用户名: 密码: 验证码:
羟基喜树碱治疗神经母细胞瘤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     NB是儿童期最常见的颅外实体瘤,它不但恶性程度高、侵袭力强,而且早期转移率高、晚期病例多、治疗效果差。尤其是晚期高危病例,常因对一线药物不敏感导致耐药复发,长期生存率很低,是制约NB患儿生存率提高的主要原因。因此积极寻找有效的二线化疗药物是提高NB患儿生存率的重要手段。HCPT是我国利用天然资源优势研制出的纯天然生物碱抗肿瘤药,对多种肿瘤具有较好的疗效,且毒副作用较低、价格低廉。但其在小儿NB的治疗作用国内外尚未见报道。因此本研究通过体外实验结合临床治疗来探讨HCPT对NB的疗效,为探索NB新的、有效的化疗方案,提高生存率,提供理论基础与临床经验。
     第一部分羟基喜树碱对人神经母细胞瘤SMS-KCNR细胞增殖的影响
     目的:
     研究HCPT在体外对人NB细胞系SMS-KCNR细胞增殖和细胞周期的影响。
     方法:
     采用MTT法观察不同浓度的HCPT(2.5~200nM)作用不同时间(24h、48h、72h)后对SMS-KCNR细胞增殖的影响。同时应用平板集落形成试验观察不同浓度的HCPT(2.5nM、5nM、7.5nM、10nM、20nM)对SMS-KCNR细胞集落形成的影响。用不同浓度的HCPT(2.5nM、5nM、10nM、20nM)作用SMS-KCNR细胞24h及48h,碘化丙锭(PI)染色后用流式细胞仪检测并分析细胞周期的改变。
     结果:
     1.HCPT能显著抑制SMS-KCNR细胞增殖,并随药物浓度的升高和作用时间的延长而抑制作用增强,呈明显浓度和时间依赖性。
     2.在HCPT(2.5~200nM)作用24h及48h后SMS-KCNR细胞增殖抑制率分别为3.6~64.7%、12.5~91.7%,而2.5~20nM浓度范围HCPT作用72h的抑制率为36.7~97%。
     3.HCPT能明显抑制SMS-KCNR细胞集落形成,浓度为10nM和20nM时能完全抑制其集落形成。
     4.经流式细胞仪检测,不同浓度HCPT(2.5nM、5nM、10nM、20nM)作用SMS-KCNR细胞24h,使细胞周期阻滞于S期;作用48h使细胞周期阻滞于G2/M期。
     结论:
     HCPT能显著抑制SMS-KCNR细胞增殖和集落形成,其抑制作用呈时间和剂量依赖性。HCPT作用SMS-KCNR细胞24h及48h,分别使细胞周期阻滞于S期及G2/M期。
     第二部分羟基喜树碱对人神经母细胞瘤SMS-KCNR细胞凋亡的影响
     目的:
     研究HCPT在体外对人NB细胞系SMS-KCNR细胞凋亡的诱导作用,并探讨其诱导凋亡的信号转导机制,证实HCPT对SMS-KCNR增殖抑制作用是诱导细胞凋亡的结果。
     方法:
     用光学显微镜及DAPI染色荧光显微镜观察HCPT作用48h后SMS-KCNR细胞出现的凋亡形态学改变。用琼脂糖凝胶电泳检测DNA Ladder的形成。用流式细胞仪(Annexin V和PI双染法)检测细胞凋亡率的变化。采用Western blot检测不同浓度HCPT(2.5nM、5nM、10nM、20nM)作用SMS-KCNR细胞48h后线粒体凋亡途径中P53、Bcl-2、Bax、cytochrome c、caspase-3及PARP蛋白表达水平的变化。
     结果:
     1.不同浓度HCPT(2.5nM、5nM、10nM、20nM)作用SMS-KCNR细胞48h后能明显诱导细胞凋亡,凋亡的诱导作用呈剂量依赖性。
     2.光学显微镜显示不同浓度HCPT(2.5nM、5nM、10nM、20nM)作用SMS-KCNR细胞48h后使细胞密度呈剂量依赖性降低。DAPI染色荧光显微镜下观察到典型的凋亡小体形成。琼脂糖凝胶电泳检测到明显DNA梯形条带(DNA ladder)。
     3.流式细胞仪(AnnexinV和PI双染法)检测显示HCPT作用SMS-KCNR细胞48h后细胞凋亡率呈剂量依赖性增加。在2.5~20nM的HCPT作用48h后,早期凋亡细胞分别为12.22~50.78%,晚期凋亡细胞分别为8.67~67.32%,总凋亡细胞分别为20.89~97.66%,明显高于对照组(分别为4.15%、0.13%、4.28%)。
     4.HCPT(2.5~20nM)作用于SMS-KCNR细胞48h后,随作用浓度的增加,P53表达逐渐增高,呈显著的浓度依赖性。
     5.HCPT(2.5~20nM)作用于SMS-KCNR细胞48h后,Bcl-2、Bax表达水平、Bax/Bcl-2比值未见改变。
