用户名: 密码: 验证码:
空间几何数据质量控制的理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种空间决策支持系统,GIS的根本任务就是分析和处理空间数据,派生和提取空间信息,而数据质量直接影响着分析结果的可靠度及应用目标的实现,从而影响着GIS产业的健康发展。因此,研究GIS数据质量控制的理论与方法具有重要的现实意义。本文主要研究了空间数据获取与分析处理过程中,几何误差纠正和空间数据插值的相关理论与算法,论文的主要内容和创新点概括如下:
     1、在函数模型误差控制方面,论述了空间数据几何误差纠正的函数模型拟合原理,并对各种常用的纠正模型进行了对比分析;在控制点先验随机模型误差控制方面,研究了顾及先验信息的函数模型拟合法;在异常误差影响控制方面,提出了顾及系统参数先验信息的抗差拟合法。
     2、在函数模型与随机模型综合影响控制方面,探讨了拟合推估在空间数据几何误差纠正中的应用,弥补了函数模型拟合法难以纠正局部随机信号的缺陷;讨论了协方差函数的拟合方法,并定量研究了协方差函数误差对拟合推估解的影响;为了抑制异常误差对拟合推估解的影响,提出了协方差函数的抗差拟合法及相应的抗差拟合推估法。
     3、在随机模型误差影响控制方面,提出应用方差分量估计调整先验的观测方差协方差阵与随机信号的方差协方差阵之间的不协调问题。研究了基于Helmert方差分量估计的拟合推估、基于极大似然方差分量估计的拟合推估及基于MINQUE方差分量估计的拟合推估理论;基于方差分量估计构建了自适应因子,平衡观测噪声与随机信号的贡献,从而构建了自适应拟合推估模型,并分析了自适应因子对拟合推估解的影响。
     4、在论述附有限制条件的函数模型拟合基础上,给出了含有随机信号约束条件、含有倾向参数的约束条件及含有倾向参数与随机信号组合约束条件的拟合推估模型,并导出了相应的解式,如此可以保证在几何误差纠正的同时能够满足各种固有的几何或物理条件。考虑到需满足的条件多且复杂,计算量大,影响误差纠正效果,于是又提出分步平差和二次误差纠正的新思路。
     5、提出应用BP神经网络进行空间数据几何误差的纠正,避免了因先验信息不足,函数模型、随机模型选择不当所带来的影响。同时针对BP神经网络学习训练速度慢、容易陷入局部极小等问题,对算法进行了改进。
     6、探讨了最小曲率插值原理及算法。通过分析发现:最小曲率插值既不需要全面了解系统误差和随机误差的特性,也不需要人为地选择函数模型、随机模型、网络结构等。由于它将研究区域格网化,再进行逐格网内插,因此具有较好的局部拟合特性,比较适合于小区域范围内的误差拟合。
     7、为了控制空间数据生成过程中的内插误差影响,提出了具有抗差能力的等价权平均法及能够抵制异常变异的抗差趋势面拟合分析法;分析了核函数、节点及平滑因子对多面函数拟合的影响,重点研究了节点的自适应选择问题,提出了以各节点核函数对曲面拟合贡献的大小来自适应选择节点的正交最小二乘多面函数法。
As a decision-making system of spatial relation, the fundamental task of GIS is to analyze and process spatial data, derive and abstract spatial information. The quality of data influences the reliability of the analysis results and realization of application objective directly, furthermore, affect the development of GIS industry. So it has important practical significance to study the theory and method of data quality control in GIS. This dissertation mainly focuses on the theories and algorithms of geometry error compensation and spatial data interpolation in the process of spatial data acquisition and analysis. The main works and contributions are summarized as follows:
     1. Theory of functional model fitting for geometric error is discussed, various existing models are compared and analyzed. The fitting model considering a priori information is studied in order to control the influences of control points. A robust fitting with prior information is presented which can resist outliers of spatial datum.
     2. A collocation method is proposed to fit geometric error of spatial data in order to compensate the remained local random errors, since the functional model can only fit the systematic errors or trend errors. The method for covariance function fitting in collocation is discussed and influences of the uncertainty of the covariance function are analyzed. To resist the influences of outliers, robust fitting for the covariance function and robust collocation are presented.
     3. In collocation applications, the prior covariance matrices between signals and observations should be consistent, otherwise, the solution of collocation will be twist. The variance component estimation is introduced to adjust the disharmony between covariance matrices of observations and random signals. The collocation based on maximum likelihood estimation, MINQUE estimation and Helmert estimation of variance components are studied. To balance the covariance matrices of the signals and the observations, a new adaptive collocation estimator is also derived in which the corresponding adaptive factor is constructed by the ratio of the variance components. In addition, the influences of adaptive factor on collocation results are analyzed.
     4. The inherent geometrical or physical constraints should be satisfied while in fitting of geometric errors of spatial datum, the collocation estimators, with stochastic signal constraints, trend parameter constraints, as well as the synthetic constraints of signals and trend parameters, are derived based on the functional fitting with constraints. Considering there are many conditions which will lead to excessive calculation workload, a new idea of two-step adjustment is proposed.
     5. BP neural network is introduced to fit the geometric errors of GIS, which can approach the systematic errors without using a fixed functional model or stochastic model. Since the neural network has the disadvantages of slow learning speed and easily arriving at local minimum, an improved neural network algorithm is put forward.
     6. The principle and algorithm of minimum curvature interpolation are discussed. By analyzing we find that the fitting method based on the minimum curvature does not need the comprehensive knowledge about the characteristics of system errors or random errors, either the function model, stochastic model or network structure. At first the research area is divided into grids and then unknown data is interpolated grid by grid, therefore the fitting method based on the minimum curvature has good characteristics for the local fitting. As the result, it is more suitable for error fitting in the small area.
     7. In order to control the influences of the outliers or abnormal variations of the interpolation data in the process of data generation, the methods of equivalent weight average and robust trend surface fitting are proposed. The influences of kernel function, nodes and smoothing factor on multiquadric fitting are analyzed. An adaptive node choosing method, which cannot only ensure the stability, but also improve the precision of fitting, is proposed based on the effect of every node to the curve fitting calculated by using the orthogonal least squares.
引文
[1]包世泰,穆衍旋,胡月明,赵寒冰.基于:Kriging的地形高程插值[J].地理与地理信息科学,2007,23(3):28-32.
    [2]边少锋,JoachimMenz.克立格估计的分析解释与协方差函数的代数确定[J].地球科学—中国地质大学学报,2000,25(2):195-200.
    [3]柏延臣.遥感信息提取的不确定性和尺度效应研究[D].北京:中国科学院,2002.
    [4]陈斌等.一种离散化的最小曲率插值方法[J].煤田地质与勘探,2000,28(1).
