用户名: 密码: 验证码:
脂筏对tmTNF-α双向信号影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分酶切位点缺失的跨膜型TNF-α突变体的构建及其功能的研究
     跨膜型TNF-α(Transmembrane TNFα,tmTNF-α)是sTNF-α的前体,分子量为26kD,主要表达在活化的单核细胞和免疫细胞表面。tmTNF-α在N端比sTNF-α多76个氨基酸组成的引导肽,具有疏水区,故可跨膜成为膜分子。表达于细胞膜表面的tmTNF-α在TNF转化酶(TACE/ADAM17)的作用下,被剪切释放出sTNF-α。
     由于tmTNF-α可被剪切成sTNF-α,为了排除sTNF-α的影响,在研究tmTNF-α生物学功能的时候需要用其酶切位点缺失的突变体。常用的缺失1-12位的突变体虽然基本不被TACE剪切,但是其正向信号介导的胞毒效应下降,反向信号传递缺陷,故不是一个理想的研究tmTNF-α的突变体。有报道称△1-9,K11E突变体也不被TACE剪切,并且其胞毒效应和野生型tmTNF-α一致,但是这种突变是否影响tmTNF-α反向信号尚不清楚。
     本研究通过定点突变的方法,将tmTNF-α的酶切作用位点缺失,使得tmTNF-α不被剪切为sTNFα;并研究突变体对正反向信号的影响。主要结果如下:
     1利用重叠PCR技术,成功构建△1-12tmTNF-α、△1-9,K11E tmTNF-α突变体,经酶切鉴定,PCR鉴定及测序鉴定确认除预期突变外,无任何其它点突变,移码及缺失突变。
     2将tmTNF-α及其突变体转染Hela细胞后,经Western blot鉴定wt tmTNF-α在26kD处有特异性条带,突变体在25kD左右有特异性条带,符合预期分子量。
     3用野生型tmTNF-α及其突变体转染Hela细胞,证实转染野生型tmTNF-α的细胞能分泌大量的sTNF-α,而转染△1-12 tmTNF-α和△1-9,K11E tmTNF-α突变体的细胞上清均未检测到sTNF-α,提示两个缺失突变体都丧失被TACE酶解为sTNF-α的能力。
     4用生物活性检测证实wt tmTNF-α和△1-9,K11E tmTNF-α对靶细胞有明显的杀伤作用;但是△1-12 tmTNF-α的胞毒效应却减少了近一半,说明△1-9,K11E tmTNF-α保留了野生型tmTNF-α正向信号介导的胞毒效应。
     5用Western blot检测证实△1-9,K11E tmTNF-α与wt tm TNF-α一样能通过其反向信号有效降解IκB-α,激活NF-κB,而△1-12tmTNF-α则失去了这种能力。上述结果表明△1-9,K11E tmTNF-α突变体既丧失被酶解的能力,又能保留野生型tmTNF-α正向信号和反向信号传递能力,为进一步研究tmTNF-α的生物学功能提供了有力的工具。
     第二部分脂筏与tmTNF-α的正/反向信号
     脂筏是近年被发现的存在于细胞膜上微结构域,区别于经典的胞膜脂质双分子层,它富含胆固醇、磷脂酰肌醇。已知很多受体及其相关的信号分子均能分布在脂筏内。由于脂筏在质膜上分布比较分散,且能侧向漂移和聚集,故可形成信号转导平台,参与活化受体募集信号转导分子,向胞内传递信号。
     tmTNF-α不仅能和受体结合,向靶细胞传递正向信号,本身还能作为受体,用其胞内段募集信号分子,传递反向信号。有报道tmTNF-α的-47位半胱氨酸是棕榈酰化酰基化位点,故我们推测tmTNF-α可能定位在脂筏中,但是tmTNF-α与脂筏的关系尚不清楚。此外,TNFR也能定位在脂筏,脂筏内外的TNFR与tmTNF-α之间的关系也不清楚。
     为阐明tmTNF-α与脂筏的关系,我们利用蔗糖密度梯度离心法提取脂筏结构,明确tmTNF-α的脂筏定位;并从表达tmTNF-α的效应细胞和表达TNFR的靶细胞两方面入手,研究脂筏在tmTNF-α正反向信号传导中的作用。其主要结果如下:
     1脂筏与tmTNF-α反向信号
     1.1 tmTNF-α可定位脂筏内:利用蔗糖密度梯度离心法分离高表达tmTNF-α的Raji细胞的脂筏结构,用Western blot检测证实部分tmTNF-α定位在脂筏内。用10mMMCD破坏脂筏,所有tmTNF-α均分布到脂筏外。
     1.2脂筏内tmTNF-α导致sTNF-α耐受:高表达tmTNF-α的Raji细胞对sTNF-α耐受,用MCD破坏脂筏后对sTNF-α胞毒效应的敏感性明显增加;而低表达tmTNF-α的T24细胞对sTNF-α敏感,脂筏破坏后,sTNF-α的胞毒效应也明显增强。提示定位在脂筏内的tmTNF-α可导致sTNF-α耐受
     1.3破坏脂筏导致NF-κB活性下降:高表达tmTNF-α的Raji细胞经MCD处理后,IκB-α降解明显受到抑制;而低表达tmTNF-α的T24细胞经MCD处理后,IκB-α水平则无明显变化。提示破坏脂筏能使tmTNF-α反向信号减弱。
     1.4建立稳转完全定位在脂筏内或外的tmTNF-α突变体的细胞株:利用重组PCR成功构建cav-tmTNF-α和C-47A tmTNF-a突变体,连同野生型tmTNF-a稳转T24细胞。提取脂筏分析证实cav-tmTNF-α完全定位于脂筏内,而C-47A tmTNF-a则完全定位于脂筏外。
     1.5脂筏内tmTNF-α诱导对sTNF-α胞毒效应的耐受:用胞毒实验证实sTNF-α可有效杀伤定位在脂筏外的C-47A tmTNF-α表达细胞,而对部分定位脂筏内的wttmTNF-α表达细胞的胞毒效应则明显下降。提示只有脂筏内的tmTNF-α才可导致细胞抵抗sTNF-α的胞毒效应。
     1.6脂筏内tmTNF-α可组成性活化NF-κB:Western blot证实部分定位脂筏内的wttmTNF-α可组成性降解IκB-α,使NF-κB p65磷酸化;而仅在脂筏外的C-47AtmTNF-α则无此作用。
     1.7脂筏内tmTNF-α可上调抗凋亡分子cIAP1基因表达,下调促凋亡分子Bax基因表达:用Real time PCR检测证实部分定位在脂筏内的wt tmTNF-α诱导cIAP1基因表达明显增加,却明显抑制Bax的基因转录;但是定位在脂筏外的C-47AtmTNF-α则无明显影响。
     1.8 CKI抑制剂D4476可增强脂筏内tmTNF-α对sTNF-α的抵抗:用CKI的特异性抑制剂抑制tmTNF-α的磷酸化,增强反向信号,结果可增强转染wt tmTNF-α细胞对sTNF-α胞毒效应的抵抗,却对sTNF-α杀伤定位在脂筏外的C-47A tmTNFα表达细胞则无明显作用。提示tmTNFα诱导的sTNF-α耐受是由定位在脂筏内的tmTNF-α通过其反向信号介导的。
     1.9 tmTNF-α以脂筏为平台传递反向信号:用可溶性TNF受体刺激tmTNF-α反向信号或转染定位脂筏内、外的tmTNF-α及其突变体证明激活tmTNF-α可导致该分子本身向脂筏内聚集,且募集其反向信号分子TRAF1、IKK-α和NF-κBp52至脂筏内;而定位在脂筏外的C-47A tmTNF-α则对这些信号分子脂筏内外的分布无影响。提示tmTNF-α可能是以脂筏为平台传递反向信号的。
     2脂筏与tmTNF-α正向信号
     2.1效应细胞脂筏对tmTNF-α正向信号介导的生物学功能的影响
     2.1.1 tmTNF-α胞毒效应与其定位脂筏内外无关:用MCD破坏Raji细胞的脂筏,发现与TNF抗体封闭一样,几乎可以完全阻断tmTNF-α对T24细胞的胞毒效应。但是,转染野生型tmTNF-α、完全定位在脂筏外的C-47A tmTNF-a突变体或完全定位在脂筏内的cav-tmTNF-α突变体的效应细胞都具有相似的胞毒效应,三者间无明显差异,提示效应细胞脂筏内外的tmTNF-α均可有效杀伤靶细胞,即tmTNF-α杀伤靶细胞与其是否定位脂筏无关。
     2.1.2破坏ICAM-1脂筏定位抑制效靶细胞粘附,从而阻断tmTNF-α胞毒效应:用MCD破坏脂筏则所有ICAM-1分布至脂筏外,效/靶细胞粘附下降,tmTNF-α胞毒作用几乎被完全阻断,而ICAM-1中和抗体可部分抑制效/靶细胞之间的粘附,并部分阻断tmTNF-α胞毒作用。提示MCD阻断tmTNF-α胞毒效应是由于破坏粘附分子脂筏定位,进而抑制效/靶细胞粘附所致。
     2.1.3破坏脂筏导致sTNF-α分泌增加:用MCD破坏Raji细胞的脂筏,可导致部分本来分布在脂筏内的TACE转至脂筏外,sTNF-α产生明显增加。