     6.HCPT(2.5~20nM)作用于SMS-KCNR细胞48h后,随作用浓度的增加,胞质cytochrome c表达逐渐增高,线粒体cytochrome c表达逐渐降低,呈显著的浓度依赖性。
     7.HCPT(2.5~20nM)作用于SMS-KCNR细胞48h后,caspase-3被激活,procaspase-3表达逐渐减少,有活性的17kDa亚基表达逐渐增加,呈显著的浓度依赖性。
     8.HCPT(2.5~20nM)作用于SMS-KCNR细胞48h后,PARP被激活,89kDa的裂解片段表达逐渐增加,呈显著的浓度依赖性。
     结论:
     HCPT能诱导SMS-KCNR细胞凋亡,凋亡的诱导作用呈显著剂量依赖性。HCPT通过P53介导的线粒体凋亡途径,诱导cytochrome c释放,并最终通过激活caspase-3及PARP促使细胞凋亡。HCPT有临床应用治疗NB的可行性。
     第三部分羟基喜树碱治疗复发和难治性神经母细胞瘤的疗效观察
     目的:
     复发和难治性NB疗效差,生存时间短,死亡率高。HCPT是纯天然生物碱抗肿瘤药,对多种肿瘤有较好疗效,但它在NB的治疗作用国内外尚未见报道。本部分在体外预实验的基础上应用HCPT治疗复发和难治性NB,探讨其疗效。
     方法:
     10例复发和2例难治性NB患儿接受HCPT化疗,其中5例复发患儿接受HCPT单药治疗,余7例患儿接受HCPT联合治疗。HCPT单药治疗用法:7.5mg/m~2,静脉滴注,d1~14;HCPT联合化疗采用改良新A1与改良B方案交替应用。改良新A1方案:CTX 1200mg/m~2 d1、VP16 100mg/m~2 d1~5、HCPT 5mg/m~2 d1~3、CDDP90mg/m~2 d4;改良B方案:IFO 1.5g/m~2 d1~5、HCPT5mg/m~2 d1~3、CBP450mg/m~2d2,均采用静脉滴注。
     结果:
     部分缓解4例(33.3%),疾病稳定8例(66.7%)。有效患者中位缓解时间3.5(2~5)个月。HCPT单药治疗不良反应轻微,HCPT联合化疗的主要不良反应为骨髓抑制及消化道反应,无化疗相关的死亡。
     结论:
     HCPT治疗复发和难治性NB有一定的近期疗效,毒性可耐受,远期效果需进一步研究。
Background:
     Neuroblastoma,the most common extracranial solid tumor in childhood,ischaracterized by high malignancy,strong invasiveness,earlier metastasis,moreadvanced stage cases and bad therapeutic efficacy.Due to the greater chemoresistenceto the first line drugs in patients with high-risk neuroblastoma,long-term survival rateof those patients remains very low.It has become the main impediment for theimprovement of survival in children with neuroblastoma and new effective drugs areurgently needed for high-risk patients.10-hydroxycamptothecin (HCPT) is a naturalcompound extracted from Comptotheca acuminate,a Chinese herbal medicine.It hasbeen shown to be very effective in treating some solid tumors and the toxicities aretolerable.Furthermore,the cost of HCPT is low.However,its efficacy in neuroblastomahas not been determined.In this study,we tried to evaluate the in vitro and in vivoeffectiveness of HCPT in the treatment of neuroblastoma and its mechanism.