    [5]陈洪艳,陈宜金,游代安.基于扫描矢量化地图数据生产的数据质量控制[J].测绘信息与工程,2004,29(4):31-33.
    [6]陈建军,周成虎,程维明.GIS中面状要素矢量栅格化的面积误差分析[J].测绘学报,2007,36(3):344-350.
    [7]陈玉芳.BP神经网络的算法改进及应用研究[D].电子科技大学,2001.
    [8]程涛,邓敏,李志林.空间目标不确定性的表达方法及其在GIS中的应用分析[J].武汉大学学报信息科学版,2007,32(5):389-392.
    [9]承继成,郭华东,史文中,等.遥感数据的不确定性问题[M].北京:科学出版社,2004.
    [10]承继成,金江军.地形图的确定性与不确定性[J].测绘科学,2007,32(1):7-8.
    [11]戴洪磊,吴守荣,徐泮林.GIS中平面线位误差带的可视化表达[J].中国图像图形学报,1999,4(3):256-260.
    [12]戴洪磊,夏宗国,黄杏元.GIS中衡量位置数据不确定性的可视化度量指标族探讨[J].中国图像图形学报,2002,7(2):165-169.
    [13]戴军.基于地形图的DEM精度检查与质量评估研究[D].郑州:解放军信息工程大学,2003.
    [14]丁克良,欧吉坤,赵春梅.正交最小二乘曲线拟合法[J].测绘科学,2007,32(3):17-19.
    [15]邸凯昌,李德仁,李德毅.Rough集理论及其在GIS属性分析和知识发现中的应用[J].ISSN1671-8860 CN 42-1676/TN,1999,24(1):6-10.
    [16]董长虹.神经网络与应用[M].北京:国防工业出版社,2005.
    [17]范爱民,郭达志.误差熵不确定带模型[J].测绘学报,2001,30(1):48-53.
    [18]范爱民,景海涛.地图数字化质量问题研究[J].测绘通报,2000,(4):1-3.
    [19]高隽.人工神经网络原理及仿真实例[M].北京:机械:工:业出版社,2007.
    [20]高为广,杨元喜,张婷。GPS/INS智能组合导航自适应滤波算法[J].2007,36(1):26-30.
    [21]高为广.GPS/INS自适应组合导航算法研究[D].解放军信息工程大学,2008.
    [22]郭达志,范爱民.基于信息论的GIS空间数据质量评价[J].中国矿业大学学报(自然科学版),2001,30(3):321-324.
    [23]郭同德.GIS中空间数据位置不确定性的模型与实验研究[J].测绘学报,2005,34(2),188-188.
    [24]郭同德,王家耀,魏海平.GIS中基本几何要素的置信区域问题研究[J].测绘学报,2003,32(2):164-167.
    [25]韩李涛,赵军.空间数据质量相关问题探讨[J].东北测绘,26(1):11-14.
    [26]胡凤伟,胡龙华,马晓艺.利用地面控制点进行遥感影像机和纠正的方法探讨[J].华北科技学院学报,2008,5(1):45-48.
    [27]胡晋山,马明栋,李博.地形图扫描数字化质量控制[J].测绘通报,2004,12:53-55.
    [28]胡鹏,吴艳兰,胡海.数字高程模型精度评定的基本理论[J].地球信息科学,2003,(3):64-69.
    [29]胡鹏,吴艳兰,胡海.再论DEM精度评定的基本理论问题[J].地球信息科学,2005,7(3): 28-33.
    [30]胡圣武.GIS质量评价与可靠性分析[M].北京:测绘出版社,2006.
    [31]胡圣武,郭增长,王新洲,陶本藻.论遥感数据的模糊不确定性及基于Rough集的处理方法[J].中国铁道科学,2006,27(2):132-136.
    [32]胡圣武,潘正风,王新洲,陶本藻.地理信息系统不确定性的研究[J].测绘通报,2004,(9): 13-16.
    [33]胡圣武,王新洲,陶本藻,李长春.GIS不确定性的基本理论及需解决的问题[J].测绘科学,2007,32(2):15-30.
    [34]胡圣武,许辉,喻铮铮,潘正风.遥感数据的模糊不确定性及处理方法的探讨[J].地矿测绘,2004,20(2):4-20.
    [35]胡伍生.GPS精密高程测量理论与方法及其应用研究[D].河海大学博士论文,2001.
    [36]胡伍生,华锡生,等.平坦地区转换GPS高程的混合转换方法[J].测绘学报,2002,31(2) :128-133.
    [37]胡伍生.神经网络理论及其工程应用[M].北京:测绘出版社,2006.
    [38]华慧,童小华,江建升,黄晓彤.数字化地图位置精度的统计分析[J].测绘通报,1998,3: 31-33.
    [39]黄立人,陶本藻,赵承坤.多面函数拟合在地壳垂直运动研究中的应用[J]。测绘学报,1993,22(1):25-31.
    [40]黄文华,胡绪清.地形图扫描数字化中的误差来源分析[J].测绘通报,1998,(4):27-35.
    [41]黄维彬.近代平差理论及其应用[M].北京:解放军出版社,1992:376.-381.
    [42]黄幼才,刘文宝.数字化误差建模中粗差探测和抗差估计[J].武汉测绘科技大学学报,1995(2): 151~156.
    [43]黄幼才,刘文宝,李宗华,肖道刚.GIS空间数据误差分析和处理[M].武汉:中国地质大学出版社,1995
    [44]吉长东,韩颜顺,何孝莹等.大区域离散型DEM源数据粗差探测与剔除[J].测绘通报,2006,(2):27~29.
    [45]姜健飞,胡良剑,唐检.数值分析及其MATLAB实验[M].北京:科学出版社,2004.
    [46]姜友谊,黎晓.数字地面模型内插方法的优劣分析[J].西安科技学院学报,2001,21(3):213-216.
    [47]金时华.多面函数拟合法转换GPS高程[J].测绘与空间地理信息,2005,28(6):44-47.
    [48]焦李成.神经网络系统理论[M].西安:西安电子科技大学,1990.
    [49]柯正谊,何建邦,池天河.数字地面模型[M].北京:中国科学技术出版社,1998.
    [50]兰燕,王明华,刘珊红,戴晓爱.逐点内插法建立DEM的研究[J].测绘科学,34(1):214-216.
    [51]蓝悦明.空间位置数据不确定性问题的若干理论研究[D].武汉:武汉大学,2003.
    [52]蓝悦明,杨晓梅.手工数字化地图误差的分布检验[J].测绘通报,2003,4:42~44.
    [53]李德仁,袁修孝.误差处理和可靠性理论[M].武汉:武汉大学出版社,2002.
    [54]李大军.基于信息熵的空间数据位置不确定性模型的研究[D].武汉:武汉大学,2003.
    [55]李大军,龚建雅,谢刚生,杜道生.GIS中面元的误差熵模型[J].测绘学报,2003,32(1):31-35.