     2.2靶细胞脂筏对tmTNF-α正向信号介导的生物学效应的影响
     2.2.1 tmTNF-α刺激诱导靶细胞TNFR1向脂筏内聚集:用固定的高表达tmTNF-α的Raji细胞作用于T24细胞,可见T24细胞大量TNFR1从脂筏外转移至脂筏内,此结果提示TNFR定位在脂筏可能影响tmTNF-α的正向信号。
     2.2.2 sTNF-α及脂筏内外的tmTNF-α对靶细胞脂筏内外TNFR1的作用:用MCD破坏靶细胞脂筏导致sTNF-α胞毒效应显著增加,却明显抑制wt tmTNF-α、C-47AtmTNF-α和cav-tmTNF-α的杀伤作用,并且三者间没有明显差异。提示靶细胞脂筏在sTNF-α和tmTNF-α的胞毒效应中所起作用不同,而效应细胞脂筏则与tmTNF-α正向信号无关。
     本研究证实tmTNF-α能定位在脂筏,且依赖于其-47位半胱氨酸。tmTNF-α的反向信号传递依赖其脂筏定位;而tmTNF-α正向信号传递则与效应细胞脂筏无关,却与靶细胞TNFR的脂筏定位相关。
Part 1:Construction and Function Research of Transmembrane TNF-αMutants Deleted Catalytic Site
     Transmembrane tumor necrosis factor-α(tmTNF-α) is the precursor of sTNF-αand themolecular weight is 26kD,which is mainly expressed in activated monocytes and immunecells.As a transmembrane protein tmTNF has a 76 amino signal peptide which composesof a hydrophobic domain compared to sTNF-α.The molecule expressed on the cell surfacecan be catalyzed by TNF-converting enzyme (TACE/ADAM17) to release sTNF-α.
     When we study the biological function of tmTNF-α,we get the integrated effects ofboth tmTNF-αand sTNF-αbecause it is often difficult to avoid the catalysis of tmTNF-α.Itis necessary to generate a mutant which can not release sTNF-αbecause the digested site ismutated.Although the mutant deleted the site of 1 to 12 lost the ability to be catalyzed,thecytotoxicity of which were also affected.Our lab found that the mutant also had defects inreverse signal transduction.So this mutant is not an ideal mutant for research.ThetmTNF-αmutant deleted the sites of 1 to 9 and mutated in the site of 11 from K to E caninhibit the function of TACE,and its cytotoxicity is same to wild-type tmTNF-α.It isunclear whether this mutant effects the reverse signal transduction.In this study,we aim tomutate the digestion site of TACE using site-directed mutagenesis method and to study theforward and reverse signal transduction of the mutants.
     1 We successfully constructed mutants lack catalysis site for TACE asΔ1-12 tmTNF-αandΔ1-9,K11E tmTNF-αby using overlap PCR technology.It was confirmed thatthere were absence of any other point mutations,frame-shift and deletion mutations butexpected mutations by restriction enzyme digestion,PCR and sequencingidentification.
     2 Hela cells were transfected with tmTNF-αand mutants and total proteins wereextracted.A specific band about 26kD was detected in wide type tmTNF-αgroup byWestern blot.A specific band about 25kD was detected in mutants groups.
     3 The supernatant of Hela transfected cells with wild type tmTNF-αand mutants wascollected to detect the content of sTNF-α.We found that wt tmTNF-αgroup cansecrete large amount of tmTNF-αand there was not detected sTNF-αcompletely in themutants transfected grouPs.Both of the mutants can inhibitor the digestion of TACE.
     4 Hela cells tranfected with wt tmTNF-αand mutants were fixed with paraformaldehydeto kill the T24 cells.We found that groups both tranfected with wt tmTNF-αandΔ1-9,K11E tmTNF-αcan significantly induce cell death and the cytotoxicity ofΔ1-12tmTNF-αwas reduced nearly half of other groups.It was shown thatΔ1-9,K11EtmTNF-αmutant has retained the ability to induce cytotoxicity.
     5 Western blot was used to detect the IκB-αexpression of Hela cells transfected withtmTNF-αand its mutants.IκB-αdegraded in the cells transfected with wt tmTNF-αandΔ1-9,K11E tmTNF-α,meanwhileΔ1-12 tmTNF-αcan not degrade IκB-αtoactivate NF-κB.
     The results showed thatΔ1-9,K11E tmTNF-αnot only lost the ablity to releasesTNF-αbut also can retain the ability to transduce forward and reverse signals.It's a betterand power tool to research the bio-function of tmTNF-αthanΔ1-12 tmTNF-α.
