亭,李卫.凝聚态磁性物理[M].北京,科学出版社,2003.
    [14]郭贻诚.铁磁学[M].北京,人民教育出版社,1965.
    [15]Goodenough J B.Magnetism and the Chemical Bond[M].Interscience Publishers,1963.
    [16]Torrance J B,Shafer M W,McGuire T R.Bound magnetic polarons and the insulatormetal transition in EuO[J].Solid State Commun Phys Rev Lett,1971,29:1168.
    [17]Coey J M D,Venkatesan M,Fitzgerald C B.Donor impurity band exchange in dilute ferromagnetic oxides[J].Nature Materials,2005,4(2):173-179.
    [18]Janisch R,Gopal P,Spaldin N A.Transition metal-doped TiO2 and ZnO-present status of the field[J].J.Phys.Condens.Matter,2005,17:R657.
    [19]Pei G,Xia C,Wu B,et al.Studies of magnetic interactions in Ni-doped ZnO from first-principles calculations[J].Computational Materials Science,2008,43(3):489-494.
    [20]Janisch R,Gopal P,Spaldin N A.Transition metal-doped TiO 2 and ZnO—present status of the field[J].J.Phys.Condens.Matter,2005,17:R657.
    [21]Katayama-Yoshida H,Sato K.Spin and charge control method of ternary Ⅱ-Ⅵ and Ⅲ-Ⅴ magnetic semiconductors for spintronics:theory vs.experiment[J].Journal of Physics and Chemistry of Solids,2003,64(9-10):1447-1452.
    [22]Sato K,Katayama-Yoshida H.Ab initio Study on the Magnetism in ZnO-,ZnS-,ZnSe-and ZnTe-Based Diluted Magnetic Semiconductors[J].Physica Status Solidi (b),2002,229(2):673-680.
    [23]Sato K,Katayama-Yoshida H.First principles materials design for semiconductor spintronics[J].Semiconductor Science and Technology,2002,17(4):367-376.
    [24]Pan H,Yi J B,Shen L,et al.Room-Temperature Ferromagnetism in Carbon-Doped ZnO[J].Physical Review Letters,2007,99(12):127201.
    [25]Yi J B,Shen L,Pan H,et al.Enhancement of room temperature ferromagnetism in C-doped ZnO films by nitrogen codoping[J].Journal of Applied Physics,2009,105:07C513.
    [26]Pan H,Yi J B,Lin J Y,et al.Carbon-doped ZnO:A New Class of Room Temperature Dilute Magnetic Semiconductor[J].Arxiv preprint eond-mat/0610870,2006.
    [27]Pan H,Feng Y P,Wu Q Y,et al.Magnetic properties of carbon doped CdS:A firstprinciples and Monte Carlo study[J].Phys Rev B,2008,77:125211.
    [28]Ueda K,Tabata H,Kawai T.Magnetic and electric properties of transition-metaldoped ZnO films[J].Applied Physics Letters,2001,79:988.
    [29]Jin Z,Fukumura T,Kawasaki M,et al.High throughput fabrication of transitionmetal-doped epitaxial ZnO thin films:A series of oxide-diluted magnetic semiconductors and their properties[J].Applied Physics Letters,2001,78:3824.
    [30]Mizokawa T,Nambu T,Fujimori A,et al.Electronic structure of the oxide-diluted magnetic semiconductor Zn_(1-x) Mn_xO[J].Physical Review B,2002,65(8):85209.
    [31]Savchuk A I,Gorley P N,Khomyak V V,et al.ZnO-based semimagnetic semiconductors:growth and magnetism aspects[J].Materials Science and Engineering B,2004,109(1-3):196-199.
    [32]Kim Y M,Yoon M,Park I W,et al.Synthesis and magnetic properties of Zn_(1-x)Mn_xO films prepared by the sol-gel method[J].Solid State Communications,2004,129(3):175-178.
    [33]Cheng X M,Chien C L.Magnetic properties of epitaxial Mn-doped ZnO thin films[J].Journal of Applied Physics,2003,93:7876.
    [34]Ando K,Saito H,Jin Z,et al.Magneto-optical properties of ZnO-based diluted magnetic semiconductors[J].Journal of Applied Physics,2001,89:7284.
    [35]Fukumura T,Jin Z,Kawasaki M,et al.Magnetic properties of Mn-doped ZnO[J].Applied Physics Letters,2001,78:958.
    [36]Bates C H,White W B,Roy R,New High-Pressure Polymorph of Zinc Oxide,1962 by the American Association for the Advancement of Science.p.993-993.