    [56]李大军,龚建雅,谢刚生.DLG产品质量的模糊综合评判[J].地矿测绘,18(1):1-3.
    [57]李德仁.对空间数据不确定性研究的思考[J].测绘科学技术学报,2006,23(6):391-395.
    [58]李君轶.地图数字化误差分析及其校正方法探讨[J].陕西工学院学报.2002,18(2):24-31.
    [59]李蕾蕾,岳东杰,石双忠.GIS空间数据的采集误差及其分析[J].现代测绘,2003,26(6),21-23.
    [60]李晓梅.并行计算与偏微分方程数值解[M].北京:国防工业出版社,1 990.
    [61]李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3):260-264.
    [62]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2000.
    [63]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2003.
    [64]林宗坚,李军.地形图数字化数据的纠正与平差[J].武测科技,1994,(4):13~16.
    [65]刘长建,吴洪举,黄勇.一种调整两类观测值权比的新方案[J].测绘通报,2006,9:47-68.
    [66]刘春.GIS属性数据的精度度量及质量控制的抽样原理与方法[D].同济大学,2000.
    [67]刘春,刘大杰,史文中.GIS数字地图质量子幅抽样方案的探讨[J].测绘学报,2002,31(增):99-102.
    [68]刘春,史文中,刘大杰.GIS属性数据精度的缺陷率度量统计模型[J].测绘学报,2003,32(1):36-41.
    [69]刘大杰,华慧.GIS线要素不确定性模型的进一步探讨[J].测绘学报,1998,27(1):4549.
    [70]刘大杰,刘春.GIS空间数据不确定性与质量控制的研究现状[J].测绘工程,2001,10(1)6-11.
    [71]刘大杰,孟晓林.直角与直线元素数字化的数据处理[J].武汉测绘科技大学学报,1997(2).
    [72]刘大杰,史文中,童小华等.GIS空间数据的精度分析与质量控制[M].上海科学技术文献出版社,1999.
    [73]刘大杰,陶本藻.实用测量数据处理方法[M].北京:测绘出版社,2000.
    [74]刘光远,邱玉辉,廖晓峰,覃朝玲.一种新颖的神经网络稳健估计方法[J].Journal of Computer Research&Development.1999,36(5):567-571.
    [75]刘光远,廖晓峰,虞厥帮,邱玉辉.一种神经网络稳健估计方法的推广性研究[J].电子科学学刊.1999,21(1):128-131.
    [76]刘念,胡荣明.拟合推估在GPS高程解算中的应用[J].测绘通报,2001.7:29-31.
    [77]刘平芝.1:5万矢量地形数据的质量评定[J].测绘学院学报,2005,22(3):212-215.
    [78]刘珊红,于海龙,赵吉先.地图数字化误差分析及探讨[J].东北测绘,2001(3):16~18.
    [79]刘万林,郭岚,王利.多面函数法与移动法的加权综合模型在GPS水准中的应用[J].西安科技大学学报,2004,24(3):310-319.
    [80]刘文宝.GIS空间数据的不确定性理论[D].武汉:武汉测绘科技大学,1995.
    [81]刘文宝,邓敏,夏宗国.矢量GIS中属性数据的不确定性分析[J].测绘学报,2000,29(1):76-81.
    [82]刘文宝,史文中.GIS叠置前后同名点元的方差估计[J].武汉测绘科技大学,1997(1):56-58.
    [83]娄纯柱,邢少杰,宋拥军.遥感图像几何纠正的若干问题分析[J].测绘技术装备,2003,5(4): 36-37.
    [84]吕言.数字地面模型中多面函数内插法的研究[J].武汉测绘学院学报.1981,2.
    [85]吕言.数字地面模型内插中多面法与配置法比较性的研究[J].测绘学报.1982,11(3):185-189.
    [86]鲁铁定,宁津生,周世健等.最小二乘配置的SVD分解解法[J].测绘科学,2008,33(3):47-51.
    [87]鲁铁定,陶本藻,周世健.基于整体最小二乘法的线性回归建模和解法[J].武汉大学学报信息科学版.2008,33(5):504-507.
    [88]鲁铁定,周世健,臧德彦.关于BP神经网络转换GPS高程的若干问题[J].测绘通报.2003, (8):7-15.
    [89]陆君安.偏微分方程的MATLAB解法[M].北京:国防工业出版社,2001.
    [90]毛团志,张宝明,翟辉琴.基于广义Hough变换的空间数据质量评价方法[J].测绘学院学报,2004,2(4):266-268.
    [91]马洪超,赵向东.基于地形随机场模型的遥感图像几何纠正[J].测绘学报,2006,35(8):251-254.
    [92]孟晓林,刘大杰,朱照宏.地图数字化数据误差的NL分布检验[J].同济大学学报,1996(5).
    [93]欧吉坤.粗差的拟准检定法(QUAD法)[J].测绘学报,1999,28(1):15-19.
    [94]彭泽,刘定生.北京一号小卫星几何纠正方法与试验[J].遥感应用,2008,1:74-77.
    [95]齐南平.DTM数据采集的质量控制[J].测绘标准化,2002,18(3):32-35.
    [96]覃文忠,王建梅,刘妙龙.混合地理加权回归模型算法研究[J].武汉大学学报信息科学版,2007,32(2):115-119.
    [97]任俊芳.遥感图像几何纠正后局部变形纠正[J].测绘科学与工程.2005,25(1):42-44.
    [98]商杰,朱站立.BP神经网络学习速度及泛化能力的提高[J].福建电脑.2005,[4]:20-21.
    [99]盛业华.矿图扫描数字化的几何精度分析[J].矿山测量,1998,(2):16-18.
    [100]沙月进.最小二乘配置法在GPS高程拟合中的应用[J].测绘信息与工程,2000(3):3-5.
    [101]石国荣,赵长胜,纪奕君.GIS数据误差分类与来源[J].辽宁工程技术大学学报(自然科学版),2002,21(2):154156.
    [102]史建红,王松桂.方差分量的广义谱分解估计[J].高校应用数学学报A辑,2005,20(1):83-89.
    [103]史文中.空间数据误差处理的理论与方法[M].北京:科学出版社,1998.
    [104]史文中.空间数据与空间分析不确定性原理[M].北京:科学出版社,2005.
    [105]史文中,刘春,刘大杰.基于一般抽样原理的GIS属性数据质量评定方法[J].武汉大学学报信息科学版,2002,27(5):445-450.
    [106]史文中,刘文宝.GIS中线元位置不确定性的随机过程模型[J].测绘学报,1998,27(1):3744.
    [107]史文中,童小华,刘大杰.GIS中一般曲线的不确定性模型[J].测绘学报,2000,29(1):52-57.