     Part 2:Lipid Rafts and the Bidirectional Signaling of tmTNF-α
     Recent years,Lipid rafts have been found as the existence of the micro-structure in themembrane.They are distinct from classical lipid bilayer membrane and rich of cholesteroland phosphatidylinositol.Many receptor molecules and their associated signalingmolecules can be located in lipid rafts.Because lipid rafts in the plasma membranedistributes scattered and can lateral drift to gather to form a platform for signal transductionwhich is involved in activation of receptor signal transduction and the intracellular signaltransmission.
     tmTNF-αnot only can bind to TNFR of target cells to induce signal transduction whichis termed forward signal,but also can act as a receptor itself to accept external signals andtransmit intracellular signals reversely.It has been reported that -47 site is palmitoylated.We speculated that tmTNF-αmay be partitionated to lipid rafts and the lipid rafts may be related to the location-related signal transduction.In addition it was reported that TNFR canlocalized to lipid rafts,but the relationship between tmTNF-αand the lipid raftslocalization of TNFR is not clear now.
     In order to clarify the relationship between tmTNF-αand the lipid rafts,we confirm thelipid rafts localization of tmTNF-αusing sucrose density gradient centrifugation.We studythe functions of lipid rafts in tmTNF-αforward and reverse signal transduction via twoways including effector cells expressed tmTNF-αand the target cells expressed TNFR.
     1 Lipid rafts and reverse signaling of tmTNF-α
     1.1 tmTNF-αcan localize in the lipid rafts.The lipid rafts of Raji cells which have highexpression of tmTNF-αwere separated using the mothod of sucrose density gradientcentrifugation and were detected by Western blot.A part of tmTNF was within the lipidrafts.Raji cells were treated with 10mM MCD for 45min to destroy lipid rafts,alltmTNF-αwere distributed outside of lipid rafts.
     1.2 Disruption of lipid rafts enhanced the cytotoxicity of sTNF-αsensitivity.The highexpression of tmTNF-αon Raji cells can induce sTNF-αtolerance.After lipid rafts weredisrupted,the cytotoxicity of sTNF-αincreased markedly.T24 ceils which have noneexpression of tmTNFs were sensitive to sTNF-αand sTNF-αcytotoxicity also enhancedafter lipid rafts were damaged,but the increasement was significantly lower than Rajicells
     1.3 Destruction of lipid rafts resulted in decreased activity of NF-κB.When Raji cellswere treated with MCD the level of IκB-αsignificantly become higher which indicatedthe inhibition of NF-κB signal pathway.But it was not change significantly for T24cells.It was shown that the destruction of lipid rafts can weaken reverse signaltransduction of tmTNF-α.
     1.4 Construction the mutants only in or outside of the lipid rafts and establish stablecell lines.We constructed a mutant named cav-tmTNF-c which can locate only in lipidrafts and another mutant C-47A tmTNF-αwhich only partitionate out of lipid rafts.T24cells were stably transfected with wild type tmTNF-αand the mutants and theirlipid rafts were extracted to confirm the location.
     1.5 tmTNF-αwithin lipid rafts induced sTNF-αtolerance.We observed thecytotoxicity of stable cell lines induced by sTNF-α.Results showed that parental T24cells,the cells transfected with empty vector and C-47A tmTNF-αwere induced about50% of cell death by sTNF-α.The cytotoxicity of stable cells transfected with wttmTNF-αwas significantly decreased.The results showed that only tmTNF-αin lipidrafts may resist to sTNF-αinduced death death.
     1.6 NF-κB pathway can be constructively activated by tmTNF-αin the lipid rafts.Itwas found that the level of IκB-αwas degraded and the level of phosphorylated p65was increased constructively in cell lines stable transfected with wt tmTNF-α.Thelevel of IκB-αand p-p65 had no significant changes for the C-47A tmTNF-αcompared with the control groups.
     1.7 tmTNF-αin lipid rafts can up-regulate the expression of cIAP1,down-regulatethe expression of Bax.Realtime PCR was used to detect gene expressions.It wasfound that in wt tmTNF-αgroup anti-apoptosis genes cIAP1 expression increasedsignificantly and the pro-apoptotic gene Bax gene transcription were obviouslyinhibited compared with the control group.But these two genes of C-47A are nosignificant difference from that of the control group.
     1.8 CKI inhibitor D4476 is helpful for tmTNF-αin lipid rafts to resist tosTNF-αinduced cytotocity.CKI-specific inhibitor can inhibit the phosphorylation oftmTNF-αand enhance the reverse signal transduction.It was observed that wttmTNF-αtransfected cells can resist to sTNF-αinduced cytotoxicity.CKI inhibitorD4476 can enhance the role of the resistance,but it had no significant effect to C-47AtmTNF-αtransfected cell.
     1.9 Lipid rafts as a platform to transmit tmTNF-αreverse signals.The reverse signalof tmTNF-αcan be activated by sTNFR2 stimulation and transfection of tmTNF-αinthe lipid rafts,at the same time related signal molecules can be recruited to lipid rafts.The activation of reverse signal can induced the aggregation of tmTNF-αTRAF1IKK-αand p52 to lipid rafts.The molecules translocation from outside to inside of lipid rafts can not been seen for the C-47A tmTNF-αtransfected cells.It is suggestedthat Lipid rafts as a platform to transmit tmTNF-αreverse signals.
     2 Lipid rafts and forward signal of tmTNF-α
     2.1 Effect of lipid rafts to biological functions tmTNF-αmediated by forward signal.
     2.1.1 Lipid rafts location of tmTNF-αhas no relationship to its cytotoxicity.ThetmTNF-αcytotoxicity to T24 cells was almost completely blocked as inhibited withTNF-αAb when Raji cells were treated with MCD to destroy lipid rafts.In order torule out the possibility of non-specific effects of MCD,we use Hela cells transientlytransfected with mutants which only locate in or out of lipid rafts to kill the T24 cells.The results showed that the effector cells transfected with wild-type and mutanttmTNF-αhave similar cytotoxicity and there's no significant difference among thethree mutants.It was shown that tmTNF-αwithin and outside lipid rafts both hadcell-killing ability,the tmTNF-αcytotoxicity has no relation to lipid rafts location.
     2.1.2 Destruction of ICAM-1 location in lipid rafts led to decline of adhesionbetween target and effetor cells and blocked the cytotoxicity of tmTNF-α.Becausethe cytotoxicity of tmTNF-αis dependent on cell-cell contact which is often mediatedby adhesion molecules.We further observed the relationship between lipid rafts,ICAM-1 and anti-tumor effect of tmTNF-α.The results showed that some of ICAM-1distributes in lipid rafts in resting state and all ICAM-1 target to non-rafts when lipidrafts were destroyed by MCD.Also the cytotoxicity to t24 ceils was almost completelyobstructed and the adhesion between target and effector cells was decrease.ICAM-1antibodies only partially inhibited the adhesion between the target and effector cellsand partially blocked the cytotoxicity of tmTNF-α.
     2.1.3 Destruction of lipid rafts resulted in increased secretion of sTNF-α.We furtherobserved the effect of lipid rafts destruction on the generation of sTNF-α.lipid raftsdamagement of Raji cells with MCD can lead to TACE,some of which have beenfound in lipid rafts,to the out of lipid rafts,and sTNF-αincreased significantly.
     2.2 Lipid rafts affected the bio-function of tmTNF-αmediated by forward signals
     2.2.1 tmTNF-αcaused TNFR1 of target cells recruit to lipid rafts.It was found that a small part of TNFR1 of T24 cells located in lipid rafts in resting state.A large numberof TNFR1 from outside to lipid rafts when we engaged fixed Raji cells to T24 cells.This result suggested that TNFR recruitment to lipid rafts may affect the forward signalof tmTNF-α.