    [37]Jung S W,An S J,Yi G C,et al.Ferromagnetic properties of ZnMnO epitaxial thin films[J].Applied Physics Letters,2002,80:4561.
    [38]Dietl T,Ohno H,Matsukura F,et al.Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors[J].Science,2000,287(5455):1019.
    [39]Theodoropoulou N,Misra V,Philip J,et al.High-temperature ferromagnetism in Zn_(1-x)Mn_xO semiconductor thin films[J].Journal of Magnetism and Magnetic Materials,2006,300(2):407-411.
    [40]Fitzgerald C B,Venkatesan M,Lunney J G,et al.Cobalt-doped ZnO-a room temperature dilute magnetic semiconductor[J].Applied Surface Science,2005,247(1-4):493-496.
    [41]Kim J H,Kim H,Kim D,et al.Magnetoresistance in laser-deposited Znl-xCoxO thin films[J].Physica B:Physics of Condensed Matter,2003,327(2-4):304-306.
    [42]Kim J H,Kim H,Kim D,et al.Magnetic properties of epitaxially grown semiconducting ZnCoO thin films by pulsed laser deposition[J].Journal of Applied Physics,2002,92:6066.
    [43]Prellier W,Fouchet A,Mercey B,et al.Laser ablation of Co:ZnO films deposited from Zn and Co metal targets on (0001) AlO substrates[J].Applied Physics Letters,2003,82:3490.
    [44]Yoo Y Z,Fukumura T,Jin Z,et al.ZnO-CoO solid solution thin films[J].Journal of Applied Physics,2001,90:4246.
    [45]Rode K,Anane A,Mattana R,et al.Magnetic semiconductors based on cobalt substituted ZnO[J].Journal of Applied Physics,2003,93:7676.
    [46]Yan L,Ong C K,Rao X S.Magnetic order in Co-doped and (Mn,Co) codoped ZnO thin films by pulsed laser deposition[J].Journal of Applied Physics,2004,96:508.
    [47]Ramachandran S,Tiwari A,Narayan J.Zn_(0.9)Co_(0.1)O-based diluted magnetic semiconducting thin films[J].Applied Physics Letters,2004,84(25).
    [48]Yang S G,Pakhomov A B,Hung S T,et al.Room temperature magnetism in sputtered (Zn,Co) O films[J].Magnetics,IEEE Transactions on,2002,38(5):2877-2879.
    [49]Lee H J,Jeong S Y,Cho C R,et al.Study of diluted magnetic semiconductor:Codoped ZnO[J].Applied Physics Letters,2002,81:4020.
    [50]Park J H,Kim M G,Jang H M,et al.Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films[J].Applied Physics Letters,2004,84:1338.
    [51]Saeki H,Tabata H,Kawai T.Magnetic and electric properties of vanadium doped ZnO films[J].Solid State Communications,2001,120(11):439-443.
    [52]Venkatesan M,Fitzgerald C B,Lunney J G,et al.Anisotropic Ferromagnetism in Substituted Zinc Oxide[J].Physical Review Letters,2004,93(17):177206.
    [53]Wakano T,Fujimura N,Morinaga Y,et al.Magnetic and magneto-transport properties of ZnO:Ni films[J].Physica E:Low-dimensional Systems and Nanostructures,2001,10(1-3):260-264.
    [54]Kolesnik S,Dabrowski B,Mais J.Structural and magnetic properties of transition metal substituted ZnO[J].Journal of Applied Physics,2004,95:2582.
    [55]Ye L H,Freeman A J,Delley B.Half-metallic ferromagnetism in Cu-doped ZnO:Density functional calculations[J].Phys.Rev.B,2006,73:033203.
    [56]Zhou X,Shen Y B,Duan M Y,et al.ZnO基稀磁半导体材料研究进展[J].材料導報,2007,21(12):106-109.
    [57]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [58]喀兴林.高等量子力学[M].高等教育出版社,1999.
    [59]王竹溪.统计物理学导论[M].人民教育出版社,1965.
    [60]Slater J C.A simplification of the Hartree-Fock method[J].Physical Review,1951,81(3):385-390.
    [61]Hohenberg P,Kohn W.Inhomogeneous electron gas[J].Phys.Rev,1964,136(3B):B864-B871.
    [62]Andersen O K.Linear methods in band theory[J].Physical Review B,1975,12(8):3060-3083.
    [63]Slater J C,Koster G F.Simplified LCAO method for the periodic potential problem[J].J.Chem.Phys Phys Rev,1950,94:1498.
