用户名: 密码: 验证码:
叶酸修饰壳聚糖小干扰RNA纳米粒靶向逆转卵巢癌多药耐药的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分叶酸-壳聚糖复合载体的制备及性质鉴定
     目的合成叶酸修饰壳聚糖复合载体,并鉴定叶酸-壳聚糖复合载体的成功合成,测定叶酸偶联率。
     方法1.用还原酰胺化法合成叶酸修饰壳聚糖复合载体;2.通过对合成样本的红外光谱测定,确认叶酸修饰壳聚糖复合载体;3.紫外扫描确定叶酸成功偶联于壳聚糖;4.通过对比FA浓度-吸光度标准曲线,测定叶酸偶联率。
     结果1.获得了纯化的叶酸修饰壳聚糖复合载体,为淡黄色细致均匀的粉末,溶液为无味,淡黄色透明液体;2.红外吸收光谱显示叶酸修饰壳聚糖复合载体在1563cm~(-1)处出现新的特征性-CO-NH-振动波,说明-CO-NH-键成功在叶酸和壳聚糖间形成;3.紫外吸收光谱显示叶酸修饰壳聚糖复合载体在280nm处出现宽大吸收波,此为叶酸的特征性紫外吸收波长,证实叶酸成功与壳聚糖偶联;4.叶酸浓度在5.2-30.9μg/mL范围内与叶酸吸光度(A)呈良好的线性关系。回归方程为A=0.0127C+0.0016,R~2=0.9983。通过改变叶酸及壳聚糖不同的反应比,得到不同的叶酸偶联率,共合成四种不同偶联率的叶酸修饰壳聚糖复合载体,分别是3%、7%、11.2%和17%。
     结论通过还原胺法成功合成叶酸修饰壳聚糖复合载体,在加入不同比例反应物后,共合成4种不同叶酸偶联率的叶酸修饰壳聚糖复合载体。提示可以利用与壳聚糖分子上的活性氨基的化合反应,成功修饰壳聚糖,改变其物理化学性能。
     第二部分叶酸修饰壳聚糖siRNA纳米粒的制备及性质检测
     目的合成叶酸修饰壳聚糖siRNA纳米粒,并测定其形态及直径大小。研究纳米粒对不同细胞的毒性及保护DNA免受降解的功能。
     方法1.采用复凝聚法合成叶酸修饰壳聚糖PshRNA纳米粒(FA-CS-PshRNA)和壳聚糖pshRNA纳米粒(CS-PshRNA);2.透射电镜观察纳米粒形态、大小,并测定不同叶酸偶联率下,纳米粒的平均直径;3.酶保护实验检测不同纳米粒对质粒DNA的成功包裹及保护功能;4.MTT法检测纳米粒对于不同妇科肿瘤细胞系(SKOV3、A2780、CAOV3、HeLa和MCF-7)产生的毒性;5.选择叶酸高表达的卵巢癌细胞系SKOV3,乳腺癌细胞系MCF-7和宫颈癌细胞系HeLa作为实验细胞,在体外培养过程中导入叶酸修饰壳聚糖siRNA纳米粒,荧光倒置显微镜下观察细胞形态及绿色荧光蛋白表达量,流式细胞仪检测不同细胞的转染效率。
     结果1.本研究通过复凝聚法,成功合成了叶酸修饰壳聚糖PshRNA纳米粒和壳聚糖PshRNA纳米粒,纳米粒溶液为透明、无色、无味溶液;2.透射电镜显示纳米粒为近似球型,表面光滑、均质的纳米粒颗粒。壳聚糖PshRNA纳米粒粒径为138.4±0.7nm,叶酸修饰壳聚糖PshRNA纳米粒(叶酸偶联率:3%、7.5%、11.2%和17%)直径依次为289.6±0.7nm、78.1±0.3nm、186.6±0.6nm和212.2±0.5±nm;3.酶保护实验结果表明壳聚糖及叶酸修饰壳聚糖皆能有效结合和浓缩DNA形成相应纳米粒,壳聚糖及叶酸修饰壳聚糖皆能保护DNA不受DNAaseI的降解;4.细胞毒性实验显示叶酸修饰壳聚糖PshRNA纳米粒和壳聚糖PshRNA纳米粒对于不同细胞系亦有不同毒性。经壳聚糖PshRNA纳米粒处理后,MCF-7、A2780、CAOV3、SKOV3和HeLa的细胞活力分别是处理前的87.9±2.4%、91.4±1.0%、42.9±2.1%、102.0±4.0%和97.4±1.1%,而经叶酸修饰壳聚糖PshRNA纳米粒处理后,上述细胞的细胞活力分别为处理前的63.0±2.5%、90.6±1.3%、50.5±0.7%、106.5±1.8%和99.3±1.6%;5.对于MCF-7,SKOV3细胞系,叶酸修饰壳聚糖PshRNA纳米粒转染效率(16.8±1.2%和24.3±0.7%)明显高于壳聚糖PshRNA纳米粒(0.3±0.1%和0.7±0.1%)(P<0.05),壳聚糖PshRNA纳米粒和叶酸修饰壳聚糖PshRNA纳米粒对于HeLa细胞的转染效率分别为4.2±0.4%和4.8±0.9%,二者无统计学差异(P>0.05)。
     结论通过复凝聚法成功合成叶酸修饰壳聚糖PshRNA纳米粒和壳聚糖PshRNA纳米粒。不同叶酸偶联率影响纳米粒直径大小,在7.5%的叶酸偶联率下,纳米粒直径最小(78.1±0.3nm)。叶酸修饰壳聚糖PshRNA纳米粒和壳聚糖PshRNA纳米粒皆能稳定包裹质粒DNA,并能保护其免受DNAaseⅠ的酶解。在叶酸介导下,叶酸修饰壳聚糖PshRNA纳米粒的转染效率明显高于壳聚糖PshRNA纳米粒。提示通过叶酸修饰,明显提高了壳聚糖PshRNA纳米粒的转染效率。
     第三部分卵巢癌SKOV3耐药细胞株建立及耐药性的研究
     目的培养经泰素诱导SKOV3多药耐药细胞株,检测MDR1编码蛋白P-gp在SKOV3亲本株和耐药株中的表达差异,探讨MDR1基因表达与多药耐药的相关性。为研究靶向MDR1的叶酸修饰壳聚糖siRNA纳米粒逆转卵巢癌多药耐药提供细胞学基础。
     方法1.以泰素为诱导剂,采用体外浓度梯度递增法建立卵巢癌SKOV3-ts多药耐药细胞株;2.MTT法检测SKOV3亲本株和耐药株中对紫杉醇和阿霉素的IC_(50)的改变;3.Western-blot和激光共聚焦法检测SKOV3亲本株和耐药株中P-gp蛋白的表达差异。
     结果1.本章通过浓度梯度递增法成功建立了卵巢癌SKOV3多药耐药细胞株SKOV3-ts。该细胞株由体积相对较小的梭型变为体积膨胀的不规则形状,有些细胞呈星状和分支状结构,较SKOV3细胞大;2.应用半定量Western-blot检测出在SKOV3-ts及SKOV3细胞系中P-gp的表达量分别是1.15±0.02、0.08±0.01,差异有统计学意义(P<0.05)。激光共聚焦法显示SKOV3细胞中只有微量P-gp表达,而SKOV3-ts细胞的细胞膜上显示较强P-gp的表达;3.SKOV3和SKOV3-ts对紫杉醇的IC_(50)分别是0.0048±0.0002和0.3957±0.0075,差异有统计学意义(P<0.05),对阿霉素的IC_(50)分别是0.0066±0.0006和0.2210±0.0046,差异有统计学意义(P<0.05)。
     结论通过浓度梯度递增法成功建立了卵巢癌SKOV3多药耐药细胞株SKOV3-ts,耐药细胞SKOV3-ts的P-gp表达量明显高于亲本细胞系SKOV3,对紫杉醇和阿霉素的IC_(50)较亲本细胞有明显升高。提示MDR1的过度表达与SKOV3细胞的多药耐药的产生有明显相关性,SKOV3-ts细胞耐药可对阿霉素产生交叉耐药,同时获得细胞膜P-gp高表达。故SKOV3-ts细胞可以作为卵巢癌耐药细胞模型,用作叶酸受体介导的纳米靶向修饰逆转卵巢癌多药耐药的研究。
     第四部分叶酸修饰壳聚糖siRNA纳米粒靶向逆转SKOV3-ts细胞耐药的研究
     目的检测叶酸修饰壳聚糖siRNA纳米粒与壳聚糖siRNA纳米粒对SKOV3-ts细胞系MDR1表达的影响,探讨经叶酸修饰后,纳米粒逆转SKOV3-ts细胞系耐药性的改变。
     方法1.在SKOV3-ts细胞体外培养过程中导入叶酸修饰壳聚糖PshRNA纳米粒和壳聚糖PshRNA纳米粒,其中PshRNA为可表达靶向MDR1基因的siRNA的真核表达质粒,故而称为叶酸修饰壳聚糖siRNA纳米粒和壳聚糖siRNA纳米粒;2.RT-PCR法检测纳米粒转染SKOV3-ts细胞前后,MDR1mRNA表达改变;3.用Western-blot法检测纳米粒转染SKOV3-ts细胞前后,MDR1编码蛋白P-gp的表达改变;4.MTT法检测纳米粒转染SKOV3-ts细胞前后,对紫杉醇耐药IC_(50)的改变。
     结果1.半定量RT-PCR检测出壳聚糖siRNA纳米粒与叶酸修饰壳聚糖siRNA纳米粒转染SKOV3-ts细胞后,MDR1mRNA表达量分别是0.75±0.01、0.27±0.01,差异有显著意义(P<0.05);2.半定量Western-blot法检测出壳聚糖siRNA纳米粒与叶酸修饰壳聚糖siRNA纳米粒转染SKOV3-ts细胞后,P-gp表达量分别是0.62±0.01、0.12±0.01,差异有显著意义(P<0.05);3.MTT法检测壳聚糖siRNA纳米粒与叶酸修饰壳聚糖siRNA纳米粒转染SKOV3-ts细胞后,针对PTX的IC_(50)分别为0.3830±0.0096和0.0353±0.0006,差异有统计学意义(P<0.05)。