     2.2.2 sTNF-αand tmTNF-αinside or outside of lipid rafts have the different effectto TNFR1 inside or outside of lipid rafts.Cytotoxicity of sTNF-αincreasedsignificantly when lipid rafts were destroyed by MCD,but that of tmTNF-αsignificantly decreased and there was no significant difference among the three mutants.These results suggest that lipid rafts played the different roles in sTNF-αand tmTNF-αinduced cytotoxicity
     Our study revealed that tmTNF-αcan target to lipid rafts which rely on cysteine on thesite of -47.Reverse signal tranduction of tmTNF-αdepends on its lipid raft localization.For effector cells,tmTNF in or out of lipid rafts have no difference in forward signaltransduction.But lipid rafts of target cells play an important role in forward signaltransduction of tmTNF-α.
引文
Utsumi,T.,Takeshige,T.,Tanaka,K.,Takami,K.,Kira,Y.,Klostergaard,J.,and Ishisaka,R.2001.Transmembrane TNF (pro-TNF) is palmitoylated.FEBS Lett 500:1-6.
    2 Vilcek,J.and Lee,T.H.1991.Tumor necrosis factor.New insights into the molecular mechanisms of its multiple actions.J Biol Chem 266:7313-6.
    3 Beutler,B.,Greenwald,D.,Hulmes,J.D.,Chang,M.,Pan,Y.C.,Mathison,J.,Ulevitch,R.,and Cerami,A.1985.Identity of tumour necrosis factor and the macrophage-secreted factor cachectin.Nature 316:552-4.
    4 Haranaka,K.and Satomi,N.1981.Cytotoxic activity of tumor necrosis factor (TNF) on human cancer cells in vitro.Jpn J Exp Med 51:191-4.
    5 Mannel,D.N.and Echtenacher,B.2000.TNF in the inflammatory response.Chem Immunol 74:141-61.
    6 石文芳,李卓娅,龚非力.1998.跨膜型和分泌型TNF-alpha对TNF受体作用的比较.中国免疫学杂志14:243-246.
    7 尹丙姣,李卓娅,余上斌.2002.跨膜型和分泌型TNF α在内毒素性休克过程中的作用.中华微生物学和免疫学杂志22:334-338.
    8 Ferran,C.,Dautry,F.,Merite,S.,Sheehan,K.,Schreiber,R.,Grau,G.,Bach,J.F.,and Chatenoud,L.1994.Anti-tumor necrosis factor modulates anti-CD3-triggered T cell cytokine gene expression in vivo.J Clin Invest 93:2189-96.
    9 Shen,C.,Van Assche,G.,Rutgeerts,P.,and Ceuppens,J.L.2006.Caspase Activation and Apoptosis Induction by Adalimumab:Demonstration In Vitro and In Vivo in a Chimeric Mouse Model.Inflarnm Bowel Dis 12:22-28.
    10 Mitoma,H.,Horiuchi,T.,Hatta,N.,Tsukamoto,H.,Harashima,S.,Kikuchi,Y.,Otsuka,J.,Okamura,S.,Fujita,S.,and Harada,M.2005.Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha.Gastroenterology 128:376-92.
    11 Hooper,N.M.,Karran,E.H.,and Turner,A.J.1997.Membrane protein secretases.Biochem J 321 ( Pt 2):265-79.
    12 Schlondorff,J.and Blobel,C.P.1999.Metalloprotease-disintegrins:modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding.J Cell Sci 112 ( Pt 21):3603-17.
    13 Zheng,Y.,Saftig,P.,Hartmann,D.,and Blobel,C.2004.Evaluation of the contribution of different ADAMs to tumor necrosis factor alpha (TNFalpha) shedding and of the function of the TNFalpha ectodomain in ensuring selective stimulated shedding by the TNFalpha convertase (TACE/ADAM17).J Biol Chem 279:42898-906.
    14 Aureli,L.,Gioia,M.,Cerbara,I.,Monaco,S.,Fasciglione,G.F.,Marini,S.,Ascenzi,P.,Topai,A.,and Coletta,M.2008.Structural bases for substrate and inhibitor recognition by matrix metalloproteinases.Curr Med Chem 15:2192-222.
    15 Tang,P.,Hung,M.C.,and Klostergaard,J.1996.Human pro-tumor necrosis factor is a homotrimer.Biochemistry 35:8216-25.
    16 Decoster,E.,Vanhaesebroeck,B.,Vandenabeele,P.,Grooten,J.,and Fiers,W.1995.Generation and biological characterization of membrane-bound,uncleavable murine tumor necrosis factor.J Biol Chem 270:18473-8.
    17 黄培堂等译.2002.分子克隆实验指南(第三版).
    18 Mueller,C.,Corazza,N.,Trachsel-Loseth,S.,Eugster,H.P.,Buhler-Jungo,M.,Brunner,T.,and Imboden,M.A.1999.Noncleavable transmembrane mouse tumor necrosis factor-alpha (TNFalpha) mediates effects distinct from those of wild-type TNFalpha in vitro and in vivo.J Biol Chem 274:38112-8.
    19 Zhang,H.,Yan,D.,Shi,X.,Liang,H.,Pang,Y.,Qin,N.,Chen,H.,Wang,J.,Yin,B.,Jiang,X.,Feng,W.,Zhang,W.,Zhou,M.,and Li,Z.2008.Transmembrane TNF-alpha mediates "forward" and "reverse" signaling,inducing cell death or survival via the NF-kappaB pathway in Raji Burkitt lymphoma cells.J Leukoc Biol 84:789-97.
    20 张述.2007.脂筏、LPS与tmTNF-α的双向信号.博士学位论文.
    21 Brown,D.A.and Rose,J.K.1992.Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface.Cell 68:533-44.
    22 Waschuk,S.A.,Elton,E.A.,Darabie,A.A.,Fraser,P.E.,and McLaurin,J.A.2001. Cellular membrane composition defines A beta-lipid interactions. J Biol Chem 276:33561-8.
    23 Pike, L. J., Han, X., Chung, K. N., and Gross, R. W. 2002. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41:2075-88.
    24 Pike, L. J. 2004. Lipid rafts: heterogeneity on the high seas. Biochem J 378:281-92.
    25 Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C., and Lublin, D. M. 1994. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Cell Biol 126:353-63.
    26 Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. 2002. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913-6.
    27 Scheiffele, P., Roth, M. G., and Simons, K. 1997. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EmboJ 16:5501-8.
    28 Munro, S. 1995. An investigation of the role of transmembrane domains in Golgi protein retention. Embo J 14:4695-704.
    29 Legler, D. F., Micheau, O., Doucey, M. A., Tschopp, J., and Bron, C. 2003. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 18:655-64.
    30 Gniadecki, R. 2004. Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem Biophys Res Commun 320:165-9.
    31 Lincoln, J. E., Boling, M., Parikh, A. N., Yeh, Y., Gilchrist, D. G., and Morse, L. S. 2006. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis. Invest Ophthalmol Vis Sci 47:2172-8.