    [108]史文中,王树良.GIS数据质属性不确定性的研究[J].中国图像图形学报,2001,6(9):918-924.
    [109]史文中,王树良.GIS中属性不确定性的处理方法及其发展[J].遥感学报,2002,6(5):3939-395.
    [110]史玉峰,曹俊如.基于遗传BP神经网络的变形数据分析处理[J].矿业研究与开发.2004,24(8): 8-10.
    [111]史玉峰,史文中,靳奉祥.GIS中空间数据不确定性的混合熵模型研究[J].武汉大学学报信息科学版.2006,31(1):82-85.
    [112]石昕,彭文.基于加权最小二乘曲面拟合的规则格网DEM建立[J].海洋测绘,2008,28(3):41-11.
    [113]宋铁群,郎永刚,耿卫东,邢建立.浅谈基于ERDAS IMAGINE软件的几何精纠正方法[J].测绘与空间地理信息,2008,31(1):82-85.
    [114]宋文尧,潘新.拟合推估在地球动力学中的应用[C].测量与地球物理集刊,1985,6:1-7.
    [115]苏煜城.偏微分方程数值解法[M].北京:教育出版社,1989.
    [116]孙开敏,陈艳,李德仁.地形图栅格影像的变形儿何纠正关键算法研究[J].测绘信息与工程,2005,30(3):40~41.
    [117]汤国安,龚健雅,陈正江,成燕辉,王占宏.数字高程模型地形描述精度量化模拟研究[J].测绘学报,2001,30(4):361-365.
    [118]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [119]汤国安,赵牡丹,李天文等.DEM提取黄土高原地面坡度的不确定性[J].地理学报,2003,58(6):824-830.
    [120]汤仲安,王新洲,陈志辉.GIS中平面一般曲线误差模型包络线[J].测绘学报,2004,33(2): 151-155.
    [121]陶本藻.具有无限权的平著问题[J].测绘学报,1982,11(2):81-88.
    [122]陶本藻.GIS空间数据误差分析[J].四川测绘,2000,23(4):147~149.
    [123]陶本藻,吕秀琴.地图数字化数据不确定度估计的方差分析法[J].测绘信息与工程,2004,29(1):41-43.
    [124]陶本藻,王新洲,于正林等.用于垂直形变模型的多面函数拟合法的试验研究[J].地壳形变与地震,1992,(1).
    [125]陶本藻,姚宜斌.基于多面核函数配置模型的参数估计[J].武汉大学学报信息科学版,2003,28(5):547-550.
    [126]陶本藻,姚宜斌,赵美超.论多面函数推估与协方差推估[J].测绘通报,2002,(9):4-6.
    [127]童小华,邓愫愫,史文中.数字地图合并的平差原理与方法[J].武汉大学学报信息科学版.2007,32(7):621-625.
    [128]童小华,刘大杰等.GIS数字化数据的平差模型及软件实现[J].同济大学学报,1998(6).
    [129]童小华,史文中,刘大杰.GIS中圆曲线的不确定性模型[J].测绘学报,1999,28(4):325-329.
    [130]童小华,赵建国.GIS中地籍宗地面积的方差分量估计[J].测绘学报,2002,31(增):109-112.
    [131]童小华,周德意.地形(籍)图扫描纠正的精度分析[J].同济大学学报,2003,31(1):77~81.
    [132]王春,汤国安,赵牡丹,王雷,张婷.地理空间数据不确定性与研究进展[J].西北大学学报(自然科学网络版),2004,2(6).
    [133]王春林,张雪岩.空间数据质量及进度分析[J].黄金地质,2003,9(1):71-73.
    [134]王崇倡,计会风,武文波.数字影像几何纠正的理论研究[J].矿山测量,2004,(2):5-11.
    [135]王光霞.DEM精度模型建立与应用研究[D].郑州:解放军信息工程大学,2005.
    [136]王光霞,朱长青,史文中,张国芹.数字高程模型地形描述精度的研究[J].测绘学报,2004,33(2): 168-173.
    [137]王建华.空间信息可视化[M].北京:测绘出版社,2004.
    [138]王庆国.4D产品质量的模糊综合评判[D].武汉:武汉大学,2004.
    [139]王庆国,朱庆,王新洲.地图产品质量模糊评价模型的判据选择[J].测绘科学,2005,30(6):47-48.
    [140]王松桂.线性模型的理论及其应用[M].合肥:安徽教育出版社,1987:434-437.
    [141]王松桂.方差分量的改进估计[J].应用数学学报,1999,22(1):115-122.
    [142]王岩,杨爱玲,刘秀娟.基于ERDAS软件遥感正射影像图的制作[J].测绘与空间地理信息,2007,30(5):104-109.
    [143]王志忠,朱建军.方差分量的MINQUE通用公式[J].中南工业大学学报,2001,32(4):433-436.
    [144]王新洲.广义平差的概括模型[J].武汉测绘科技大学学报,2000(3):257-260.
    [145]王新洲,史文中.极大可能性估计[J].测绘学报,2003,32(3):193-197.
    [146]王新洲,邓新升.大坝变形预报的模糊神经网络模型[J].武汉大学学报,信息科学版,2005,30(7):588~591
    [147]王耀革,姚红.基于二元样条函数的DEM传递误差模型[J].测绘科学技术学报.2007,24(增):35-40.
    [148]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社,2005.
    [149]魏子卿.我国大地坐标系的换代问题[J].武汉大学学报信息科学版.2003,28(2):138-143.
    [150]翁永玲.空间数据误差源分析及质量控制探讨[J].铁路航测,2001,(3):10-12.
    [151]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉大学出版社,2004.
    [152]吴迪光.变分法[M].北京:高等教育出版社,1987.
    [153]吴芳华,张跃鹏,金澄.GIS空间数据质量的评价[J].测绘学院学报,2001,18(1):63-66.
    [154]吴华意,章汉武.地理信息服务质量(QoGIS):概念和研究框架[J].武汉大学学报信息科学版,2007,32(5):385-388.
    [155]吴密霞,王松桂.线性混合模型中固定效应和方差分量同时最优估计[J].中国科学A辑数学,2004,34(3):373-384.
    [156]邬伦等.地理信息系统——原理、方法和应用M1.北京:测绘出版社,2002.
    [157]邬伦,承继成,史文中.地理信息系统数据的不确定性问题[J].测绘科学,2006,31(5):13-17.
    [158]邬伦,于海龙,高振纪,承继成.GIS不确定性框架体系与数据不确定性研究方法[J].地理学与国土研究.2002,18(4):1-4.
    [159]肖平,李德仁.GIS模糊栅格数据结构隶属度的解算和地理多边形边界锐度[J].解放军测绘学院学报,1998(3):50-53.
    [160]许家琨.常用大地坐标系的分析比较[J].海洋测绘.2005,25(6):71-74.