     结论通过叶酸靶向修饰,叶酸修饰壳聚糖siRNA纳米粒能有效降低靶细胞SKOV3-ts的靶基因MDR1的mRNA和蛋白P-gp表达。逆转SKOV3-ts细胞针对PTX的IC_(50),能有效治疗卵巢癌细胞基于MDR1诱导的多药耐药。
PartⅠPreparation and identification of folate-chitosancomplex vectors
     Objective: To synthesize folate-chitosan complex vectors and identify the successfulcombination of folate-chitosan complex vectors, determine the folate coupling radio offolate.
     Methods: 1.Folate-chitosan complex vectors were synthesized using reductive amidation.2.The combined samples were detected in light within the infrared spectrum using theFourier transform infrared (FTIR) spectrometer to determine the folate-chitosan complexvectors.3.Samples were scaned by the UV/Vis spectrophotometer.4.Folate coupling radioswere determined using folate concentration- absorbance standard curve.
     Results: 1.The purified folate-chitosan complex vectors were obtained and the sampleswere stramineous, exquisite and adqulis fine powder.The solutions were tasteless,stramineous and transparent.2.The results of infrared absorption spectrum showed thereaction key -CO-NH- between the chitosan and folate corresponding to a new bigabsorption peak at 1563~(-1)cm in the folate-chitosan complex samples.3.The results detectedby the UV/Vis spectrophotometer showed a big ultraviolet absorption peak at 280nm in thefolate-chitosan complexes which was the signal of successful coupling of folate.4.Therewas a good linear relationship between the absorbance of folate and the amount of folate infolate-chitosan complexes from 5.15ug/ml to 30.9μg/ml.The folate tandard curveregression equation was A = 0.0127C + 0.0116, R~2=0.9983.There were four folate-chitosan complexes with different folate coupling radio (3%, 7.5%, 11.2% and 17%).
     Conclusions: We successfully synthesized the folate-chitosan complex vectors usingreductive amidation.By adding different amount of folate and chitosan, we all synthesizedfour folate-chitosan complex vectors with different folate coupling radio at the samereaction condition.The results illustrated that the modification of chitosan can be obtainedby the combination reaction to the active amines of chitosan molecules, and so can changethe physical chemistry function of them.
     PartⅡPeparation of folate modified chitosan siRNA nanoparticles andmeasurement of properties
     Objective: To synthesize folate modified chitosan PshRNA nanoparticles (FA-CS-PshRNA)and chitosan PshRNA nanoparticles (CS-PshRNA) and detected their appearance anddiameters.To study the cytotoxity and transfect efficiency to different cell lines andprotective function for DNA of nanoparticles.
     Methods: 1.Folate modified chitosan PshRNA nanoparticles (FA-CS-PshRNA) and chitosanPshRNA nanoparticles (CS-PshRNA) were synthesized using the complex coacervationmethod.2.The appearance and diameters of samples with different folate coupling radiowere detected using transmission electron microscope.3.The protective and packingfunction of different nanoparticles for plasmid DNA was identified by the enzymeprotection experiment.4.MTT method was used to detected the cytotoxity of nanoparticlesto different gynecologic tumor cell lines ((SKOV3、A2780、CAOV3、HeLa and MCF-7).5.The transfection efficiency nanoparticles was examined in different gynecologic cancer cells, such as cervical cancer cell lines HeLa, ovarian cancer cell lines SKOV3 and breastcancer cell lines MCF-7 which were all over-expressing folate receptor.The transfectionwas carried in vitro culture environment.The transfection efficiency of nanoparticles wasanalyzed with flow cytometry and cells were observed by invert fluorescence microscopeand taken photos.