     Part 1 Effects of HCPT on proliferation of human neuroblastoma cellline SMS-KCNR cells
     Objective:
     To investigate the effects of HCPT on the proliferation and cell cycle progressionof cultured human neuroblastoma cell line SMS-KCNR cells.Methods:
     Using MTT assay,the cytotoxic effect of HCPT on human neuroblastoma cell lineSMS-KCNR cells was determined by treating the cells with varying concentrations ofHCPT treatment at 2.5nM,5nM,10nM and 20nM for 24,48,72 hours.Theanti-proliferative effect of HCPT on SMS-KCNR cells was determined byanchorage-dependent colony-forming assay,in which the cells were tested for theirpotential to proliferate and to form individual colonies.Varying concentrations ofHCPT was coincubated with SMS-KCNR cells for 24 and 48 hours to determine thecell cycle arrest effects using flow cytometry.
     Results:
     1.Using the SMS-KCNR cell line,we found that HCPT treatment resulted indose-dependent and time-dependent inhibition of cellular proliferation and cell viability.
     2.Reduction in cell viability with HCPT treatment at concentrations of 2.5-200nMafter 24 and 48 hours ranged from 3.6% to 64.7% and 12.5% to 91.7%,respectively,whereas treatment at concentrations of 2.5-20nM after 72 hours ranged from 36.7% to97%.
     3.There was a marked decrease in the ability of the SMS-KCNR cells to formcolonies with increasing doses of HCPT.HCPT at dosages of 10nM and 20nMcompletely inhibited the proliferation of the cells with no colonies formed by the end of14 days' culture.
     4.As shown by flow cytometry,HCPT treatment at 2.5nM,5nM,10riM and 20nMof the SMS-KCNR cells resulted in a significant s-phase arrest of the cell cycle after 24hours and G2/M-phase arrest after 48 hours.
     Conclusions:
     Our data demonstrate that HCPT treatment results in a significant dose-andtime-dependent inhibition in the growth and colonogenic survival of SMS-KCNR cells.Our study also indicates that HCPT causes an s-phase arrest after 24 hours andG2/M-phase arrest after 48 hours.
     Part 2 Effects of HCPT on apoptosis of human neuroblastoma cellline SMS-KCNR cells
     Objectives:
     The aim of the present study was to investigate the effects of HCPT on apoptosisof human neuroblastoma SMS-KCNR cells and to identify the altered signalingpathway involving in response to HCPT exposure.We also wanted to confirm thatHCPT-mediated loss of SMS-KCNR cell viability was the result of the induction ofapoptosis.Methods:
     The apoptosis-inducing effect of HCPT at 2.5nM,5nM,10nM and 20nM for 48hours's coulture was demonstrated by morphological observation under microscopeafter DAPI fluorescent staining and agarose gel electrophoresis.The extent of apoptosiswas quantified by flow-cytometric analysis of HCPT-treated cells labeled with AnnexinV and propidium iodide (PI).Alterations in mitochondrial signaling pathway weredetermined by the expression levels of P53,Bcl-2,Bax,cytochrome c,caspase-3 andPARP 1,based on the results from western blotting.
     Results:
     1.Using the SMS-KCNR cell line,we found that HCPT treatment at 2.5nM,5nM,10nM and 20nM increased the rate of apoptosis in a dose-dependent manner.
     2.Phase-contrast photomicrographs taken at 48h after HCPT treatment revealed adose-dependent decrease in cell density.The fragmentation of the induced cell nucleiwas showed with DAPI.DNA ladder typical for apoptosis was showed on agarose gelelectrophoresis.
     3.As shown by the Annexin V and PI staining,we found that HCPT caused adosage dependent apoptosis in SMS-KCNR cells.It was observed that treatment ofSMS-KCNR cells with 2.5-20nM of HCPT for 48 hours increased the number of earlyapoptotic cells (LR) from 12.22% to 50.78%,in a dose-dependent manner compared to4.15% in untreated control cells.The number of late apoptotic cells (UR) increased from8.67% to 67.32% compared with 0.13% in non-HCPT treated cells.The total percent ofapoptotic cells (UR + LR) increased from 4.28% in untreated SMS-KCNR cells to97.66% with 20nM of HCPT treatment for 48 hours.