    [161]姚道荣,钟波,汪海洪,王伟.最小二乘配置与普通Kriging法的比较[J].大地测量与地球动力学,2008,28(3):77-82.
    [162]杨恒山.地图数字化坐标变换模型的选择方法[J].湖南理工学院学报,2005,18(4):66-68.
    [163]杨明清,靳蕃,等.用神经网络方法转换GPS高程[J].测绘学报,1999,28(4):301-307.
    [164]杨晓云,岑敏仪,梁鑫.不规则DEM数据的粗差探测算法的应用[J].测绘科学,2007,32(3): 78-79.
    [165]杨晓云,顾利亚,岑敏仪,李志林.基于不同大小窗口的移动曲面拟合法探测不规则DEM粗差的一种方法[J].测绘学报,2005,34(2),148~153.
    [166]杨元喜.最小二乘滤波配置在测量平差中的应用[J].军事测绘专辑,1982,No.9,23-27.
    [167]杨元喜.抗差估计理论及其应用[M].北京:八一出版社,1993.
    [168]杨元喜.自适应抗差最小二乘估计[J].测绘学报,1996,25(3):206~211.
    [169]杨元喜,高为广.基于方差分量估计的自适应融合导航[J].测绘学报,2004,33(1):22-25.
    [170]杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报,2001,30(4):293-298.
    [171]杨元喜,刘长建.重力异常的拟合推估迭代解算模型及算法[J].地震学报,1996,18(4):475-479.
    [172]杨元喜,刘念.重力异常的一种逼近方法[J].测绘学报,2001,30(3),192-196.
    [173]杨元喜,刘念.拟合推估两步极小解法[J].测绘学报,2002,31(3):192-195.
    [174]杨元喜,张菊清,张亮.基于方差分量估计的拟合推估及其在GIS误差纠正的应用[J].测绘学报,2008,37(2):152-157.
    [175]杨元喜,赵丽华,吴芳华等.地图数字化的精度评定与控制[J].解放军测绘研究所学报,2003(2):1-4.
    [176]游扬声,王新洲,史文中.数字化地图的纠正模型及其优选[J].地理空间信息,2005,3(6):45~54.
    [177]余晓红.地图扫描数字化的误差分析[J].测绘科学,2001,26(4):49-52.
    [178]余晓红,刘大杰.地图数字化数据坐标变换的相关性分析[J].ISSN 1671-8860 CN42-1676/TN,2002,27(5):456-460.
    [179]余学祥,吕伟才.数字化误差的统计分析[J].测绘工程,1998,7(3):62~69.
    [180]曾安敏,张菊清.基于拟合推估两步极小解法的地图坐标变换[J].大地测量与地球动力学,2008,28(1):
    [181]曾安敏.动态大地测量数据融合有关问题研究[D].长安大学,2008.
    [182]曾怀恩,黄声享.基于Kriging方法的空间数据插值研究[J].测绘工程,2007,16(5),5-13.
    [183]曾衍伟.空间数据质量与评价技术体系研究[D].武汉大学,2004.
    [184]曾衍伟,龚健雅.空间数据质量控制与评价方法及实现技术[J]. 武汉大学学报信息科学版,2004,29(8):686-690.
    [185]张保钢.论地理数据定义不确定性和量测不确定性的二象性[J].测绘通报,1999(6):19-21.
    [186]张保钢.空间数据现势度的概念[J].测绘信息与工程,2000(2):13-14.
    [187]张保钢,朱凌,朱光.GIS中矢量数据缓冲区操作的不确定性传播模型[J].测绘学报,1998,27(3):259-266.
    [188]张国芹,朱长青,周滨,柳林涛,刘海砚.GIS中3维空间圆曲线的不确定性ε_σ模型[J].测绘学报,2005,34(3),233-238.
    [189]张海荣.GIS中数据不确定性研究综述[J].徐州师范大学学报(自然科学版),2001,19(4):66-68.
    [190]张景雄,杜道生.位置不确定性与属性不确定性的场模型[J].测绘学报,1999,28(3):244-249.
    [191]张景雄,Michael F Goodchild.野外空间采样的渐进式策略[J].武汉大学学报信息科学版,2008,33(5):441-445.
    [192]张菊清.GIS中缓冲区分析后的误差传播[J].测绘通报,2002,1.
    [193]张菊清.双因子抗差贝叶斯估计及其在GIS数据采集质量控制中的应用[J].测绘工程,2006,15(6),20~23.
    [194]张菊清,陈再辉,魏建忠.DEM空间数据抗差内插模型及其分析[J].测绘科学,2007,32(6),33~34.
    [195]张菊清,窦和军.GIS中属性不确定性的表示及传播[J].黄金地质,2003,9(1):74-77.
    [196]张菊清,刘平芝.抗差趋势面与正交多面函数结合拟合DEM数据[J].测绘学报.2008,37(4):526-530.
    [197]张菊清,聂建亮.基于BP神经网络的地图数字化误差纠正[J].测绘科学,2008,33(3):107-109.
    [198]张菊清,杨元喜,张亮.地图数字化误差纠正的拟合推估法[J].武汉大学学报信息科学版2008,33(5):508-511.
    [199]张菊清,杨元喜,曾安敏.多种地图坐标转换方法的比较与分析[J].测绘通报,2008.8: 32-35.
    [200]张菊清,杨元喜,张亮.附有限制条件的拟合推估模型及其解算[J].大地测量与地球动力学,2008,28(5):91-95.
    [201]张菊清,杨元喜,张亮,邓润叶.GIS空间数据质量控制的抗差拟合推估法[J].测绘科学技术学报,2008,25(3),179-182.
    [202]张菊清,张亮.基于Helmert方差分量估计的拟合推估法及其在地图数字化误差纠正中的应用[J].测绘通报,2008.2,35-51.
    [203]张鹏,王金城.自适应滤波算法的神经网络实现[J].电气传动自动化,2003,25(5):28~29.
    [204]赵广信,常跃广.地形图数字化坐标变换数学模型分析[J].测绘通报,1998,(11):24-25.
    [205]赵君喜,刘宏林.研究空间数据质量的常用理论和方法[J].理论与探索,2005.
    [206]赵丽华,杨元喜,张勤.扫描数字化图质量的应变张量评估发[J].武汉大学学报.信息科学版,2004,29(8):725-727.
    [207]赵丽华,姚光飞,王龙超.地图数字化数据质量控制的抗差模型[J].测绘工程,2004,13(2):8~11.
    [208]朱光,张保钢.关于GIS属性数据逻辑运算方法的精度问题[J].测绘学报,1997,26(1):77-83.
    [209]朱建军,曾卓乔.污染误差模型下的测量数据处理理论[J].测绘学报,1999,28(3):215-220.
    [210]周江文.拟合推估新用——新逼近模式[J].测绘学报,2001,30(4):286-287.