    [64]Wimmer R D,Dominick J R.Mass media research:An introduction[M].Thomson Wadsworth,2006.
    [65]Petersen M,Wagner F,Hufnagel L,et al.Improving the efficiency of FP-LAPW calculations[J].Computer Physics Communications,2000,126(3):294-309.
    [66]Bl(?)chl P E,Smargiassi E,Car R,et al.First-principles calculations of self-diffusion constants in silicon[J].Physical Review Letters,1993,70(16):2435-2438.
    [67]Bengone O,Alouani M,Bl(?)chl P,et al.Implementation of the Projector Augmented Wave LDA+ U Method:Application to the Electronic Structure of NiO[J].Arxiv preprint cond-mat/0003182,2000.
    [68]Anisimov V I,Aryasetiawan F,Lichtenstein A I.First-principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA+ U method[J].Journal of Physics-Condensed Matter,1997,9(4):767-808.
    [69]Liechtenstein A I,Anisimov V I,Zaanen J.Density-functional theory and strong interactions:Orbital ordering in Mott-Hubbard insulators[J].Physical Review-Section B-Condensed Matter,1995,52(8):5467.
    [70]Harmon B N,Antropov V P,Liechtenstein A I,et al.Calculation of magneto-optical properties for 4f systems:LSDA+ Hubbard U results[J].Journal of Physics and Chemistry of Solids,1995,56(11):1521-1524.
    [71]Kotani T,Van Schilfgaarde M.All-electron GW approximation with the mixed basis expansion based on the full-potential LMTO method[J].Solid State Communications,2002,121 (9-10):461-465.
    [72]Kohan A F,Ceder G,Morgan D,et al.First-principles study of native point defects in ZnO[J].Physical Review B,2000,61 (22):15019-15027.
    [73]Huang D,Zhao Y J,Chen D H,et al.Magnetism and clustering in Cu doped ZnO[J].Applied Physics Letters,2008,92:182509.
    [74]Duan X Y,Yao R H,Zhao Y J.The mechanism of Li,N dual-acceptor co-doped ptype ZnO[J].Applied Physics A:Materials Science & Processing,2008,91(3):467-472.
    [75]Adler J,Hashibon A,Schreiber N,et al.Visualization of MD and MC simulations for atomistic modeling[J].Computer Physics Communications,2002,147(1-2):665-669.
    [76]宾德,赫尔曼,秦克诚.统计物理学中的蒙特卡罗模拟方法[M].北京大学出版 社,1994.
    [77]McMillan W L.Monte Carlo simulation of the two-dimensional random (±J) Ising model[J].J.Math.Phys Phys Rev B,1963,28:5216.
    [78]Gould H,Tobochnik J.An introduction to computer simulation methods[M].Addison-Wesley New York,1988.
    [79]Marinari E,Parisi G.Simulated tempering:a new Monte Carlo scheme[J].Europhys.Lett,1992,19(6):451-458.
    [80]McCoy B M.Spin Correlations of the Two Dimensional Ising Model[J].Thesis (PH.D.) HARVARD UNIVERSITY,1967.Source:American Doctoral Dissertations,Source code:X1967.,1967:0202.
    [81]Reger J D,Young A P.Computer simulation of the Heisenberg spin glass with Ruderman-Kittel-Kasuya-Yosida-like coupling[J].Phys.Rev.B,Condens.Matter,1988,37(10):5493-5499.
    [82]Schreiber N,Adler J.Monte Carlo study of the pure and dilute Baxte Wu model[J].Journal of Physics A-Mathematical and General,2005,38(33):7253-7268.
    [83]Selke W,Fisher M E.Monte Carlo study of the spatially modulated phase in an Ising model[J].Physical Review B,1979,20(1):257-265.
    [84]Wu Q Y,Chen Z G,Wu R,et al.First-principles and Monte Carlo combinational study on Zn_(1-x)Co_xO diluted magnetic semiconductor[J].Solid State Communications,2007,142(4):242-246.
    [85]Huang Z,Chen Z,Peng K,et al.Monte Carlo simulation of tunneling magnetoresistance in nanostructured materials[J].Phys.Rev.B,2004,69:094420.
    [86]Singh N,Saini S M,Nautiyal T,et al.Optical properties of CeSb and LaSb[J].Indian Journal of Pure and Applied Physics,2007,45(1):69-71.
    [87]Dietl T,Cibert J,Ferrand D,et al.Carrier-mediated ferromagnetic interactions in structures of magnetic semiconductors.in.Nasu,Japan:Elsevier,vol.63,1999.103-110.