     4.Westem blot analysis showed that treating SMS-KCNR with HCPT resulted in adose-dependent increase in P53 protein levels with no effect on Bcl-2,Bax and the ratioof Bax/Bcl-2.
     5.HCPT treatment of SMS-KCNR cell line resulted in a increase in cytoplasmiccytochrome c protein levels and a concomitant decrease in mitochondrial cytochrome cprotein levels.
     6.HCPT treatment of SMS-KCNR cell line resulted in activation of caspase-3,theprocaspase-3 protein levels was decreased and the actived 17kDa subunit was increasedin a dose-dependent manner.
     7.Western blot analysis indicated that treating SMS-KCNR with HCPT resulted inactivation of poly (ADP-ribose) polymerase (PARP1),the cleaved 89kDa subunit was increased in a dose-dependent manner.
     Conclusions:
     Our data suggested that HCPT treatment resulted in induction of apoptosis indose-dependent manner.HCPT induces cytochrome c release via the mitochondriaapoptosis pathway mediated by p53.By activating caspase-3 and PARP1,HCPT finallyleads to cell apoptosis.Based on above-mentioned studies,HCPT may be accepted as adrug for chemotherapy of neuroblastoma.
     Part 3 Pilot study on the efficacy of chemotherapy using HCPT onrecurrent or refractory neuroblastoma
     Objectives:
     Patients with recurrent or refractory neuroblastoma are very difficult to treat withvery poor prognosis and high mortality.HCPT is a natural compound extracted fromComptotheca acuminate,a native plant of China.It has been shown to be very effectivein some solid tumors such as gastric and colon cancers,lung cancers and ovary cancersetc.However,its efficacy in neuroblastoma has not been determined.Based on thepreliminary experimental studies in vitro,we aimed to investigate the therapeutic effectsof HCPT in the treatment of recurrent or refractory neuroblastoma in children.
     Methods:
     Ten children with recurrent neuroblastoma and two with refractory neuroblastomawere treated with HCPT.Of them,5 children with recurrent neuroblastoma were treatedwith HCPT alone,and the other 7 patients received combination chemotherapy ofHCPT plus other agents.The HCPT alone treatment group was injected with HCPT(7.5mg/m2 daily) for 14 consecutive days.The combination chemotherapy group wasalternately treated with the modified new protocol A1 (cyclophosphamide 1200mg/m~2 on day 1,etoposide 100mg/m~2 on days 1-5,HCPT 5mg/m~2 on days 1-3,cisplatin90mg/m~2 on day 4) and the modified protocol B (ifosfamide 1.5g/m~2 on days 1-5,HCPT 5mg/m~2 on days 1-3,carboplatin 450mg/m~2 on days 2).
     Results:
     Four patients (33.3%) achieved partial remission and 8 patients (66.7%) had stabledisease.The median remission time was 3.5 months (2-5months).HCPT treatment assingle agent resulted in mild side effects.Myelosuppression and digestive disorder werefound as the main adverse events in the combined chemotherapy group and clinicallymanageable.No chemotherapy related death was found.
     Conclusion:
     The HCPT is safe and effective in the treatment of recurrent or refractoryneuroblastoma.The toxicities are tolerable.But the long-term efficacy warrants furtherexploration.
引文
[1]Maris JM,Matthay KK.Molecular biology of neuroblastoma.J Clin Oncol.1999.17(7):2264-79.
    [2]Izbicki T,Mazur J,Izbicka E.Epidemiology and etiology of neuroblastoma:an overview.Anticancer Res.2003.23(1B):755-60.
    [3]唐锁勤.神经母细胞瘤的诊断及治疗.实用儿科临床杂志.2005.20(1):4-6.
    [4]Mora J,Cheung NK,Gerald WL.Genetic heterogeneity and clonal evolution in neuroblastoma.Br J Cancer.2001.85(2):182-9.