    32 Ikonen, E. and Vainio, S. 2005. Lipid microdomains and insulin resistance: is there a connection? Sci STKE 2005:pe3.
    33 Cremesti, A. E., Goni, F. M., and Kolesnick, R. 2002. Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47-53.
    34 Salaun, C., James, D. J., and Chamberlain, L. H. 2004. Lipid rafts and the regulation of exocytosis. Traffic 5:255-64.
    35 Helms, J. B. and Zurzolo, C. 2004. Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247-54.
    36 Eissner, G., Kolch, W., and Scheurich, P. 2004. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev 15:353-66.
    37 Xin, L., Wang, J., Zhang, H., Shi, W., Yu, M., Li, Q., Jiang, X., Gong, F., Gardner, K., Li, Q. Q., and Li, Z. 2006. Dual regulation of soluble tumor necrosis factor-alpha induced activation of human monocytic cells via modulating transmembrane TNF-alpha-mediated 'reverse signaling'. Int J Mol Med 18:885-92.
    38 Gupta, N. and DeFranco, A. L. 2007. Lipid rafts and B cell signaling. Semin Cell Dev Biol 18:616-26.
    39 Jury, E. C., Flores-Borja, F., and Kabouridis, P. S. 2007. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol 18:608-15.
    40 Chakrabandhu, K., Herincs, Z., Huault, S., Dost, B., Peng, L., Conchonaud, F., Marguet, D., He, H. T., and Hueber, A. O. 2007. Palmitoylation is required for efficient Fas cell death signaling. Embo J 26:209-20.
    41 Cahuzac, N., Baum, W., Kirkin, V., Conchonaud, F., Wawrezinieck, L., Marguet, D., Janssen, O., Zornig, M., and Hueber, A. O. 2006. Fas ligand is localized to membrane rafts, where it displays increased cell death-inducing activity. Blood 107:2384-91.
    42 Kay, J. G., Murray, R. Z., Pagan, J. K., and Stow, J. L. 2006. Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J Biol Chem 281:11949-54.
    43 Tellier, E., Canault, M., Rebsomen, L., Bonardo, B., Juhan-Vague, I., Nalbone, G., and Peiretti, F. 2006. The shedding activity of ADAM17 is sequestered in lipid rafts. Exp Cell Res 312:3969-80.
    44 Watts, A. D., Hunt, N. H., Wanigasekara, Y., Bloomfield, G., Wallach, D., Roufogalis, B. D., and Chaudhri, G. 1999. A casein kinase Ⅰ motif present in the cytoplasmic domain of members of the tumour necrosis factor ligand family is implicated in 'reverse signalling'.EMBO J 18:2119-26.
    45 Karin,M.and Lin,A.2002.NF-kappaB at the crossroads of life and death.Nat Immunol 3:221-7.
    46 Flick,D.A.and Gifford,G.E.1984.Comparison of in vitro cell cytotoxic assays for tumor necrosis factor.J Immunol Methods 68:167-75.
    47 Uren,A.G.,Pakusch,M.,Hawkins,C.J.,Puls,K.L.,and Vaux,D.L.1996.Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors.Proc NatlAcad Sci USA 93:4974-8.
    48 Wang,C.Y.,Naka,Y.,Liao,H.,Oz,M.C.,Springer,T.A.,Gutierrez-Ramos,J.C.,and Pinsky,D.J.1998.Cardiac graft intercellular adhesion molecule-1 (ICAM-1) and interleukin-1 expression mediate primary isograft failure and induction of ICAM-1 in organs remote from the site of transplantation.Circ Res 82:762-72.
    49 Crook,N.E.,Clem,R.J.,and Miller,L.K.1993.An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif.J Virol 67:2168-74.
    50 Adams,J.M.and Cory,S.2007.The Bcl-2 apoptotic switch in cancer development and therapy.Oncogene 26:1324-37.
    51 Kyprianou,N.,King,E.D.,Bradbury,D.,and Rhee,J.G.1997.bcl-2 over-expression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells.Int J Cancer 70:341-8.
    52 Johnson,M.I.,Robinson,M.C.,Marsh,C.,Robson,C.N.,Neal,D.E.,and Hamdy,F.C.1998.Expression of Bcl-2,Bax,and p53 in high-grade prostatic intraepithelial neoplasia and localized prostate cancer:relationship with apoptosis and proliferation.Prostate 37:223-9.
    53 Doan,J.E.,Windmiller,D.A.,and Riches,D.W.2004.Differential regulation of TNF-R1 signaling:lipid raft dependency of p42mapk/erk2 activation,but not NF-kappaB activation.J Immunol 172:7654-60.
    54 Ko,Y.G.,Lee,J.S.,Kang,Y.S.,Ahn,J.H.,and Seo,J.S.1999.TNF-alpha-mediated apoptosis is initiated in caveolae-like domains.J Immunol 162:7217-23.
    55 Takaesu,G.,Kishida,S.,Hiyama,A.,Yamaguchi,K.,Shibuya,H.,Irie,K., Ninomiya-Tsuji, J., and Matsumoto, K. 2000. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKX by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5:649-58.
    56 Zapata, J. M. and Reed, J. C. 2002. TRAF1: lord without a RING. Sci STKE 2002:PE27.
    57 Lee, S. Y. and Choi, Y. 2007. TRAF1 and its biological functions. Adv Exp Med Biol 597:25-31.
    58 Lotocki, G., Alonso, O. F., Dietrich, W. D., and Keane, R. W. 2004. Tumor necrosis factor receptor 1 and its signaling intermediates are recruited to lipid rafts in the traumatized brain. J Neurosci 24:11010-6.
    59 Wajant, H., Pfizenmaier, K., and Scheurich, P. 2003. Tumor necrosis factor signaling. Cell Death Differ 10:45-65.
    60 Senftleben, U., Cao, Y., Xiao, G., Greten, F. R., Krahn, G., Bonizzi, G., Chen, Y., Hu, Y., Fong, A., Sun, S. C., and Karin, M. 2001. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293:1495-9.
    61 Xiao, G., Harhaj, E. W., and Sun, S. C. 2001. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7:401-9.
    62 Bodmer, J. L., Schneider, P., and Tschopp, J. 2002. The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19-26.
    63 Hostager, B. S., Catlett, I. M., and Bishop, G. A. 2000. Recruitment of CD40 and tumor necrosis factor receptor-associated factors 2 and 3 to membrane microdomains during CD40 signaling. J Biol Chem 275:15392-8.
    64 Vidalain, P. O., Azocar, O., Servet-Delprat, C., Rabourdin-Combe, C., Gerlier, D., and Manie, S. 2000. CD40 signaling in human dendritic cells is initiated within membrane rafts. Embo J 19:3304-13.
    65 Xu, L., Qu, X., Zhang, Y., Hu, X., Yang, X., Hou, K., Teng, Y., Zhang, J., Sada, K., and Liu, Y. 2009. Oxaliplatin enhances TRAIL-induced apoptosis in gastric cancer cells by CBL-regulated death receptor redistribution in lipid rafts. FEBS Lett 583:943-8.
    66 Psahoulia, F. H., Drosopoulos, K. G., Doubravska, L., Andera, L., and Pintzas, A. 2007. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts.Mol Cancer Ther 6:2591-9.