     Results: 1.Folate modified chitosan PshRNA nanoparticles (FA-CS-PshRNA) and chitosanPshRNA nanoparticles (CS-PshRNA) were successfully synthesized using the complexcoacervation method and the nanoparticle solutions were transparent, colorless andtasteless.2.The results of transmission electron microscope showed that the nanoparticleswere found to be near spherical appearance with homogeneous structure and smoothsurface.The particle diameter of chitosan PshRNA
     nanoparticles was 138.4±0.7nm, and the diameter of 4 kinds of folate modified chitosanPshRNA nanoparticles (folate coupling Radio: 3%、7.5%、11.2%和17% )were 289.6±0.7nm、78.1±0.3nm、186.6±0.6nm and 212.2±0.5±nm respectively.3.The result of the enzymeprotection experiment declared that chitosan and folate modified chitosan can effectivelycombine and condense the DNA and can protect them from degradation of DNAaseⅠ.4.The cototoxity of folate modified chitosan PshRNA and chitosan PshRNA nanoparticles todifferent cells were different.After treatment with chitosan PshRNA nanoparticles, the cellvitality of different cells (MCF-7、A2780、CAOV3、SKOV3 and HeLa) were 87.9±2.4%、91.4±1.0%、42.9±2.1%、102.0±4.0 and 97.4±1.1% respectively compared with the cellsbefore treatment, after treatment with folate modified chitosan PshRNA nanoparticles, the cellvitality were 63.0±2.5%、90.6±1.3%、50.5±0.7%、106.5±1.8% and 99.3±1.6% respectivelycompared with the cells before treatment.5.For MCF-7, SKOV3 cells, the transfectionefficiency were 16.8±1.2% and 24.3±0.7% using folate modified chitosan PshRNAnanoparticles and were significantly increased compared to the transfection efficiency(0.3±0.1% and 0.7±0.1%) using chitosan PshRNA nanoparticles (P<0.05).But for HeLacell, there was no statistics disparity between chitosan PshRNA nanoparticles and folate modified chitosan PshRNA nanoparticles (P>0.05).
     Conclusions: We successful synthesized the folate modified chitosan siRNA nanoparticelsand chitosan siRNA nanoparticles using the complex coacervation method.The differentfolate coupling radio can affect the diameters of nanoparticles and when the folate couplingradio was 7.5%, the diameter was smallest (78.1±0.3nm).The results illustrated thatchitosan and folate modified chitosan can all effectively combined and condensed the DNAand can protect them from degradation of DNAaseⅠ.The transfection efficiency of folatemodified chitosan siRNA nanoparticles were significantly increased compared to thetransfection efficiency of chitosan siRNA nanoparticles, this declared that frommodification of folate, the transfection efficiency of chitosan nanoparticles wassignificantly increased.
     PartⅢEstablishment of the drug resistant SKOV3 ovarian cancer cell lineand study of drug resistance
     Objective: To induce and culture the multidrug resistant SKOV3 ovarian cancer cell line(SKOV3-ts) using Paclitaxel, and measured the expression of MDR1 gene encodingprotein P-gp in parent cell line SKOV3 and drug resistant cell line SKOV3-ts.To explorethe correlation between the expression of multidrug resistant gene 1 (MDR1) and multidrugresistance (MDR).To supply the cytology foundation for the study of the reversal effectof folate modified chitosan siRNA nanoparticles on ovarian cancer MDR.
     Methods: 1.The SKOV3-ts cell line was induced and culture by concentration gradientmethod in vitro and paclitaxel was used as inductor.2.IC_(50) of the cells to paclitaxel andadriamycin in parent cell line SKOV3 and drug resistant cell line SKOV3-ts were measuredby MTT assay.3.Western-blot and laser scanning confocal microscope (LSCM) were usedto detect the expression of P-gp in parent cell line SKOV3 and drug resistant cell lineSKOV3-ts.
     Results: 1.The SKOV3-ts cell line was successfully established using concentrationgradient method.The cells were bigger than the parent cell line SKOV3.The appearance ofcell was changed from spindle shape to irregular shape and some cells were star like andbranch like patterns.2.The results of western-blot showed that expression level of P-gpwas significant increased in SKOV3-ts cells (1.15±0.02) compared with SKOV3 cells(0.08±0.01) (P<0.05).Photos of LSCM illustrated that there was trace quantity ofP-gp expression in SKOV3 cells.But in SKOV3-ts cell membranes, there was strong P-gpexpression.3.IC_(50) of SKOV3 and SKOV3-ts cells to paclitaxel were 0.0048±0.0002 and0.3957±0.0075 respectively, there was significant statistics meaning (P<0.05), and IC_(50)of SKOV3 and SKOV3-ts cells to adriamycin were 0.0066±0.0006 and 0.2210±0.0046respectively, there was significant statistics meaning (P<0.05).
     Conclusions: We successfully established the multidrug resistant SKOV3 ovarian cancercell line SKOV3-ts by concentration gradient method in vitro.The expression of P-gp ofdrug resistant cells SKOV3-ts was significantly higher than parent cell line SKOV3, andthe IC_(50) of SKOV3-ts cells to paclitaxel and adriamycin were increased compared withSKOV3 cells.This illustrated that there was apparent correlation between over-expressionof MDR1 and MDR of SKOV3-ts cells.So SKOV3-ts cells obtained drug resistance andcan be used as cell model for the study of the reversal effect of folate modified chitosansiRNA nanoparticles on ovarian cancer MDR.
     PartⅣTargeted reversal of multidrug resistance in SKOV3-ts cells by folatemodified chitosan siRNA nanoparticles
     Objective: To detect the effect of chitosan PshRNA nanoparticles and folate modifiedchitosan PshRNA nanoparticles on the expression of MDR1 in SKOV3 cells.To explorethe changes of drug resistance in SKOV3-ts cells treated by nanoparticles aftermodification of folate.
     Methods: 1.The folate modified chitosan PshRNA and chitosan PshRNA nanoparticleswere transfected into the SKOV3-ts cells in vitro culture process.(PshRNA was theeukaryonic expression plasmid whicj can express siRNA targeting MDR1 gene, so called chitosansiRNA and chitosan siRNA nanoparticles.2.The expression level of MDR1 mRNA inSKOV3-ts cells were detected by RT-PCR before and after transfection.3.The expressionlevel of P-gp in SKOV3-ts cells were detected by western-blot before and after transfection.4.The IC_(50) of SKOV3-ts cells to paclitaxel were detected by MTT assay before and aftertransfection.
     Results: 1.The results of the half quantitative RT-PCR showed that the MDR1 expressionin SKOV3-ts cells transfected by chitosan siRNA and folate modified chitosan siRNAnanoparticles were 0.75±0.01, 0.27±0.01, and there was significant statistic meaning (P<0.05).2.The results of the half quantitative western-blot showed that the P-gpexpression in SKOV3-ts cells transfected by chitosan siRNA and folate modified chitosansiRNA nanoparticles were 0.62±0.01、0.12±0.01, and there was significant statisticmeaning (P<0.05).3.The results of MTT assay showed that the IC_(50) of SKOV3-ts cells to paclitaxel transfected by chitosan siRNA and folate modified chitosan siRNAnanoparticles were 0.3830±0.0096和0.0353±0.0006, and there was significant statisticmeaning (P<0.05).
     Conclusions: Through folate targeted modification, folate modified chitosan siRNAnanoparticles can effectively decreased the expression of MDR1 mRNA and P-gp and canreverse the IC_(50) of SKOV3-ts cells to paclitaxel.Folate modified chitosan siRNAnanoparticles can reverse the MDR of ovarian cancer mediated by MDR1.