    [88]MacDonald A H.Comment on special points for Brillouin-zone integrations[J].Physical Review B,1978,18(10):5897-5899.
    [89]Madelung O,Schulz M,Weiss H.Intrinsic Properties of Group Ⅳ Elements and Ⅲ-Ⅴ,Ⅱ-Ⅵ and Ⅰ-Ⅶ Compounds[J].Landolt-Bornstei,New Series,Group Ⅲ.
    [90]Madelung O,Schulz M,Weiss H.Semiconductors[M].Springer,
    [91]Karzel H,Potzel W,K(?)fferlein M,et al.Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures[J].Physical Review B,1996,53(17):
    ?11425-11438.
    [92] Schwarz K, Blaha P. Solid state calculations using WIEN2k. in. Moscow, Russian Federation: Elsevier, vol. 28,2003.259-273.
    [93] Schwarz K. DFT calculations of solids with LAPW and WIEN2k[J]. Journal of Solid State Chemistry, 2003,176(2): 319-328.
    [94] Schwarz K, Blaha P, Madsen G K H. Electronic structure calculations of solids using the WIEN2k package for material sciences, in. Aachen, Germany: Elsevier, vol. 147, 2002.71-76.
    [95] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett, 1996, 77:3865.
    [96] Savrasov S Y. Linear-response theory and lattice dynamics: A muffin-tin-orbital approach[J]. Physical Review B, 1996, 54(23): 16470-16486.
    [97] Savrasov S Y, Savrasov D Y. Full-potential linear-muffin-tin-orbital method for calculating total energies and forces[J]. Physical Review B, 1992, 46(19): 12181- 12195.
    [98] Andersen O K, Pawlowska Z, Jepsen O. Illustration of the linear-muffin-tin-orbital tight-binding representation: Compact orbitals and charge density in Si[J]. Physical Review B, 1986, 34(8): 5253-5269.
    [99] Katsnelson M I, Irkhin V Y, Chioncel L, et al. Half-metallic ferromagnets: From band structure to many-body effects[J]. Reviews of Modern Physics, 2008, 80(2): 315-378.
    [100] Irkhin V Y, Katsnel'son M I. Half-metallic ferromagnets[J]. Physics-Uspekhi, 1994, 37(7): 659-676.
    [101] de Groot R A, Mueller F M, Engen P G, et al. New Class of Materials: Half-Metallic Ferromagnets [J]. Physical Review Letters, 1983, 50(25): 2024-2027.
    [102] Ye X J, Song H A, Zhong W, et al. The effect of nitrogen incorporation on the magnetic properties of carbon-doped ZnO [J]. Journal of Physics D: Applied Physics, 2008,41(15): 155005.
    [103] uti I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications [J]. REVIEWS OF MODERN PHYSICS, 2004, 76(2): 323-410.
    [104] Pearton S J, Abernathy C R, Overberg M E, et al. Wide band gap ferromagnetic semiconductors and oxides[J]. Journal of Applied Physics, 2002, 93:1.
    [105] Pan F, Song C, Liu X J, et al. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films[J]. Materials Science & Engineering R, 2008.
    [106] Liu C, Yun F, Morko H. Ferromagnetism of ZnO and GaN: A Review[J]. Journal of Materials Science: Materials in Electronics, 2005,16(9): 555-597.
    [107] Chanier T, Sargolzaei M, Opahle I, et al. Nearest neighbor exchange in Co-and Mn- doped ZnO[J]. Arxiv preprint cond-mat/0511050, 2005.
    [108] Perdew J P, Burke K, Ernzerhof M. Erratum: Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1997, 78:1396.
    [109] Schwarz K, Blaha P. Solid state calculations using WIEN2k. in. Moscow, Russia: Elsevier, vol. 28,2003.259-273.
    [110] Pemmaraju C D, Sanvito S. Ferromagnetism driven by intrinsic point defects in HfO_2 [J]. Physical Review Letters, 2005, 94(21): 217205-217205.
    [Ill] Osorio-Guillen J, Lany S, Barabash S V, et al. Magnetism without Magnetic Ions: Percolation, Exchange, and Formation Energies of Magnetism-Promoting Intrinsic Defects in CaO[J]. Physical Review Letters, 2006,96(10): 107203.
    [112] Dhar S, Brandt O, Ramsteiner M, et al. GaN: Gd: A superdilute ferromagnetic semiconductor with a Curie temperature above 300 K[J]. Arxiv preprint cond- mat/0412564,2004.