    [5]Mora J,Cheung NK,Juan G,et al.Neuroblastic and Schwannian stromal cells of neuroblastoma are derived from a tumoral progenitor cell.Cancer Res.2001.61(18):6892-8.
    [6]Brodeur GM,Seeger RC,Schwab M,et al.Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage.Science.1984.224(4653):1121-4.
    [7]Seeger RC,Brodeur GM,Sather H,et al.Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas.N Engl J Med.1985.313(18):1111-6.
    [8]Brodeur GM.Neuroblastoma:biological insights into a clinical enigma.Nat Rev Cancer.2003.3(3):203-16.
    [9]Kurata K,Yanagisawa R,Ohira M,et al.Stress via p53 pathway causes apoptosis by mitochondrial Noxa upregulation in doxorubicin-treated neuroblastoma cells.Oncogene.2008.27(6):741-54.
    [10]Kerr JF,Wyllie AH,Currie AR.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer.1972.26(4):239-57.
    [11]杨连君.bcl-2,bax与肿瘤细胞凋亡.中国肿瘤生物治疗杂志.2003.10(3):232-4.
    [12] Fulda S, Debatin KM. Apoptosis pathways in neuroblastoma therapy. Cancer Lett. 2003. 197(1-2): 131-5.
    [13] Goldsmith KC, Hogarty MD. Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett. 2005.228(1-2): 133-41.
    [14] Ravagnan L, Rounder T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002. 192(2): 131-7.
    [15] Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998. 94(4):491-501.
    [16] Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998. 94(4): 481-90.
    [17] Hopkins-Donaldson S, Bodmer JL, Bourloud KB, et al. Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res. 2000. 60(16): 4315-9.
    [18] Eggert A, Grotzer MA, Zuzak TJ, et al. Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res. 2001. 61(4):1314-9.
    [19] Kramer K, Kushner BH, Cheung NK. Oral topotecan for refractory and relapsed neuroblastoma: a retrospective analysis. J Pediatr Hematol Oncol. 2003. 25(8):601-5.
    [20] Garaventa A, Luksch R, Biasotti S, et al. A phase Ⅱstudy of topotecan with vincristine and doxorubicin in children with recurrent/refractory neuroblastoma.Cancer. 2003. 98(11): 2488-94.
    [21]Kushner BH,Kramer K,Modak S,et al.Camptothecin analogs (irinotecan or topotecan) plus high-dose cyclophosphamide as preparative regimens for antibody-based immunotherapy in resistant neuroblastoma.Clin Cancer Res.2004.10(1 Pt 1):84-7.
    [22]黄慧强,姜文奇,胡晓桦,等.羟基喜树碱冻干粉针(拓僖)单药治疗晚期恶性肿瘤临床研究的初步报告.癌症.2003.22(12):1334-8.
    [23]Reynolds CP,Biedler JL,Spengler BA,et al.Characterization of human neuroblastoma cell lines established before and after therapy.J Natl Cancer Inst.1986.76(3):375-87.
    [24]Reynolds CP,Wang Y,Melton LJ,et al.Retinoic-acid-resistant neuroblastoma cell lines show altered MYC regulation and high sensitivity to fenretinide.Med Pediatr Oncol.2000.35(6):597-602.
    [25]张天泽,许光炜.肿瘤学.天津:天津科学技术出版社,1996,676.
    [26]Ling YH,Andersson BS,Nelson JA.DNA topoisomerase I as a site of action for 10-hydroxycamptothecin in human promyelocytic leukemia cells.Cancer Biochem Biophys.1990.11(1):23-30.
    [27]孙正怡,沈铿,许秀英,等.羟基喜树碱和topotecan对人卵巢癌细胞株体外作用的研究.中华妇产科杂志.1999.34(9):34-7.
    [28]许青,高勇,王杰军,等.羟喜树碱对人胰腺癌细胞增殖及凋亡的影响.第二军医大学学报.2000.21(8):731-3.
    [29]柴丽萍,苏振忠,冼志雄.羟基喜树碱对喉鳞癌细胞株抑制作用的研究.癌症.2003.22(4):372-5.
    [30]Ping YH,Lee HC,Lee JY,et al.Anticancer effects of low-dose 10-hydroxycamptothecin in human colon cancer.Oncol Rep.2006.15(5):1273-9.