    [211]周江文.再论拟合推估[J].测绘学报,2001,30(4):283-285.
    [212]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [213]周兴华,姚艺强,赵吉先.DEM内插方法与精度评定[J].测绘科学,2005,30(5):86-88.
    [214]Alber R F.The National Science Foundation National Center for Geographic Information and Analysis[J].International Journal of Geographical Information Systems,1987,3: 117-136.
    [215]Arbia G.,Griffith D.,Haining R.Error Propagation Modeling in Raster GIS: Adding and Rationing Operations[J].Cartography and Geographic Information Science,1999,26 (4): 297-315.
    [216]Arbia G.,Griffith D.and Haining R.Error Propagation Modeling in Raster GIS: Overlay Operations[J].International Journal of Geographical Information Science,1998,12: 1299-1307.
    [217]Arnoff,S.The Minimum Accuracy Value as Index of Classification Accuracy[J].Photogrammetric Engineering and Remote Sensing,1985,51 (1): 593-600.
    [218]Atkinson P M.,Assessing Accuracy in Fuzzy Land Cover Maps[J].Remote Sensing Society Conference: From Data to Information,Remote Sensing Society,Nortingham,1999:79-86.
    [219]Beard,M.K.Buttenfield,B.P.and Clapham,S.B.Visualization of Spatial Data Quality[J].Technical Paper,NCGIA,University of Maine,1991: 91-126.
    [220]Bolstad PV,GesslerP,Lillesand TM.Positional Error in Manually Digitized Map Data[J].International Journal of Geographical Information Systems,1990,(4).
    [221]Bolstad P V,Stowe T J.An Evaluation of DEM Accuracy: Elevation,Slope and aspect[J].Photogrammetric Engineering and Remote Sensing,1994,60: 1327-1332.
    [222]Briggs I.C.Machine Contouring Using Minimum Curvature[J].Geophysics,1974,39(1),39-48.
    [223]Burrough P A.Principle of Geographical Information System for Land Resources Assessment[M].Oxford: Clarendon,1986.
    [224]Burrough P A.Development of Intelligent Geographical Information Systems[J].International Journal of Geographical Information Science,1992,6 (1): 1-11.
    [225] CasacaJ, Henriques M J. Variance Component Estimation Theory and Its Application [J],Network Analysis, 1985. .
    [226] Caspary W, Scheuring R. Error-Band as Measures of Geometrical Accuracy [J]. In: Proceedings of EGIS'92, 1992,226-233.
    [227] Caspary W, Scheuring R. Positional Accuracy in Spatial Databases [J]. Computer Environ and Urban System, 1993, 17 (2): 103-110.
    [228] Caspary W, Joos G. Quality Criteria and Control for GIS Databases [A]. The IAG SC4 Symposium, Eisentadt, 1998.
    [229] Chen S, Cowan C F N, Grant P M. Orthogonal Least Squares Learning Algorithms for Radial Basis Function Networks [J]. IEEE Trans Neural Networks, 1991,2(2): 302-309.
    [230] Chrisman, N. R. Methods of Spatial Analysis Based on Error in Categorical Maps [D]. P. h.Thesis, University of Bristol, 1982.
    [231 ] Christopher Kotsakis. Least-squares Collocation With Covariance-matching Constraints [J]. J Geod. 2007, 81: 661-667.
    [232] Cybenko G. Approximation by Superposition of a Sigmoidal Function [J]. Mathematics of Control,Signals,System,1989, 2 (4): 303-314.
    [233] Dah Jing Jwo. GPS Navigation Solutions by Analogue Neural Network Least-squares Processors [J]. The Journal ofNavigation, 2005, 58:105-118.
    [234] Dewhurs. W. T. The Application of Minimum-Curvature-Derived Surfaces in the Transformation of Positional Data from the North American Datum of 1927 to the North American Datum of 1983 [J]. NOAA Technical Memorandum NOS NGS-50. January 1990.
    [235] Dutton G. A Theory of Cartographic Error and Its Measurement in Digital Database [A]. In:Proceedings of Auto-Carto 5 [D]. American Congress on Surveying and Mapping. Bethesda,1992:159-168.
    [236] Dutton G Handling Positional Error in Spatial Databases [A]. In: Proceedings of the 5~(th) International Symposium on Spatial Data Handling [C]. South Caroline, USA, 1992: 460-469.
    [237] Ehlschlaeger C. R., Schortridge A. M., Goodchild M. F. Visualizing Spatial Data Uncertainty Using Animation[J]. Computers and Geosciences. 1997,23: 387-395.
    [238] Fisher P. F. Visualization of the Reliability in Classified Remotely Sensed Images[J].Photogrammetric Engineering and Remote Sensing, 1994, 60: 905-910.
    [239] Glies P T, Franklin S E. Comparison of Derivative Topographic Surface of a DEM Generated from Stereoscopic SPOT Images with filed Measurements [J]. Photogrammetric Engineering and Remote Sensing. 1996,62: 1165-1171.
    [240] Goodchild, M.F. Statistical Aspects of the Polygon Overlay Problem. Harvard Paper on Geographic Information System. 1978, Vol. 6, Dutton, G, (eds.), (New York: Adddision-Wesley).
    [241] Goodchild M F. The Issue of Accuracy in Spatial Database. In: Mounsey H and Tomlinson R,Building Database for Global Science, London: Taylor & Francis, 1988: 31-48.
    [242] Goodchild M., Chang C. L., Leung Y. Visualizing Fuzzy Map[M]. Visualization in Geographical Information Systems. New York: Wiley and Sons: 158-167, 1994.
    [243] Goodchild M. F. and Dubuc O. A model of Error for Choropleth Maps with Applications to Geographic Information Systems [J]. In: Proceedings, Auto Carto, 1987, 8: 165-174.
    [244] Goodchild M. F. and Gopal S. (ed.). The Accuracy of Spatial Databases. New York: Taylor and Francis, 1989b.
    [245] Grafarend E W, Schaffrin B. Variance-Covariance-Component Estimation of Helmet Type[J], Surveying and Mapping, NO.1, 1979.
    [246] Hannah, M. Error Detection and Correction in Digital Terrain Models [J]. Photogrammetric Engineering and Remote Sensing. 1981,47 (1): 63-69.
    [247] Hardy R. L. Multiquadric Equations of Topography and Other Irregular Surfaces[J]. Journal of Geophysical Research, 1971, 76(8): 1905-1915.
    [248] Hardy R. L. The Analytical Geometry of Topographic Surface. Proceedings of the American Congress on Surveying and Mapping. 1972, 32: 163-181.
    [249] Hardy R L. The Application of Multiquadric Equations and Point Mass Anomaly Models to Crustal Movement Studies[R]. NOAA Technical Report NOS 76,NGS 11, 1978.