    [113] Dhar S, Perez L, Brandt O, et al. Gd-doped GaN: A very dilute ferromagnetic semiconductor with a Curie temperature above 300 K[J]. Physica A Phys Rev B, 2003,72:245203.
    [114] Dhar S, Brandt O, Ramsteiner M, et al. Colossal magnetic moment of Gd in GaN[J]. Physica (Amsterdam) Phys Rev Lett, 2003,94:037205.
    [115] Ungureanu M, Schmidt H, Xu Q, et al. Electrical and magnetic properties of RE- doped ZnO thin films (RE = Gd, Nd)[J]. Superlattices and Microstructures, 2007, 42(1-6): 231-235.
    [116] Anisimov V I, Zaanen J, Andersen O K. Band theory and mott insulators-hubbard-u instead of stoner-i[J].
    [117] Anisimov V I, Gunnarsson O. Density-functional calculation of effective Coulomb interactions in metals[J]. Physical Review B, 1991,43(10): 7570-7574.
    [118] Alaria J, Bieber H, Colis S, et al. Absence of ferromagnetism in Al-doped Zn_(0.9)Co_(0.10)O diluted magnetic semiconductors[J]. Applied Physics Letters, 2006, 88(11): 112503.
    [119] Liu X C, Shi E W, Chen Z Z, et al. High-temperature ferromagnetism in (Co, Al)- codoped ZnO powders[J]. Applied Physics Letters, 2006, 88:252503.
    [120] Zhang Y D, Faraoun H, Esling C, et al. Paramagnetic susceptibility of ferrite and cementite obtained from ab initio calculations[J]. Journal of Magnetism and Magnetic Materials, 2006,299(1): 64-69.
    [121] Han S J, Song J W, Yang C H, et al. A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu[J]. Applied Physics Letters, 2002, 81:4212.
    [122] Schwarz K. DFT calculations of solids with LAPW and WIEN2k[J]. Journal of Solid State Chemistry, 2003,176(2): 319-328.
    [123] Schwarz K, Blaha P, Madsen G K H. Electronic structure calculations of solids using the WIEN2k package for material sciences. in. Aachen, Germany: Elsevier, vol. 147, 2002.71-76.
    [ 124] Lee E C, Chang K J. Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO[J]. Physical review B. Condensed matter and materials physics, 2004, 69(8): 85205-85205.
    [125] Zener C. Interaction Between the d Shells in the Transition Metals[J]. Physical Review, 1951, 81(3): 440-444.
    [126] Zener C. Interaction between the d-Shells in the Transition Metals. Ⅲ. Calculation of the Weiss Factors in Fe, Co, and Ni[J]. Physical Review, 1951, 83(2): 299.
    [127] Hong N H, Sakai J, Brize V. Observation of ferromagnetism at room temperature in ZnO thin films[J]. JOURNAL OF PHYSICS CONDENSED MATTER, 2007, 19(3): 36219.
    [128] Dalpian G M, Wei S H, Gong X G, et al. Phenomenological band structure model of magnetic coupling in semiconductors[J]. Solid State Communications, 2006, 138(7): 353-358.
    [129] Wang Q, Sun Q, Jena P, et al. Carrier-mediated ferromagnetism in N codoped (Zn, Mn) O (10 1 0) thin films[J]. Physical Review B, 2004, 70(5).
    [130] Kumar M, Auluck S. Effect of pressure on the magneto-optical properties of bcc and bct iron[J]. Physica B: Condensed Matter, 2007,390( 1 -2): 185-190.
    [131] Sandratskii L M, Bruno P. Electronic structure, exchange interactions, and Curie temperature in diluted Ⅲ-Ⅴ magnetic semiconductors: (GaCr)As, (GaMn)As, (GaFe)As[J]. Physical Review B, 2003,67(21): 214402.
    [132] 曾永志, 黄美纯, Yong-Zhi Z, et al. TM 掺杂Ⅱ-Ⅳ-Ⅴ_2黄铜矿半导体的电磁性质[J]. 物理学报, 2005, 54(4).
    [133] E S, Sandratskii L M, Bruno P. First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni_ {2} MnX (X= Ga, In, Sn, Sb)[J]. Physical Review B, 2004, 70(2): 24427.
    [134]Gao G Y,Yao K L.Half-metallic sp-electron ferromagnets in rocksalt structure:The case of SrC and BaC[J].Applied Physics Letters,2007,91:082512.
    [135]Yan W,Sun Z,Liu Q,et al.Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO[J].Applied Physics Letters,2007,91:062113.
    [136]Xu X H,Blythe H J,Ziese M,et al.Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature[J].New Journal of Physics,2006,8(8):135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700