    [31]Fu YR,Yi ZJ,Yan YR,et al.Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway.Mitochondrion.2006.6(4):211-7.
    [32]叶孟,林蕾,方勇,等.羟基喜树碱通过激活NF-κB诱导人乳腺癌Bcap-37细胞凋亡.中国病理生理杂志.2007.23(1):146-50.
    [33]赵亚力,马学斌,韩卫东.分子生物学基本实验技术.北京:清华大学出版社,2006,16.
    [34]Pommier Y.Topoisomerase I inhibitors:camptothecins and beyond.Nat Rev Cancer.2006.6(10):789-802.
    [35]Vassal G,Pondarre C,Cappelli C,et al.DNA-topoisomerase I,a new target for the treatment of neuroblastoma.Eur J Cancer.1997.33(12):2011-5.
    [36]Vassal G,Pondarre C,Boland I,et al.Preclinical development of camptothecin derivatives and clinical trials in pediatric oncology.Biochimie.1998.80(3):271-80.
    [37]张力,李苏,廖海,等.羟基喜树碱Ⅰ期药代动力学及人体耐受性临床研究.癌症.2001.20(12):1391-5.
    [38]Evan GI,Vousden KH.Proliferation,cell cycle and apoptosis in cancer.Nature.2001.411(6835):342-8.
    [39]Dyson N.The regulation of E2F by pRB-family proteins.Genes Dev.1998.12(15):2245-62.
    [40]Hatakeyama M,Weinberg RA.The role of RB in cell cycle control.Prog Cell Cycle Res.1995.1:9-19.
    [41]Sherr CJ.G1 phase progression:cycling on cue.Cell.1994.79(4):551-5.
    [42]Eastman A.Cell cycle checkpoints and their impact on anticancer therapeutic strategies.J Cell Biochem.2004.91(2):223-31.
    [43]Cliby WA,Lewis KA,Lilly KK,et al.S phase and G2 arrests induced by topoisomerase I poisons are dependent on ATR kinase function.J Biol Chem.2002.277(2):1599-606.
    [44]Xiao Z,Chen Z,Gunasekera AH,et al.Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents.J Biol Chem.2003. 278(24):21767-73.
    [45]Ray S,Shyam S,Fraizer GC,et al.S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11-induced apoptosis of prostate cancer cells.Mol Cancer Ther.2007.6(4):1368-78.
    [46]Levesque AA,Kohn EA,Bresnick E,et al.Distinct roles for p53 transactivation and repression in preventing UCN-01-mediated abrogation of DNA damageinduced arrest at S and G2 cell cycle checkpoints.Oncogene.2005.24(23):3786-96.
    [47]Tsao YP,D'Arpa P,Liu LF.The involvement of active DNA synthesis in camptothecin-induced G2 arrest:altered regulation of p34cdc2/cyclin B.Cancer Res.1992.52(7):1823-9.
    [48]Janss AJ,Maity A,Tang CB,et al.Decreased cyclin B1 expression contributes to G2 delay in human brain tumor cells after treatment with camptothecin.Neuro Oncol.2001.3(1):11-21.
    [49]江石湖,涂水平,谭继宏,等.羟基喜树碱诱导胃癌细胞凋亡的实验研究.中华消化杂志.1999.19(1):18-20.
    [50]章雄文,蒋建飞,胥彬.10-羟基喜树碱对人肝癌Hep G2细胞的分化诱导作用(英文).中国药理学报.2000.21(4):78-82.
    [51]凡杰,唐孝达,张先有,等.羟基喜树碱诱导人T24膀胱癌细胞凋亡的研究.中华医学杂志.1998.78(4):61-4.
    [52]涂水平,江石湖,谭继宏,等.羟基喜树碱诱导胃癌细胞凋亡的作用机制初步研究.中华消化杂志.2001.21(5):14-7.
    [53]Germain M,Affar EB,D'Amours D,et al.Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis.Evidence for involvement of caspase-7.J Biol Chem.1999.274(40):28379-84.
    [54]Ivana SA,Diederich M.Modulation of poly(ADP-ribosylation) in apoptotic cells.Biochem Pharmacol.2004.68(6):1041-7.