    [250] Hardy R L. Least Squares Prediction [J]. Photogrammetric Engineering, 1977,43(4): 475492.
    [251] Hartley Ho, Raojnk. Maximum Likelihood Estimation for the Mixed Analysis of Variance Model[J]. Biometrika, 1967, 54: 93-108.
    [252] Hebb D.O. The Organization of Behavior [M]. New York: Wiley, 1949.
    [253] Hein G A Model Comparision in Vertical Crustal Motion Estimation Using Leveling Data[R].NOAA. Technical Report NOS, 1986,117, NGS 35.
    [254] Heuvelink B M., P. A. and Stein, A. Propagation of Error in Spatial Modeling with GIS [J].International Journal of GIS, 1989, 3: 303-322.
    [255] Heuvelink B M. Error Propagation in Environmental Modeling with GIS [J]. Taylor and Francis,1998.
    [256] Holdabl S.R. and Hardy R.L. Solvability and Multiquadric Analysis as Applied to Investigations of Vertical Crustal Movement [J]. Tectonophysics. 1979,52: 139-155.
    [257] Hopfiled J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities [J]. Proc. Nat. Acad. Sci. U.S., 1982, 79:2554-2558.
    [258] Hornik K, Stinchcombe M, White H. Multilayer Feed-forward Networks Are Universal Approximators[J]. Neural Networks, 1990(1): 290-295.
    [259] Hutchinson M F. AUNDEN Version 4.6, Centre Resource and Environmental Studies. Australian National University, Caberra.1997, Http: // cres. anu. edu. au/ software/ anuden. Html, 1997.
    [260] Ianc. Briggs. Machine Contouring Using Minimum Curvature [J]. Geophysics, 1974, 39(1):39-48.
    [261] J. F. G de Freitas, M. Niranjan, A.H.Gee, et al. Sequential Monte Carlo Methods to Train Neural Network Models [J]. Neural Computation, 2000,12: 955-993.
    [262] Jennifer C, Walsby. The Causes and Effects of Manual Dizitizing on Error Creation in Data Input to GIS [A]. In: Em Innovations in GIS 2 [C], Editado por Peter Fisher, Taylor and Francis, 1995:113-122
    [263] Kidner D B. Higher-order Interpolation of Regular Grid Digital Elevation Models [J]. INT. J.Remote Sensing. 2003,14 (24): 2981-2987.
    [264] Koch K. R. Least Squares Adjustment and Collocation. Bulletin Geod(?)sique, 1977, 51:127-135.
    [265] Koch K. R. Kusche J. Regularization of Geopotential Determination from Satellite Data by Variance Components [J]. Journal of Geodesy, 2002, 76: 259-268.
    [266] KochK. R. Maximum Likelihood Estimate of Variance Components[C]. In Memory of Allen J.Pope, 1986:329-338.
    [267] Krarup T. Some Remarks about Collocation[M], in (Moritz and Suenkel, 1978), 1978, 193-209.
    [268] Kraus K. Visualization of the Quality of Surface and Their Derivatives [J]. Photogrammetric Engineering and Remote Sensing. 1994, 60(4): 457-463.
    [269] Kumler M P. An Intensive Comparison of Triangulated Irregular Networks and Digital Elevation Models[J]. Cartographica, 1994, 31: 1-9.
    [270] Lanari R, Fornaro Q Riccio D et al. Generation of Ddigital Models by Using SIR-C/ X-SAR Multifrequency Two-Interferometry: The Etna Case Sstudy [J]. IEEE Transactions on Geosciences and Remote Sensing. 1997, 34: 1908-1114.
    [271 ] Li Z L. Sampling Strategy and Accuracy Assessment for Digital Terrain Modeling [D]. Ph. D.Thesis, The University of Glasgow, 1990.
    [272] Li Z. Effect of Check Points on the Reliability of DEM Accuracy Estimates Obtained from Experimental Tests [J]. Photogrammetric Engineering and Remote Sensing. 1991, 57(10):1333-1340.
    [273] Li Z. Theoretical Models of the Accuracy of Digital Terrain Models: An Evaluation and Some Observations [C]. Photogrammetric Record, 1993a, 14(82): 651-659.
    [274] Li Z. Mathematical Models of the Accuracy of Digital Terrain Model Surface Linearly Constructed from Square Gridded Data [C]. Photogrammetric Record, 1993b, 14(82): 661-673.
    [275] Li Z. A Comparative Study of the Accuracy of Digital Terrain Models (DTMs) Based on Various Data Models [J]. Photogrammetric Engineering and Remote Sensing, 1994,49: 2-11.
    [276] Liano K. Robust Error Measure for Supervised Neural Network Learning with Outliers [J]. IEEE Trans on Neural Networks, 1994, NN-5(3): 467-469.
    [277] Lippman R. P.. An introduction to computing with neural nets [J]. IEEE Trans. ASSP Magazine Appric, 1987.
    [278] Lopez C. Locating Some Types of Random Errors in Digital Terrain Models [J]. International Journal of Geographical Information Science. 1997,11(7): 677-698.
    [279] MacDougall, E. B. The Accuracy of Map Overlays [J]. Lanscape and Planning, 1975,2: 23-30.
    [280] Maffini G M A, Bitterlich W. Observations and Comments on the Generation and Treatment of Error in Digital GIS Data. In: 5, S. Kap. Goodchild and Gopal S. 1989, 55-67.
    [281 ] Maren AJ. et al. Handbook of Neural Computing Application[C]. Academic Press, 1990.
    [282] MccullochW.S. and Pitts W. H. A Logical Calculus of Ideas Immanent in Nervous Activity[R].Bulletin of Math. Biophysics. 1943,5: 115-133.
    [283] Meng X L, Shi W Z, Liu D J. Statistical Tests of the Distribution of Errors in Manually Digitized Cartographic Lines [J]. Geographic Information Sciences, 1998, (4): 52-58.
    [284] Miima J. -B., Niemeier W. Kraus B. Aneural Network Approach to Modeling Geodetic Deformation [C]. First International Symposium on Robust Statistics and Fuzzy Techniques in Geodesy and GIS, 2001.
    [285] Moritz H. Least-squares Collocation [M]. Reihe A, 75. Deutsche Geodantische Kommission,Munchen, 1978.
    [286] Moritz H. Advanced Physical Geodesy [M]. Karlsruhe: Herbert Wichmann verlag, 1980.
    [287] Mustafa Berber, Peter Dare, Petr Vanicek. Robustness Analysis of Two-dimensional Networks[J].Journal of Surveying Engineering, 2006: 168-175.
    [288] Nelson M. M. and Illingworth W. T. A Practical Guide to Neural Nets [M]. Addison-Wesley Publishing Company Inc., 1991。
    [289] Ou Ziqiang. Estimation of Variance and Covariance Components [J]. Bull. Geod, 1989, 63: 139-148.