    67 Muppidi,J.R.,Tschopp,J.,and Siegel,R.M.2004.Life and death decisions:secondary complexes and lipid rafts in TNF receptor family signal transduction.Immunity 21:461-5.
    68 Shi,W.,Li,L.,Shi,X.,Zheng,F.,Zeng,J.,Jiang,X.,Gong,F.,Zhou,M.,and Li,Z.2006.Inhibition of nuclear factor-kappaB activation is essential for membrane-associated TNF-alpha-induced apoptosis in HL-60 cells.Immunol Cell Biol 84:366-73.
    69 Hansen,H.P.,Dietrich,S.,Kisseleva,T.,Mokros,T.,Mentlein,R.,Lange,H.H.,Murphy,G.,and Lemke,H.2000.CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-alpha-converting enzyme.J Immunol 165:6703-9.
    70 Perez,C.,Albert,I.,DeFay,K.,Zachariades,N.,Gooding,L.,and Kriegler,M.1990.A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact.Cell 63:251-8.
    71 Tilghman,R.W.and Hoover,R.L.2002.E-selectin and ICAM-1 are incorporated into detergent-insoluble membrane domains following clustering in endothelial cells.FEBS Lett 525:83-7.
    72 Kiely,J.M.,Hu,Y.,Garcia-Cardena,G.,and Gimbrone,M.A.,Jr.2003.Lipid raft localization of cell surface E-selectin is required for ligation-induced activation of phospholipase C gamma.J Immunol 171:3216-24.
    73 Gil,C.,Cubi,R.,and Aguilera,J.2007.Shedding of the p75NTR neurotrophin receptor is modulated by lipid rafts.FEBS Lett 581:1851-8.
    74 von Tresckow,B.,Kallen,K.J.,von Strandmann,E.P.,Borchmann,P.,Lange,H.,Engert,A.,and Hansen,H.P.2004.Depletion of cellular cholesterol and lipid rafts increases shedding of CD30.J Immunol 172:4324-31.
    75 Lambert,D.W.,Yarski,M.,Warner,F.J.,Thornhill,P.,Parkin,E.T.,Smith,A.I.,Hooper,N.M.,and Turner,A.J.2005.Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor,angiotensin-converting enzyme-2 (ACE2).J Biol Chem 280:30113-9.
    76 Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J., and Black, R. A. 1998. An essential role for ectodomain shedding in mammalian development. Science 282:1281-4.
    77 Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J., and Cerretti, D. P. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729-33.
    78 Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, J. L., Becherer, J. D., and et al. 1997. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385:733-6.
    79 Schlondorff, J., Becherer, J. D., and Blobel, C. P. 2000. Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem J 347 Pt 1:131-8.
    80 Li, X., Perez, L., Pan, Z., and Fan, H. 2007. The transmembrane domain of TACE regulates protein ectodomain shedding. Cell Res 17:985-98.
    81 Feng, X., Gaeta, M. L., Madge, L. A., Yang, J. H., Bradley, J. R., and Pober, J. S. 2001. Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J Biol Chem 276:8341-9.
    1 Yu, J., Fischman, D. A., and Steck, T. L. 1973. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1:233-48.
    2 van Meer, G., Poorthuis, B. J., Wirtz, K. W., Op den Kamp, J. A., and van Deenen, L. L. 1980. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein. Eur J Biochem 103:283-8.
    3 van Meer, G., Stelzer, E. H., Wijnaendts-van-Resandt, R. W., and Simons, K. 1987. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol 105:1623-35.
    4 Lisanti, M. P., Sargiacomo, M., Graeve, L., Saltiel, A. R., and Rodriguez-Boulan, E. 1988. Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal epithelial cell line. Proc NatlAcad Sci U S A 85:9557-61.
    5 Lisanti, M. P. and Rodriguez-Boulan, E. 1990. Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends Biochem Sci 15:113-8.
    6 Zurzolo, C., van't Hof, W., van Meer, G., and Rodriguez-Boulan, E. 1994. Glycosphingolipid clusters and the sorting of GPI-anchored proteins in epithelial cells. Braz J Med Biol Res 27:317-22.
    7 Varma, R. and Mayor, S. 1998. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798-801.
    8 Brown, D. A. and Rose, J. K. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533-44.
    9 Pike, L. J. 2006. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597-8.
    10 Harder, T., Scheiffele, P., Verkade, P., and Simons, K. 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929-42.
    11 Rietveld, A. and Simons, K. 1998. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1376:467-79.
    12 Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387:569-72.
    13 Filippov, A., Oradd, G., and Lindblom, G. 2006. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers. Biophys J 90:2086-92.
    14 London, E. and Brown, D. A. 2000. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508:182-95.
    15 Yamada, E. 1955. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445-58.
    16 Okamoto, T., Schlegel, A., Scherer, P. E., and Lisanti, M. P. 1998. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem 273:5419-22.
    17 Corley Mastick, C., Sanguinetti, A. R., Knesek, J. H., Mastick, G. S., and Newcomb, L. F. 2001. Caveolin-1 and a 29-kDa caveolin-associated protein are phosphorylated on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp Cell Res 266:142-54.
    18 Labrecque, L., Nyalendo, C., Langlois, S., Durocher, Y., Roghi, C., Murphy, G., Gingras, D., and Beliveau, R. 2004. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 279:52132-40.
    19 Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F. C., Schedl, A., Haller, H., and Kurzchalia, T. V. 2001. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449-52.
    20 Razani, B., Engelman, J. A., Wang, X. B., Schubert, W., Zhang, X. L., Marks, C. B., Macaluso, F., Russell, R. G., Li, M., Pestell, R. G., Di Vizio, D., Hou, H., Jr., Kneitz, B., Lagaud, G., Christ, G. J., Edelmann, W., and Lisanti, M. P. 2001. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121-38.
    21 Razani, B., Wang, X. B., Engelman, J. A., Battista, M., Lagaud, G., Zhang, X. L., Kneitz, B., Hou, H., Jr., Christ, G. J., Edelmann, W., and Lisanti, M. P. 2002. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 22:2329-44.
    22 Song, K. S., Scherer, P. E., Tang, Z., Okamoto, T., Li, S., Chafel, M., Chu, C., Kohtz, D. S., and Lisanti, M. P. 1996. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160-5.
    23 Galbiati, F., Engelman, J. A., Volonte, D., Zhang, X. L., Minetti, C, Li, M., Hou, H., Jr., Kneitz, B., Edelmann, W., and Lisanti, M. P. 2001. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276:21425-33.
    24 Repetto, S., Bado, M., Broda, P., Lucania, G., Masetti, E., Sotgia, F., Carbone, I., Pavan, A., Bonilla, E., Cordone, G., Lisanti, M. P., and Minetti, C. 1999. Increased number of caveolae and caveolin-3 overexpression in Duchenne muscular dystrophy.Biochem Biophys Res Commun 261:547-50.
    25 Sotgia, F., Lee, J. K., Das, K., Bedford, M., Petrucci, T. C., Macioce, P., Sargiacomo, M., Bricarelli, F. D., Minetti, C., Sudol, M., and Lisanti, M. P. 2000. Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 275:38048-58.