    [55] Prives C, Hall PA. The p53 pathway. J Pathol. 1999. 187(1): 112-26.
    [56] Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol. 2000. 33(1): 1-6.
    [57] Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol. 2002. 14(1): 86-91.
    [58] Helton ES, Chen X. p53 modulation of the DNA damage response. J Cell Biochem. 2007. 100(4): 883-96.
    [59] Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000.408(6810): 307-10.
    [60] Mirza A, McGuirk M, Hockenberry TN, et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway.Oncogene. 2002. 21(17): 2613-22.
    [61] Slee EA, O'Connor DJ, Lu X. To die or not to die: how does p53 decide. Oncogene. 2004. 23(16): 2809-18.
    [62] Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003. 11(3): 577-90.
    [63] Moll UM, LaQuaglia M, Benard J, et al. Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A. 1995. 92(10): 4407-11.
    [64] Smart P, Lane EB, Lane DP, et al. Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene. 1999. 18(51): 7378-86.
    [65] McKenzie PP, Guichard SM, Middlemas DS, et al. Wild-type p53 can induce p21 and apoptosis in neuroblastoma cells but the DNA damage-induced G1 checkpoint function is attenuated. Clin Cancer Res. 1999. 5(12): 4199-207.
    [66] Liontas A, Yeger H. Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma. Anticancer Res. 2004. 24(2B): 987-98.
    [67] Torkin R, Lavoie JF, Kaplan DR, et al. Induction of caspase-dependent,p53-mediated apoptosis by apigenin in human neuroblastoma. Mol Cancer Ther.2005. 4(1): 1-11.
    [68] Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002. 2(9): 647-56.
    [69] Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 2000. 103(6): 839-42.
    [70] Knudson CM, Korsmeyer SJ. Bcl-2 and Bax function independently to regulate cell death. Nat Genet. 1997. 16(4):358-63.
    [71] Pocock CF, Malone M, Booth M, et al. BCL-2 expression by leukaemic blasts in a SCID mouse model of biphenotypic leukaemia associated with the t(4;11)(q21;q23) translocation. Br J Haematol. 1995. 90(4): 855-67.
    [72] Kaufmann SH, Karp JE, Svingen PA, et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood. 1998. 91(3): 991-1000.
    [73] Benito A, Grillot D, Nunez G, et al. Regulation and function of Bcl-2 during differentiation-induced cell death in HL-60 promyelocytic cells. Am J Pathol. 1995. 146(2): 481-90.
    [74] Castle VP, Heidelberger KP, Bromberg J, et al. Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. Am J Pathol. 1993. 143(6): 1543-50.
    [75] Dole M, Nunez G, Merchant AK, et al. Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res. 1994. 54(12): 3253-9.
    [76] Jasty R, van GC, Lin HJ, et al. Bcl-2 and M-Myc coexpression increases IGF-IR and features of malignant growth in neuroblastoma cell lines. Neoplasia. 2001.3(4): 304-13.
    [77] Dole MG, Jasty R, Cooper MJ, et al. Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis.Cancer Res.1995.55(12):2576-82.
    [78]林其谁.线粒体与细胞凋亡.生物化学与生物物理学报.1999.31(2):8-10.
    [79]Cai J,Yang J,Jones DP.Mitochondrial control of apoptosis:the role of cytochrome c.Biochim Biophys Acta.1998.1366(1-2):139-49.
    [80]Cain K,Bratton SB,Cohen GM.The Apaf-1 apoptosome:a large caspase-activating complex.Biochimie.2002.84(2-3):203-14.
    [81]Uo T,Kinoshita Y,Morrison RS.Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons.J Neurosci.2007.27(45):12198-210.
    [82]De Sarno P,Shestopal SA,King TD,et al.Muscarinic receptor activation protects cells from apoptotic effects of DNA damage,oxidative stress,and mitochondrial inhibition.J Biol Chem.2003.278(13):11086-93.
    [83]Albihn A,Mo H,Yang Y,et al.Camptothecin-induced apoptosis is enhanced by Myc and involves PKCdelta signaling.Int J Cancer.2007.121(8):1821-9.