    [290] Perkal J. On Epsilon Length [J]. Bulletin Del'Academic Polonaise des Sciences, 1956,4:399-403.
    [291] Rao C R. Minimum Variance and Covariance Components-MINQUE Theory, Journal of Multivariate Analysis, 1971,1: 257-275.
    [292] Rao C R, Kleffe J. Estimation of Variance Components and Applications [M], New York:North-Holland, 1988.
    [293] Rumelhart D.E. Learning Representation by Back-propagating Errors [J]. Nature, 1986, 323(9),533-536.
    [294] Sasowsky K C, Petersen G W, Evans B M. Accuracy of SPOT Digital Elevation Model and Derivatives: Utility for Alaska's North Slope [J]. Photogrammetric Engineering and Remote Sensing. 1992,58:815-824.
    [295] Schaffrin B. Best Invariant Covariance Component Estimators and Its Application to the Generalized Multivariate Adjustment of Heterogeneous Deformation Observation [J]. Bull. Geod.1981,55:73-85.
    [296] Stopar B., et al., GPS-derived Geoid Using Artificial Neural Network and Least Squares Collocation [J]. Survey Review, 2006, 38: 513-523.
    [297] Schaffrin B. On Robust Collocation [C], Proceedings of the First Marussi Symp. On Mathematical Geodesy, Milano, 1986, 343-361.
    [298] Sherstha R, Nazir A, Dewitt B et al. Surface Interpolation Techniques to Convert GPS Ellipsoid Height to Elevations [J]. Surveying and Land Information Systems, 1993, 53(2): 133-144.
    [299] Shi W. Z. Modeling Positional and Thematic Error in Integration of GIS and Remote Sensing.ITC Publication Enschede, 1994,22: 147p.
    [300] Shi W. Z. Statistical Modeling Uncertainties of Three-dimensional GIS Features in GIS [J].International Journal of Geographical Information Science, 1998 (12): 131-143.
    [301] Shi W. Z. A Generic Statistical Approach for Modeling Error of Geometric Features in GIS [J].International Journal of Geographical Information Science, 1998 (12): 131-143.
    [302] Shi W Z, Cheung C K, Zhu C Q. Modeling Error Propagation of Buffer Spatial Analysis in Vector-based GIS[J]. International Journal of Geographic Information Science. 2000,14 (1):51-66.
    [303] Shi W. Z., Liu C, Liu D. J. Accuracy Assessment for Attribute Data in GIS Based on Simple Random Sampling [J]. Geomatics and Information Science of Wuhan University, 2002, 27 (5):445-450.
    [304] Shi W Z and Liu k F. Modeling Fuzzy Topological Relations between Uncertain Objects in GIS.Photogrammetry Engineering and Remote Sensing. 2004, 70 (8): 921-930.
    [305] Smith W. H. F. and Wessel P. Gridding with Continuous Curvature Splines in Tension [J].Geophysics. 1990, 55(3), 293-305.
    [306] Tang G A Research on the Accuracy of Digital Elevation Model. Beijing: Science Press, 2000.
    [307] Tong X H, Shi W Z, Liu D J. Error Distribution, Error Tests and Processing of Digitized Data in GIS [A]. In: Accuracy 2000: Proceedings of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resource & Environmental Sciences. Amsterdam: Coronet Books Inc, 2000.
    [308] Tscherning C C. Collocation and Least Squares Methods as a Tool for Handling Gravity Field Dependent Data Obtained through Space Research Techniques. In: Hieber S and Guyenne T D (Eds.), European Workshop, European Space Agency, Paris, 1978, 141-149.
    [309] Veregin H. Integration of Simulation Modeling and Error Propagation for the Buffer Operation in GIS [J]. Photogrammetric Engineering & Remote Sensing, 1994, 60 (4): 427-435.
    [310] Von E. Grafarend, A. Kleusberg, Stuttgart, Schaffrin, Bonn. An Introduction to the variance-covariance-component Estimation of Helmert Type [J]. ZFV, 1980, 4: 161-180.
    [311] Wang G X, Zhu C Q. LOD Modeling and Accuracy Analysis of Terrain Information [J]. Selected Papers for English Edition, Acta Geodaetica et Cartographica Sinica, 2005.
    [312] Warren T. Dewhurst.The Application of Minimum-curvature-derived Surfaces in the Transformation of Positional Data from the North American Datum of 1927 to the North American Datum of 1983 [R]. NOAA Technical Memorandum NOS NGS-50. 1990: 1-27.
    [313] Smith W, Wessel P. Gridding with Continuous Curvature Splines in Tension [J]. Geophysics,1990, 55(3): 293-305.
    [314] Wood J D. The Geomorphological Characterization of Digital Elevation Model [D]. PhD Thesis,University of Leicester, 1996.
    [315] Xu P L, Shen Y Z, Fukuda Yoichi. Variance Component Estimation in Linear Inverse Ill-posed models [J]. Journal of Geodesy, 2006, 80: 69-81.
    [316] Xu P L, Liu Y M, Shen Y. Z. Estimability Analysis of Variance and Covariance Components[J].Journal of Geodesy, 2007, 81: 593-602.
    [317] Yang Y. Robust Bayesian Estimation [J]. Bull Geod, 1991, 65(3):145-150.
    [318] Yang Y. Robustifying Collocation [J]. Manuscripta Geodeatica, 1992,17(1): 21-28.
    [319] Yang Y. Robust Estimation of Geodetic Datum Transformation [J]. Journal of Geodesy, 1999,73: 268-274.
    [320] Yang Y and Liu C. On the Collocation Iterative Solution Model and Algorithm for Gravity,Anomaly [J]. Acta Seismologica Sinica. 1996, 9 (4): 611-616.
    [321] Yang Y. Zeng A, Zhang J. Adaptive Collocation with Application in Height System Transformation [J]. Journal of Geodesy, 2008.
    [322] Yang Y and Zhang J. Collocation Based on Different Variance Component Estimators with Application in GIS Error Fitting (C). Proceedings of The 8~(th) International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Volume I , 2008.6.
    [323] You R.J., Hwang H.W. Coordinate Transformation between Two Geodetic Datums of Taiwan by Least-squares Collocation [J]. Journal of surveying engineering, 2006: 64-70.
    [324] Zhang J. and Liu P. Combined Fitting Based on Robust Trend Surface and Orthogonal Multiquadric with Applications in DEMs Fitting (C). Proceedings of The 8~(th) International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences,Volume Ⅱ, 2008.6.
    [325] Zhu Weining, Ma Jingsong, Huang Xingyuan, et al. GIS Spatial Competition Analysis Model Based on Projective Weighted Voronoi Diagrams [G]. Selected Papers for Edition of Acta Geodaetica et Cartographica Sinica. 2004: 39-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700