    26 Oshikawa, J., Otsu, K., Toya, Y., Tsunematsu, T., Hankins, R., Kawabe, J., Minamisawa, S., Umemura, S., Hagiwara, Y., and Ishikawa, Y. 2004. Insulin resistance in skeletal muscles of caveolin-3-null mice. Proc Natl Acad Sci U S A 101:12670-5.
    27 Pol, A., Martin, S., Femandez, M. A., Ferguson, C., Carozzi, A., Luetterforst, R., Enrich, C., and Parton, R. G. 2004. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell 15:99-110.
    28 Simons, K. and Toomre, D. 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31-9.
    29 Saltiel, A. R. and Kahn, C. R. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806.
    30 Baumann, C. A., Ribon, V., Kanzaki, M., Thurmond, D. C., Mora, S., Shigematsu, S., Bickel, P. E., Pessin, J. E., and Saltiel, A. R. 2000. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202-7.
    31 Chiang, S. H., Baumann, C. A., Kanzaki, M., Thurmond, D. C., Watson, R. T., Neudauer, C. L., Macara, I. G., Pessin, J. E., and Saltiel, A. R. 2001. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410:944-8.
    32 Maffucci, T., Brancaccio, A., Piccolo, E., Stein, R. C., and Falasca, M. 2003. Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. Embo J 22:4178-89.
    33 Inoue, M., Chiang, S. H., Chang, L., Chen, X. W., and Saltiel, A. R. 2006. Compartmentalization of the exocyst complex in lipid rafts controls Glut4 vesicle tethering. Mol Biol Cell 17:2303-11.
    34 Shigematsu, S., Watson, R. T., Khan, A. H., and Pessin, J. E. 2003. The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT4. J Biol Chem 278:10683-90.
    35 Fecchi, K., Volonte, D., Hezel, M. P., Schmeck, K., and Galbiati, F. 2006. Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. Faseb J 20:705-7.
    36 Rauch, M. C., Ocampo, M. E., Bohle, J., Amthauer, R., Yanez, A. J., Rodriguez-Gil, J. E., Slebe, J. C., Reyes, J. G., and Concha, Ⅱ. 2006. Hexose transporters GLUT1 and GLUT3 are colocalized with hexokinase Ⅰ in caveolae microdomains of rat spermatogenic cells. J Cell Physiol 207:397-406.
    37 Pohl, J., Ring, A., Ehehalt, R., Schulze-Bergkamen, H., Schad, A., Verkade, P., and Stremmel, W. 2004. Long-chain fatty acid uptake into adipocytes depends on lipid raft function. Biochemistry 43:4179-87.
    38 Pohl, J., Ring, A., Korkmaz, U., Ehehalt, R., and Stremmel, W. 2005. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol Biol Cell 16:24-31.
    39 Zuo, L., Ushio-Fukai, M., Ikeda, S., Hilenski, L., Patrushev, N., and Alexander, R. W. 2005. Caveolin-1 is essential for activation of Racl and NAD(P)H oxidase after angiotensin Ⅱ type 1 receptor stimulation in vascular smooth muscle cells: role in redox signaling and vascular hypertrophy. Arterioscler Thromb Vasc Biol 25:1824-30.
    40 Fujita, T., Toya, Y., Iwatsubo, K., Onda, T., Kimura, K., Umemura, S., and Ishikawa, Y. 2001. Accumulation of molecules involved in alpha 1-adrenergic signal within caveolae: caveolin expression and the development of cardiac hypertrophy.Cardiovasc Res 51:709-16.
    41 Steinberg, S. F. 2004. beta(2)-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts. J Mol Cell Cardiol 37:407-15.
    42 Feron, O., Smith, T. W., Michel, T., and Kelly, R. A. 1997. Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272:17744-8.
    43 Maguy, A., Hebert, T. E., and Nattel, S. 2006. Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc Res 69:798-807.
    44 Kikuchi, T., Oka, N., Koga, A., Miyazaki, H., Ohmura, H., and Imaizumi, T. 2005. Behavior of caveolae and caveolin-3 during the development of myocyte hypertrophy. J Cardiovasc Pharmacol 45:204-10.
    45 Woodman, S. E., Park, D. S., Cohen, A. W., Cheung, M. W., Chandra, M., Shirani, J., Tang, B., Jelicks, L. A., Kitsis, R. N., Christ, G. J., Factor, S. M., Tanowitz, H. B., and Lisanti, M. P. 2002. Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277:38988-97.
    46 Ostrom, R. S., Bundey, R. A., and Insel, P. A. 2004. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J Biol Chem 279:19846-53.
    47 Der, P., Cui, J., and Das, D. K. 2006. Role of lipid rafts in ceramide and nitric oxide signaling in the ischemic and preconditioned hearts. J Mol Cell Cardiol 40:313-20.
    48 Shashkin, P., Dragulev, B., and Ley, K. 2005. Macrophage differentiation to foam cells. Curr Pharm Des 11:3061-72.
    49 Ohashi, R., Mu, H., Wang, X., Yao, Q., and Chen, C. 2005. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. Qjm 98:845-56.
    50 Zeng, Y., Tao, N., Chung, K. N., Heuser, J. E., and Lublin, D. M. 2003. Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1. J Biol Chem 278:45931-6.
    51 Grandl, M., Bared, S. M., liebisch, G., Werner, T., Barlage, S., and Schmitz, G. 2006. E-LDL and Ox-LDL differentially regulate ceramide and cholesterol raft microdomains in human Macrophages. CytometryA 69:189-91.
    52 Gaus, K., Kritharides, L., Schmitz, G., Boettcher, A., Drobnik, W., Langmann, T., Quinn, C. M., Death, A., Dean, R. T., and Jessup, W. 2004. Apolipoprotein A-1 interaction with plasma membrane lipid rafts controls cholesterol export from macrophages. Faseb J 18:574-6.
    53 Gaus, K., Gooding, J. J., Dean, R. T., Kritharides, L., and Jessup, W. 2001. A kinetic model to evaluate cholesterol efflux from THP-1 macrophages to apolipoprotein A-l. Biochemistry 40:9363-73.
    54 Drobnik, W., Borsukova, H., Bottcher, A., Pfeiffer, A., Liebisch, G., Schutz, G. J., Schindler, H., and Schmitz, G. 2002. Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains. Traffic 3:268-78.
    55 Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. 1998. Two CD95 (APO-1/Fas) signaling pathways. Embo J 17:1675-87.
    56 Gniadecki, R. 2004. Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochem Biophys Res Commun 320:165-9.
    57 Soderstrom, T. S., Nyberg, S. D., and Eriksson, J. E. 2005. CD95 capping is ROCK-dependent and dispensable for apoptosis. J Cell Sci 118:2211-23.
    58 Rashid-Doubell, F., Tannetta, D., Redman, C. W., Sargent, I. L., Boyd, C. A., and Linton, E. A. 2007. Caveolin-1 and lipid rafts in confluent BeWo trophoblasts: evidence for Rock-1 association with caveolin-1. Placenta 28:139-51.
    59 Mandal, D., Mazumder, A., Das, P., Kundu, M., and Basu, J. 2005. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem 280:39460-7.