引文
1. Coukos G and Rubin S. Chemotherapy resistance in ovarian cancer: new molecular perspective [J]. Obstet Gynecol, 1998, 91 (5 Pt 1): 783-792.
    2. Longley DB and Johnston PG. Molecular mechanisms of drug resistance [J]. J Patho,2005, 205(2): 275-292.
    3. Juranka PF, Zastawny RL and Ling V. P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins [J]. FASEB J, 1989, 3(14):2583-2592.
    4. Sarkadi B, Homolya L, Szakacs G and Varadi A. Human multidrug resistance ABCB transporters: participation in a chemoimmunity defense system [J]. Physiol Rev, 2006,86(4): 1179-1236.
    5. Avendano C and Menendez JC. Inhibitors of multidrug resistance to antitumor agents (MDR) [J]. Curr Med Chem, 2002, 9 (2): 159-193.
    6. Nobili S, Landini I, Giglioni B, Mini E. Pharmacological strategies for overcoming multidrug resistance [J]. Curr Drug Targets, 2006, 7(7): 861-879.
    7. Tan BJM, Piwnica-WormsD and Ratner L. Multidrug resistance transporters and modulation [J]. Current Opinion in Oncology, 2000, 12: 450-458.
    8. Fisher AA, Ye D, Sergueev DS, Fisher MH, Shaw BR and Juliao RL. Evaluating the specificity of antisense oligonucleotide conjugates: a DNA array analysis [J]. J Biol Chem, 2002, 277(25): 22980-22984.
    9. Nagata J, Kijima H, Hatanaka H, Asai S, Miyachi H, Abe Y, Yamazaki H, Nakamura M,Watanabe N, Mine T, Kondo T, Scannion KJ and Ueyama Y. Reversal of drug resistance using hammerhead ribozymes against multidrug resistance-associated proteinand multidrug resistance 1 gene [J]. Int J Oncol, 2002, 21: 1021-1026.
    10. Xu D, Te D, Fisher M and Juliano RL. Selective inhibition of P-glycoprotein expression in multidrug-resistance tumor cells by designed transcriptional regulator [J]. J Pharmacol Exp Ther, 2002, 302(3): 963-971.
    11. Khvorova A, Reynolds A and Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias [J]. Cell, 2003,115(2): 209-216.
    12. Lin R, Hsieh CY and Lam KS. New approaches in identifying drugs to inactivated oncogene products [J]. Semin Cancer Biol, 2004, 14 (1): 13-21.
    13. Meister G and Tuschl T. Mechanisms of gene silencing by double-stranded RNA [J].Nature, 2004, 431(7006): 343-349.
    14. Kim DH and Rossi JJ. Strategies for silencing human disease using RNA interference [J]. Nature Rev. Genet, 2007, 8(3): 173-184.
    15. Matranga C, Tomari Y, Shin C, Bartel DP and Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes [J]. Cell,2005, 123(4): 607-620.
    16. Liu J, Valencia-Sanchez MA, Hannon GJ and Parker R.MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies [J]. Nature Cell Biol, 2005,7(7): 719-723.
    17. Hutvagner G and Zamore, PD. A microRNA in a multiple-turnover RNAi enzyme complex [J]. Science, 2002, 297(5589): 2056-2060.
    18. Kobayashi N, Matsui Y, Kawase A, Hirata K, Miyaqishi M, Taira K, Nishikawa M and Takakura Y. Vector-based in vivo RNA interference: dose- and time- dependent suppression of transgene expression [J]. J Pharmacol Exp Ther, 2004, 308(2): 688-693.
    19. Nieth C, Priebsch A, Stege A and Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi) [J]. FEBS Lett, 2003,545(2-3): 144-150.
    20. Lage H. MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance [J]. Curr Drug Targets, 2006, 7 (7): 813-821.
    21. ELbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschi T. Duplexes of 21-nucleotide RNAs mediated RNA interference in cultured mammalian cells [J].Nature, 2002, 411 (6836) : 494-498.
    22. Boulaiz H, Marchal JA, Prados J, Melguizo C and Aranega A. Non-viral and viral vectors for gene therapy [J]. Cell Mol Biol (Noisy-le-grand), 2005, 51(1): 3-22.
    23. Cross D and Burmester JK. Gene therapy for cancer treatment: past, present and future [J]. Clin Med Res, 2006, 4(3): 218-227.
    24. Teichler ZD. US gene therapy in crisis [J]. Trends genet, 2000. 16(6): 272-275. Rev
    25. Lv H, Zhang S, Wang B, Cui S and Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery [J]. J Control Release, 2006,114(1): 100-109.
    26. Aramaki Y, Takamo S and Tsuchiya S. Induction of apoptosis in macrophages by cationic liposomes [J]. FEBS Lett, 1999 3: 472-276.
    27. Juliano RL and Ling V. A surface glycoprotein modulating drug permeability in chinase hamster ovary cell mutants [J]. Biochim Biophys Acta, 1976, 455(1): 152-162.
    28. Inaba M, Kobayashi H, Sakurai Y and Johnson RK. Active efflux of daunorubicin and adriamycin in sensitive and resistant sublines of P388 leukemia [J]. Cancer Res, 1979,39(6 Pt 1): 2200-2203.
    29. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I and Willingham MC.Cellelar localization of the multidrug-resistance gene product P-glycoprotein in normal human tissuses [J]. Proc Natl Acad Sci USA, 1987, 84(21):7735-7738.
    30. Kusuhara H, Suzuki H and Sugiyama Y. The role of P-glycoprotein and canalicular multispecific organic anion transporter in the hepatobiliary excretion of drugs [J]. J pharm Sci, 1998, 87(9): 1025-1040.
    31. Tanigawara Y. Role of P-glycoprotein in drug diaposition [J]. Ther Drug Monit, 2000,22(1): 137-140.
    32. Wijnholds J, Delange EC, Scheffer GL, Van den Berg DJ, Mol CA, Van der Valk M,Schinkel Ah, Schinekel Ah, Scheper RJ, Breimer DD and Borst P. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier [J]. J Clin Invest, 2000,105(3): 279-285.
    33. Matheny CJ, Lamb MW, Brouwer KR and Pollack GM. Pharmacokinenic and pharmacodynamic implication of P-glycoprotein modulation [J]. Pharmacotherapy,2001, 21(7): 778-796.
    34. Hsu CY and Uludag H. Effects of size and topology of DNA molecules on intracellular delivery with non-voral gene carriers [J]. BMC Biotechnol, 2008, 29: 8-23.
    35. Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM and Auqust JT.DNA-polycation nanospheres as non-viral gene delivery vehicles [J]. J Control Release, 1998, 53(1-3): 183-193.
    36. Venkatesh S and Smith TJ. Chitosan-membrane interactions and their probable role in chitosan-mediated transfection [J]. Biotechnol Appl Biochem, 1998 27(Pt3): 265-267.
    37. Basarkar A and Singn J. Nanoparticulate systems for polynucleotide delivery [J]. Int J Nanomedicine, 2007, 2(3): 353-360.