    60 Miyaji, M., Jin, Z. X., Yamaoka, S., Amakawa, R., Fukuhara, S., Sato, S. B., Kobayashi, T., Domae, N., Mimori, T., Bloom, E. T., Okazaki, T., and Umehara, H. 2005. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 202:249-59.
    61 Iwai, K., Kondo, T., Watanabe, M., Yabu, T., Kitano, T., Taguchi, Y., Umehara, H., Takahashi, A., Uchiyama, T., and Okazaki, T. 2003. Ceramide increases oxidative damage due to inhibition of catalase by caspase-3-dependent proteolysis in HL-60 cell apoptosis. J Biol Chem 278:9813-22.
    62 Taha, T. A., Kitatani, K., El-Alwani, M., Bielawski, J., Hannun, Y. A., and Obeid, L. M. 2006. Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. Faseb J 20:482-4.
    63 Legembre, P., Daburon, S., Moreau, P., Ichas, F., de Giorgi, F., Moreau, J. F., and Taupin, J. L. 2005. Amplification of Fas-mediated apoptosis in type Ⅱ cells via microdomain recruitment. Mol Cell Biol 25:6811-20.
    64 Zhang, X., Shen, P., Coleman, M., Zou, W., Loggie, B. W., Smith, L. M., and Wang, Z. 2005. Caveolin-1 down-regulation activates estrogen receptor alpha expression and leads to 17beta-estradiol-stimulated mammary tumorigenesis. Anticancer Res 25:369-75.
    65 Marquez, D. C., Chen, H. W., Curran, E. M., Welshons, W. V., and Pietras, R. J. 2006. Estrogen receptors in membrane lipid rafts and signal transduction in breast cancer. Mol Cell Endocrinol 246:91-100.
    66 Gilad, L. A., Bresler, T., Gnainsky, J., Smirnoff, P., and Schwartz, B. 2005. Regulation of vitamin D receptor expression via estrogen-induced activation of the ERK 1/2 signaling pathway in colon and breast cancer cells. J Endocrinol 185:577-92.
    67 Bouras, T., Lisanti, M. P., and Pestell, R. G. 2004. Caveolin-1 in breast cancer. Cancer Biol Ther 3:931-41.
    68 Sotgia, F., Williams, T. M., Schubert, W., Medina, F., Minetti, C., Pestell, R. G., and Lisanti, M. P. 2006. Caveolin-1 deficiency (-/-) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. Am J Pathol 168:292-309.
    69 Williams, T. M., Medina, R, Badano, I., Hazan, R. B., Hutchinson, J., Muller, W. J., Chopra, N. G., Scherer, P. E., Pestell, R. G., and Lisanti, M. P. 2004. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279:51630-46.
    70 Chen, S. T., Lin, S. Y., Yeh, K. T., Kuo, S. J., Chan, W. L., Chu, Y. P., and Chang, J. G. 2004. Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int J Mol Med 14:577-82.
    71 Van den Eynden, G. G., Van Laere, S. J., Van der Auwera, I., Merajver, S. D., Van Marck, E. A., van Dam, P., Vermeulen, P. B., Dirix, L. Y., and van Golen, K. L. 2006. Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat 95:219-28.
    72 Patlolla, J. M., Swamy, M. V., Raju, J., and Rao, C. V. 2004. Overexpression of caveolin-1 in experimental colon adenocarcinomas and human colon cancer cell lines. Oncol Rep 11:957-63.
    73 Kim, H. A., Kim, K. H., and Lee, R. A. 2006. Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol 80:165-70.
    74 Cavallo-Medved, D., Mai, J., Dosescu, J., Sameni, M., and Sloane, B. F. 2005. Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 118:1493-503.
    75 Lin, S. Y., Yeh, K. T., Chen, W. T., Chen, H. C., Chen, S. T., and Chang, J. G. 2004. Promoter CpG methylation of caveolin-1 in sporadic colorectal cancer. Anticancer Res 24:1645-50.
    76 Rakheja, D., Kapur, P., Hoang, M. P., Roy, L. C., and Bennett, M. J. 2005. Increased ratio of saturated to unsaturated C18 fatty acids in colonic adenocarcinoma: implications for cryotherapy and lipid raft function. Med Hypotheses 65:1120-3.
    77 Delmas, D., Rebe, C., Lacour, S., Filomenko, R., Athias, A., Gambert, P., Cherkaoui-Malki, M., Jannin, B., Dubrez-Daloz, L., Latruffe, N., and Solary, E. 2003. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 278:41482-90.
    78 Lacour, S., Hammann, A., Grazide, S., Lagadic-Gossmann, D., Athias, A., Sergent, O., Laurent, G., Gambert, P., Solary, E., and Dimanche-Boitrel, M. T. 2004. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64:3593-8.
    79 Fan, Y. Y., McMurray, D. N., Ly, L. H., and Chapkin, R. S. 2003. Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J Nutr 133:1913-20.
    80 Fan, Y. Y., Ly, L. H., Barhoumi, R., McMurray, D. N., and Chapkin, R. S. 2004. Dietary docosahexaenoic acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 production. J Immunol 173:6151-60.
    81 Jury, E. C., Kabouridis, P. S., Flores-Borja, F., Mageed, R. A., and Isenberg, D. A. 2004. Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 113:1176-87.
    82 Krishnan, S., Nambiar, M. P., Warke, V. G., Fisher, C. U., Mitchell, J., Delaney, N., and Tsokos, G. C. 2004. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. J Immunol 172:7821-31.
    83 Pavon, E. J., Munoz, P., Navarro, M. D., Raya-Alvarez, E., Callejas-Rubio, J. L.,Navarro-Pelayo, F., Ortego-Centeno, N., Sancho, J., and Zubiaur, M. 2006.Increased association of CD38 with lipid rafts in T cells from patients with systemic lupus erythematosus and in activated normal T cells. Mol Immunol 43:1029-39.
    84 Floto, R. A., Clatworthy, M. R., Heilbronn, K. R., Rosner, D. R., MacAry, P. A.,Rankin, A., Lehner, P. J., Ouwehand, W. H., Allen, J. M., Watkins, N. A., and Smith,K. G. 2005. Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat Med 11:1056-8.
    85 Kono, H., Kyogoku, C., Suzuki, T., Tsuchiya, N., Honda, H., Yamamoto, K., Tokunaga, K., and Honda, Z. 2005. FcgammaRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum Mol Genet 14:2881-92.
    86 Popik, W., Alce, T. M., and Au, W. C. 2002. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells. J Virol 76:4709-22.
    87 Manes, S., del Real, G., Lacalle, R. A., Lucas, P., Gomez-Mouton, C., Sanchez-Palomino, S., Delgado, R., Alcami, J., Mira, E., and Martinez, A. C. 2000. Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection. EMBO Rep 1:190-6.
    88 Liao, Z., Graham, D. R., and Hildreth, J. E. 2003. Lipid rafts and HIV pathogenesis: virion-associated cholesterol is required for fusion and infection of susceptible cells. AIDS Res Hum Retroviruses 19:675-87.
    89 Brugger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F. T., and Krausslich, H. G. 2006. The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci U S A 103:2641-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700