    38. Borchard G. Chitosans for gene delivery [J]. Adv Drug Deliv Rev, 2001, 52(2):145-150.
    39. Guang Liu W and De Yao K. Chitosan and its derivatives- a paomising non-viral vector for gene transfection [J]. J Control Release, 2002, 82(1): 1-11.
    40. Gao S, Chen J, Dong L, Ding Z, Yang YH and Zhang J. Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector [J].Eur J Pharm Biopharm, 2005 60(3):327-334.
    41. Campbell IG, Jones TA, Foulkes WD and Trowsdale J. Folate-bingding protein is a marker for ovarian cancer [J]. Cancer Res, 1991, 51(19): 5329-5338.
    42. Jhaveri Ms, Rait AS, Chung KN, Trepel JB and Chang EH. Antisense oligonucleotides targeted to the human alpha folate receptor inhibit breast cancer cell growth and sensitize the cells to doxorubicin treatment [J]. Mol Cancer Ther, 2004 3(12):1505-1212.
    43. Siegel BA, Dehdashti F, Mutch DG, Podoloff DA, Wendt R, Sutton GP, Burt RW, Ellis PR, Mathias CJ, Green MA and Gershenson DM.Evaluation of ~(111)In-DTPA-Folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results [J]. J Nucl Med, 2003, 44(5): 700-707.
    44. Anderson RGW, Kamen BA, Rothberg KG and Lacey SW. Potocytosis: sequestration and transport of small molecules by caveolae [J]. Science, 1992, 255(5043): 410-411.
    45. Low PS, Henne WA and Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases [J]. Ace Chem Res, 2008, 41(1): 120-129.
    46. Wang S and Low PS. Folate-mediated targeting of antineoplastic drugs, imaging agents and nucleic acid cancer cells [J]. J Control Rel, 1998, 53(1-3): 39-48.
    47. Gottschalk S, Cristiano RJ, Smith LC and Woo SI. Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression [J].GeneTher, 1994,1(3): 185-191.
    48. Reddy JA, Haneline LS, Srour EF, Antony Ac, Clapp DW and Low PS. Expression and functional characterization of the beta-isoform of the folate receptor on CD34(+)cells[J]. Blood, 1999, 93(11): 3940-3948.
    49. Maziarz KM, Monaco HL, Shen F and Ratnam M. Complete mapping of divergent amono acids responsible for differential ligand binding of folate receptors alpha and beta [J]. J Biol Chem, 1999, 274(16): 11086-11091.
    50. Ross JF, Wang H, Behm FG, Mathew P, Wu M, Booth R and Ratnam M. Folate receptor type betais a neutrophilic linege marker and is differentially expressed in myeloid leukemia [J]. Cancer, 1999, 85(2): 348-357.
    51. Kalli KR, Oberg Al, Keeney GL, Chriatianson TJ, Low PS and Knutson KL. Hartmann LC. Foalte receptor alpha as a tumar target in epithelial ovarian cancer [J].Gynecologic Oncology, 2008,108 (3) :619-626.
    52. Chan P, Kurisawa M. Chung JE and Yang YY. Synthesis and characterization of chitosan-g-poly (ethyleneglycol)-folate as a non-viral carrier for tumor-targeted gene delivery [J]. Biomaterial, 2007, 28(3): 540-549.
    53. Mansouri S, Cuie Y, Winnik F and Shi Q, Lavigne P. Characterization of folate-chitosan-DNA nanoparticles for gene therapy [J]. Biomaterials, 2006, 27(9): 2060-2065.
    54. Chen JH, Ling R, Yao Q, Wang L, Ma Z, Li Y, Wang Z and Xu H. Enhanced antitumor efficacy on hepatoma-beasing rats with adriamycinloaded nanoparticles administered into hepatic artery [J]. World J Gastroenterol, 2004, 10(13): 1989-1991.
    55. Ito A, Matsuoka F, Honda H and Kobayashi T. Heat shork protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles [J]. Cancer Gene Ther, 2003, 10(12): 918-925.
    56. Zuber G, Zammut-Italiano L, Dauty E and Behr JP. Targeted gene delivery to cancer cells: directed assembly of nanometric DNA particles coated with folic acid [J]. Angew Chem Int Ed Engl, 2003, 42(23): 2666-2669.
    57. Lu YJ and Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents [J]. Adv Drug Deliv Rev 2002: 54: 675-693.
    58. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr and Kamen BA. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues [J]. Cancer Res, 1992, 52: 3396-3401.
    59.张锐.现代材料分析方法[M].化学工业出版社,2007.第三章.
    60.蒋挺大.壳聚糖[M].化学工业出版社,2001,1-12.第一章.
    61.张庆云,张利平,胡迎庆,郭洪声.壳聚糖在靶向制剂中的应用进展[J].天津药学,2004,16(2):56-59.
    62. Lee KY, Kwon IC, Kim YH, Jo WH and Jeong SY. Preparation of chitosan self-aggregates as a gene delivery system [J]. J Control Release, 1998, 51(2-3): 213-220.
    63. Park IK, Kim TH, Park YH, Shin BA, Choi ES, Chowdhury Eh, Akaike T and Cho CS. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier [J]. J Control Release, 2000, 76(3): 97-108.
    64. Su D and Ji Am. Synthesis and characterization of chitosan-DNA nanoparticles as gene carriers [J]. Nan Fang Yi Ke Da Xue Xue Bao, 2007, 27(5): 595-598.
    65. Dauty E, Rermy JS, Zuber G and Behr JP. Intracellular delivery of nanometric DNA particles via the folate receptor [J]. Bioconjug Chem, 2002,13(4): 831-839.
    66. Benns JM and Kim SW. Tailoring new gene delivery design for specific targets [J]. J Drug Target, 2000, 8(1):1-12.
    1. Dastan T and Turan K. In vitro characterization and delivery of chitosan-DNA microparticles into mammalian cells [J]. J Pharn Pharm Sci, 2004, 7(2):205-214.
    2. Zhao QQ, Chen JL, Han M, Liang WQ, Tabata Y and Gao JQ. Combination of eth poly (ethylenimine) and chitosan induce high gene transfection efficiency and low cytotoxicity [J]. J Biosci Bioeng, 2008, 105(1):65-68.
    3. Sato T, Ishii T and Okahata Y. In vitro gene delivery mediated by chitosan. Effect of PH,serum, and molecular mass of chitosan on the fransfection efficiency [J]. Biomaterials,2001, 22(15):2075-2080.
    4. Huang M, Fong CW, Khor E and Lim LY. Transfection efficiency of chitosan vectors:effect of polymer molecular and degree of deacetylation [J]. J Control Release, 2005,106(3):391-406.
    5. Kim TH, Park IK, Nah JW, Choi YJ and Cho CS. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier [J]. Biomaterials.2004, 25(17): 3783-3792.
    6. Kim YK, Choi JY, Yoo MK, Jiang HL, Arote R, Je YH, Cho MH and Cho CS.Receptor-mediated gene delivery by folate-PEG-baculovirus in vitro [J]. J Biotechnol,2007, 131(3):353-361.
    7. Kalli KR, Oberg AL, Keeney GL, Chistianson TJ, Low PS, Knutson KL and Hartmann LC. Folate receptor alpha as a tumor target in epithelial ovarian cancer [J]. Gynecol Oncol, 2008, 108(3):619-626.
    8. Hartmann LC, Keeney GL, Lingle WL, Christianson TJ, Varghese B, Hillman D, Oberg AL and Low PS. Folate receptor overexpression is associated with poor outcome in breast cancer [J]. Int Cancer, 2007, 121(5):938-942.
    9. Zhang Q, Xiang G, Zhang Y, Yang K, Fan W, Lin J, Zeng F and Wu J. Increase of doxorubicin sensitivity for folate receptor positive cells when given as the prodrug N-(phenylacetyl) doxorubicin in combination with folate-conjugated PGA [J]. J Pharm Sci, 2006, 95(10):2266-2275.
    10. Lee D, Lockey R and Mohapatra S. Folate receptor-mediated cancer cell specific gene delivery using folic acid-conjugated oligochitosans [J]. J Nanosci Nanotechnol, 2006,6(9-10): 2860-2866.
    11. Ross JF, Chaudhuri PK and Ratnam M. Different regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implication [J]. Cancer, 1994, 73(9):2432-2443.
    12. Toffoli G., Gernigoi C, Russo A, Gallo A, Bagnoli M, and Boiocchi M. Overexpression of folate binding protein in ovarian cancers [J]. Int. J. Cancer, 1997, 74:193-198.
    13. Knutson KL, Kcro CJ, Erskine CL, Goodman K, L. Kelemen E, Wettstein PJ, Low PS,Hartmann LC and Kalli KR. T-cell immunity to the folate receptor alpha is prevalent in woman with breast or ovarian cancer [J]. J Clin Oncol, 2006, 24(26):4254-4261.
    14. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski Jr VR and Kamen BA. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues [J]. Cancer Res,1992, 52(12):3396-3401.
    15. Steven PJ, Sekido M and Lee RJ. A folate receptor-target lipid nanoparticles formulation for a lipophilic paclitaxel prodrug [J]. Pharm Res, 2004, 21(12):2153-2157.
    16. Lundstrom K. Latest development in viral vectors for gene therapy [J]. Trends Biotechno Rev, 2003, 21(3):117-122.
    17. Bergen JM, Park IK, Horner PJ and Pun SH. Nonviral approaches for neuronal delivery of nucleic acids [J]. Pharm Res, 2008, 25(5):983-998.
    18. Maclaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M. and Rolland AP. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery [J]. J Controll Release, 2001, 56(1-3): 259-272.
    19. Dufes C, Muller JM, Couet W, Olivier JC, Ucheqbu IF and Schatzlein AG. Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles [J]. Pharm Res, 2004,21(1):101-107.
    20. Hwang SH., Hayashi K, Takayama K and Maitani Y. Liver-targeted gene transfer into a human hepatoblastoma cell line and in vivo by sterylglucoside-containing cationic liposomes [J]. Gene Ther, 2001, 8(16):1276-1280.
    21. Panyam J and Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue [J]. Adv Drug Deliv Rev, 2003, 55(3):329-347.
    22. Prabha S, Zhou WZ, Panyam J and Labhasetwar V. Size dependency of nanoparticles-mediated gene transfection: Studies with fractionated nanoparticles [J].Int. J. Pharm, 2002, 244 (1-2): 105-115.
    23. Kamikawa Y, Nishii M and Kato T. Self-assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures [J].Chemitry, 2004, 10(23):5942-5951.
    24. Richardson SC, Kolbe HV and Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA [J]. Int J Pharm, 1999, 178(2):231-243.
    25. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E and Fernandes JC. Characterization of folate-chitosan-DNA nanoparticles for gene therapy [J]. Biomaterials, 2006, 27(9): 2060-2065.
    26. Gao S, Chen J, Dong L, Ding Z, Yang YH and Zhang J. Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector [J].Eur J Pharm Biopharm,2005, 60(3):327-334.
    27. Corsi K, Chellat F, Yahia L and Fernandes JC. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles [J]. Biomaterials, 2007,24(7):1255-126.
    28. Germershaus O, Mao S, Sitterberg J, Bakowsky U and Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure-activity relationships in vivo [J]. J Control Release, 2008, 125(2): 145-154.
    29. Douglas KL, Piccirillo CA. and Tabrizian M. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors [J]. Eur J Phann Biopharm, 2008, 68(3): 676-687.
    1. Coukos G and Rubin S. Chemotherapy resistance in ovarian cancer: new molecular perspective [J]. Obstet Gynecol, 1998, 91 (5 Pt 1): 783-792.
    2. Di Nicolantonio F, Mercer SJ, Kniqht LA, Gabriei FG, Whitehouse PA, Sharma S, Fernando A, Glaysher S, Di Palma S, Johnson P, Somers SS, Toh S, Higgin B, Lamont A, Gulliford T, Hurren J, Yiangou C and Cree IA. Cancer cell adaptation to chemotherapy [J]. BMC Cancer, 2005 18(5): 78-81.
    3. Schondorf T, Neumann R, Benz C, Becker M, Riffelmann M, Gohring UJ, Sartourius J, Von Konig CH, Breidenbach M, Valter MM, Hoopmann M, Di Nicolantonio F and Kurbacher CM. Cisplatin, Doxorubicin and paclitaxel induce mdr1 gene transcription in ovarian cancer cell lines [J]. Recent Results Cancer Res, 2003, 161: 111-116.
    4. Cheng G, Li Y and Tian F. Comparison of stepwise and pulse induced cisplatin-resistant of ovarian cancer cell sublines [J]. Zhonghua Zhongliu Za Zhi, 2001, 23(4): 305-308
    5. Parekh H, Wiesen K and Simpkins H. Acquisition of taxol resistance via P-glycoprotein and non- P-glycoprotein mediated mechanisms in human ovarian carcinoma tissues[J]. Biochem Pharmacol, 1997, 53(4): 461-470.
    6.章静波.组织和细胞培养技术[M].北京:人民卫生出版社,2002:111-112.
    7.赵斌,葛金芳,朱娟娟,黄晓辉,李俊.小议在MTT法测细胞增殖抑制率中IC_(50)的计算方法[J].安徽医药,2007,11(9):834-836.
    8. Chen CJ, Clark D, Ueda K, Pastan I, Gottesman MM and Roninson IB. Genomic organization of the human multidrug resistance (MCR1) gene and origin of P-glycoproteins [J]. The Journal of Biological Chemistry, 1990, 265(1): 506-514.
    9. Juranka PF, Zastawny RL and Ling V. P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins [J]. FASEB J, 1989, 3(14): 2583-2592.
    10. Sarkadi B, Homolya L, Szakacs G and Varadi A. Human multidrug resistance ABCB transporters: participation in a chemoimmunity defense system [J]. Physiol Rev, 2006, 86(4): 1179-1236.
    11. Baars C, Loscher W, Leeb T, Becker A and Potschka H. Polymorphic variants of the multidrug resistance gene Mdrla and response to antiepileptic drug treatment in the kindling model of epilepsy [J]. Eur J Pharmacol, 2006, 550(1-3) 54-61.
    12. Bradley G, Naik M and Ling V. P-glycoprotein expression in multidrug-resistant human ovarian cancinoma cell lines [J]. Cancer Res, 1989, 49(10): 2790-2795.
    13. Lord-Fontaine S, Agostineli E, Przybytkowski E and Averrill-Bates DA. Amine oxidase spermine and hyperthermia induce cytotoxicity in P-glycoprotein overexpresing multidrug resistant Chinese hamster ovarian cells [J]. 2001, 79(2): 165-175.
    14. Zhang XG, Miao J, Dai YQ, Du YZ, Yuan H, Hu FQ. Reversal activity of nanostructured lipid carriers loading cytotoxity drug in multi-drug resistant cancer cells [J]. Int J Pharm, 2008, 361(1-2):239-244.
    1. Siegel BA, Dehdashti F, Mutch DG, Podaloff DA, Wendt R, Sutton GP, Burr RW, Ellis PR, Mathias CJ and Green MA. Gershshenson DM. Evaluation of~(111)In-DTPA-Folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results [J]. J Nucl Med, 2003, 44(5): 700-707.
    2. Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases [J]. Acc Chem Res, 2008, 41(1): 120-129.
    3. Wang S, Low PS. Folate-mediated targeting of antineoplastic drugs, imaging agents and nucleic acid cancer cells [J]. J Control Rel, 1998, 53(1-3): 39-48.
    4. Gottschalk S, Cristiano RJ, Smith LC and Woo SL. Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression [J]. Gene Ther, 1994, 1(3): 185-191.
    5. Chan P, Kurisawa M, Chung JE and Yang YY. Synthesis and characterization of chitosan-g-poly (ethyleneglycol)-folate as a non-viral carrier for tumor-targeted gene delivery [J]. Biomaterial, 2007, 28: 540-549.
    6. Zhang XG, Miao J, Dai YQ, Du YZ, Yuan H and Hu FQ. Reversal activity of nanostructured lipid carriers loading cytotoxity drug in multi-drug resistant cancer cells [J]. Int J Pharm, 2008, 361(1-2): 239-244.
    7. Hattori Y, Sakaguchi M and Maitani Y. Folate-liked lipid-based nanoparticles deliver a NFkappaB decoy into activated murine macrophage-like RAW264.7 cells [J]. Biol Pharm Bull, 2006, 29(7): 1516-1520.
    8.赵斌,葛金芳,朱娟娟.小议在MTT法测细胞增殖抑制率中IC_(50)的计算方法[J].安徽医药,2007,11(9):834-836.
    9. Paul CP, Good PD, Winer I and Engelke DR. Effective expression of small interfering RNA in human cells [J]. Nat Biotechnol, 2002, 20(5): 505-508.
    10. Duan Z, Brakora KA and Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells [J]. Mol Cancer Ther, 2004, 3(7): 833-838.
    11. Lage H. Therapeutic potential of RNA interference in drug-resistant cancers [J]. Future Oncol, 2009, 5(2): 169-185.
    12. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I and Willingham MC.Cellelar localization of the multidrug-resistance gene product P-glycoprotein in normal human tissuses [J]. Proc Natl Acad Sci USA, 1987, 84(21):7735-7738.
    13. Kusuhara H, Suzuki H and Sugiyama Y. The role of P,glycoprotein and canalicular multispecific organic anion transporter in the hepatobiliary excretion of drugs [J]. J pharm Sci, 1998, 87(9): 1025-1040.
    14. Tanigawara Y. Role of P-glycoprotein in drug diaposition [J]. Ther Drug Monit, 2000,22(1): 137-140.
    15. Wijnholds J, Delange EC, Scheffer GL, Van den Berg DJ, Mol CA, Van der Valk M,Schinkel AH, Scheper RJ, Breimer DD and Borst P. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier [J]. J Clin Invest, 2000,105(3): 279-285.
    16. Kim TH, Jiang HL, Nah JW, Cho MH, Akaike T and Cho CS. Receptor-mediated gene delivery using chemically modified chitosan [J]. Biomed mater, 2007, 2(3): 895-900.
    1. Coukos G, Rubin S. Chemotherapy resistance in ovarian cancer: new molecular perspective [J]. Obstet Gynecol, 1998, 91 (5 Pt 1): 783-792.
    2. Juranka PF, Zastawny RL and Ling V. P-glycoprotein: multidrttg-resistance and a superfamily of membrane-associated transport proteins [J]. FASEB J, 1989, 3(14): 2583-2592.
    3. Longley DB and Johnston PG. Molecular mechanisms of drug resistance [J]. J Patho, 2005, 205(2): 275-292.
    4. Baarrand MA, Broxterman HJ, Wright KA, Rabbitts PH and Twentyman PR. I mmunodetection of a 190 KD protein non-P-glycoprotein-containing MDR cells derived from small cell and non-small-cell lung tumors [J]. Br. Cancer, 1992, 65: 21-25.
    5. Zaman GJ, Lankelma J, Van-Tellingen O, Beijnen J, Dekker H, Paulusma C, Oude Elferink RP, Baas F and Borst P. Role of glutathione in the export of Compounds from cells by the multidrug resistance associated protein [J]. Proc Natl Acad Sci USA, 1995, 92(17): 7690-7694.
    6. Scheffer GL, Schroeijers AB, Izquierdo MA, Wiemer EA and Scheper RJ. Lung resistance related protein/ major vault protein and vaults in multidrug resistant cancer[J]. Curr Opin Oncol, 2000, 12 (6): 550-556.
    7. Scheffer GL, Wingaard FL, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM, Meijer CJ, Clever HC and Scheper RJ. The drug resistance related protein LRP is a major vault protein [J]. Nat Med, 1995, 1: 578-581.
    8. Kage K, Tsukahara S, Sugiyama T, Asada S, Ishikawa E, Tsuruo T and Suqimoto Y. D ominant negative inhibition of breast cancer Resistance protein as drug efflux pump "through the inhibition of dependent homodimerization [J] .Int J Cancer, 2002, 97 (5):626-630.
    9. Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD, Miyake K, Resau JH and Bates SE. The multidrug resistant phenotype associated with overexpression of the new ABC half transporter, MXR( ABCG2) [J].J Cell Sci, 2000,113(Pt 11):2011-2021.
    10. Goto S, Yoshida K, Morikawa T, Urata Y, Suzuki K and Kondo T. Augmentation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells [J]. Cancer Res, 1995, 55(19):4297-4299.
    11. Zimi N, Martelli AM, Subatelli P, Santi S, Neqri C, Astaldi Ricotti GC and Maraldi NM. The 180kD isoform of topoiso-merase II is localized in the nucleolus and belongs to the structural elements of the nucleolar remnant [J].Exp Cell Res, 1992,200(2):460-466.
    12. Vikhanskaya F, Clerico L, Valenti M, Stanzione MS, Broggini M, parody S and Russo P. Mechanism of resistance to cisplatin in a human ovarian-carcinoma cell line selected for resistance to doxorubicin possible role of P53 [J].Int Cancer, 1997, 72(1):155-157.
    13. Beck JF, Brugger D, Brischwein K,Liu C, Bader P, Niethammer D and Gekeler V.Anticancer drug mediated induction of multidrug resistance associated genes and protein kinase C isozymes in the T lymphoblastoid cell line CCRF CEM and in blasts from patients with acute lymphoblastic leukemias [J]. Jpn J Cancer Res, 2001, 92 (8):896-903.
    14. Dalton WS, Grogan TM, Meltzer PS, Scheper RJ, Durie BG, Taylor CW, Miller TP and Salmon SE. Drug-resistance in multiple myeloma and nonHodgkin's lymphoma:detection of P-glycoprotein and potential circumvention by addition of verapamil chemotherapy [J]. J Clin Oncol, 1989, 7: 415-424.
    15. Tolomeo M, Gancitano RA, Musso M, Porretto F, Perricone R, Abbadessa V, and Cajozzo A. Comparative activity of idarubicin and idarubicinol in combination with cyclosoprin A in multidrug-resistant leukemia cells [J]. Activity of cyclosporine A and a non immunosuppressive cyclosporine against multidrug resistant leukemic cell lines [J]. Cancer Commun, 1989, 1: 35-43.
    16. Liu ZH, Chen Y, He YP. Significance of tamoxifen (TAM) in the combination chemotherapy of human multidrug-resistant bile duet carcinoma cell line [J]. Cancer Research and clinic, 2008, 20 (11): 734-736.
    17. Benderra Z, Trussardi A, Morjani H, Villa AM, Doglia SM and Manfait M. Regulation of cellular glutathione madulates nuclear accumulation of daunorubicin in human MCF-7 cells overexpression multidrug resistance associated protein [J]. Eur J Cancer, 2000, 36(3): 428-434.
    18. Motomura S, Motoji T, Takanashi M, Wang YH, Shiozaki H, Sugawara I, Aikawa E, Tomida A, Tsuruo T, Kanda N and Mizoguchi H. Inhibition of P-glycoprotein and recovery of drug sensitivity of human acute leukemic blast cells by multidrug resistance gene (mdr1) antisense oligonucle otides[J]. Blood, 1998, 91(9): 3163-3171.
    19.王海,陈孝平,裘法祖.核酶对人肝癌细胞多药耐药性的逆转[J].中华外科杂志,2004,42(7):424-427.
    20. Li B, Ye T, Zhao L, Li DH, Gou XH, Zhao LY, Han L, Chen L, Yan LN and Gong JP. Effects of multidrug resistance antisense RNA on the chemosensitivity of hepatocellular carcinoma cells[J]. Hepatobiliary Pancreat Dis Int, 2006, 5(4): 552-559.
    21. Tuschl T, Zamore PD, Lehmann R, Bartel DP, and Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro [J]. Genes Dev, 1999, 13: 3191-3197.
    22. Priebsch A, Rompe F, Tonnies H, Kowalski P, Surowiak P, Stege A, Materna V and Lage H. Complete reversal of ABCG2 depending atypical multidrug resistance by RNA interference in human carcinoma cell [J]. Oligonucleotides, 2006, 16(3): 263-274.
    23. Lars A and John JR. RNAi therapeutics: principles, prospects and chanllenges [J]. Adv Drug Deliv Rev, 2007, 59(2-3): 75-86.
    24. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV and Woodle MC. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stablilized nanoparticle [J]. Nucleic Acids Research, 2004, 32(19): 1-10.
    25.向娟娟,朱诗国,吕文斌,邧建明,张必成,李江,李桂源.用氧化铁磁性颗粒作为基因载体的研究[J].癌症,2001,20(10):1009-1014.
    26. Luo D and Saltzman WM. Enhancement of transfection by physical concentration of DNA at the cell surface [J]. Nat Biot, 2000, 13: 893-895.
    27.何勤,张志荣,刘戟,徐超群.载TK基因聚丙交酯乙交酯纳米粒的性质及表达研究[J].药学学报,2004,39(4):30-33.
    28. Watnasirichaikul S, Rades T, Tucker IG and Davies NM. Effect of formulation variables on characteristics of poly (ethylcyanoarylate) nanocapsules prepared from W/O microemulsions [J]. Intl J Pharm, 2002, 235(1-2): 237-246.
    29. Panagi Z, Beletsi A, Evangelatos G, Livaniou E, Ithakissios DS and Avgoustakis K. Effect of dose of the biodistribution and pharmacokinetics of PLGA and PLGA-mPEG nanoparticles [J]. Intl J Pharm, 2001, 221(1-2): 143-152.
    30.张良珂,侯世祥,毛声俊.受体介导米托蒽醌白蛋白纳米粒肿瘤细胞靶向性研究[J].四川大学学报(医学版),2006,37(1):77-79.
    31. Wang M, Li Y, Wu J, Xu F, Zuo Y and Jansen JA. In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite / poly (vinyl alcohol)/gelatin composite [J]. J Biomed Mater Res A, 2008, 85(2): 418-426.
    32. Luykx DM, Peter RJ, Van-Ruth SM and Bouwmeester H. A review of analytical methods for the identification and characterization of nano delivery systems in food [J]. J Agric Food Chem, 2008, 56(18): 8231-8247.
    33.郝英魁,杨学东.载药壳聚糖纳米粒的研究进展[J].中国药学杂志,2005,40(17):593-597.
    34. Sato T, Ishii T and Okahata Y. In vitro gene delivery mediated by chitosan effect of PH, serum and molecular mass of chitosan on the transfection efficiency [J]. Biomaterials, 2001, 22(15): 2075-2080.
    35. Ishii T, Okahata Y and Sato T. Mechanism of cell transfection with plasmid/chitosan complexes [J]. Biochim Biophy Acta, 2001, 1514(1): 51-64.
    36. Zhang Y, Chen J, Zhang Y, Pan Y, Zhao J, Ren L Liao M, Hu Z, Kong L and Wang J. A novel PEGylation of chitosan nanoparticles for gene delivery [J]. Biotechnol Appl Biochem, 2007, 46(Pt 4): 197-204.
    37.许向阳,周建平,李玲,卢是玥 和 杨洁.N-正辛基-N'-琥珀酰基壳聚糖的制备及其对4中肿瘤细胞的亲和性[J].中国新药与临床杂志,2007,26(5):355-359.
    38. Zhao QQ, Chen JL, Han M, LiangWQ, Tabata Y and Gao JQ. Combination of poly (ethylenimine) and chitosan induces high gene transfection efficiency and low cytotoxicity [J]. J Biosci Bioeng, 2008, 105(1): 65-68.
    39. Campbell IG, Jones TA, Foulkes WD and Trowsdale J. Folate-binding protein is a marker for ovarian cancer [J]. Cancer Res, 1991, 51(19): 5329-5338.
    40. Sudimack J and Lee RJ. Targeted drug delivery via the folate receptor [J]. Adv Drug Deliv Rev, 2000, 41(2): 147-162.
    41. Chan P, Kurisawa M, Chung JE, and Yang YY. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery [J]. Biomaterials, 2007, 28(3): 540-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700