    [84]甄子俊,孙晓非,夏奕,等.异环磷酰胺联合卡铂治疗复发和难治性神经母细胞瘤的疗效分析.癌症.2006.25(12):1550-2.
    [85]Kaneko M,Tsuchida Y,Mugishima H,et al.Intensified chemotherapy increases the survival rates in patients with stage 4 neuroblastoma with MYCN amplification.J Pediatr Hematol Oncol.2002.24(8):613-21.
    [86]汤静燕,潘慈,陈静,等.45例儿童神经母细胞瘤预后因素分析.中华儿科杂志.2006.44(10):770-3.
    [87]3rd SRL,Stine KC,Sullivan J,et al.Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors:a Pediatric Oncology Group phase Ⅱ study.J Clin Oncol.2001.19(15):3463-9.
    [88]Simon T,Langler A,Berthold F,et al.Topotecan and etoposide in the treatment of relapsed high-risk neuroblastoma:results of a phase 2 trial.J Pediatr Hematol Oncol.2007.29(2):101-6.
    [89]Simon T,Langler A,Harnischmacher U,et al.Topotecan,cyclophosphamide,and etoposide (TCE) in the treatment of high-risk neuroblastoma.Results of a phase-Ⅱ trial.J Cancer Res Clin Oncol.2007.133(9):653-61.
    [1] Pommier Y. Topoisomerase Ⅰ inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006.6 (10): 789-802.
    [2] Del Bino G, Skierski JS, Darzynkiewicz Z. Diverse effects of camptothecin, an inhibitor of topoisomeraseⅠ, on the cell cycle of lymphocytic (L1210, MOLT-4) and myelogenous (HL-60, KG1) leukemic cells. Cancer Res. 1990. 50 (18):5746-50.
    [3] Nelson WG, Kastan MB. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol. 1994. 14(3): 1815-23.
    [4] Goldwasser F, Shimizu T, Jackman J, et al. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells. Cancer Res.1996.56 (19): 4430-7.
    [5] Shao RG, Cao CX, Shimizu T, et al. Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res. 1997.57 (18): 4029-35.
    [6] Mullany S, Svingen PA, Kaufmann SH, et al. Effect of adding the topoisomeraseⅠpoison 7-ethyl-10-hydroxycamptothecin (SN-38) to 5-fluorouracil and folinic acid in HCT-8 cells: elevated dTTP pools and enhanced cytotoxicity. Cancer Chemother Pharmacol. 1998.42 (5): 391-9.
    [7] Cliby WA, Lewis KA, Lilly KK, et al. S phase and G2 arrests induced by topoisomeraseⅠpoisons are dependent on ATR kinase function. J Biol Chem.2002.277(2): 1599-606.
    [8] Xiao Z, Chen Z, Gunasekera AH, et al. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem. 2003. 278 (24): 21767-73.
    [9] Mailand N, Falck J, Lukas C, et al. Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000. 288 (5470): 1425-9.
    [10] Falck J, Mailand N, Syljuasen RG, et al. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001. 410 (6830):842-7.
    [11] Zhao H, Watkins JL, Piwnica-Worms H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A. 2002. 99 (23): 14795-800.
    [12] Ray S, Shyam S, Fraizer GC, et al. S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11-induced apoptosis of prostate cancer cells. Mol Cancer Ther. 2007. 6 (4): 1368-78.
    [13] Siu WY, Lau A, Arooz T, et al. Topoisomerase poisons differentially activate DNA damage checkpoints through ataxia-telangiectasia mutated-dependent and -independent mechanisms. Mol Cancer Ther. 2004. 3 (5): 621-32.
    [14] Levesque AA, Kohn EA, Bresnick E, et al. Distinct roles for p53 transactivation and repression in preventing UCN-01-mediated abrogation of DNA damage-induced arrest at S and G2 cell cycle checkpoints. Oncogene. 2005. 24(23): 3786-96.
    [15] Peng CY, Graves PR, Thoma RS, et al. Mitotic and G2 checkpoint control:regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216.Science. 1997. 277 (5331): 1501-5.
    [16] Peng CY, Graves PR, Ogg S, et al. C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ.1998. 9(3): 197-208.
    [17] Gabrielli BG, Clark JM, McCormack AK, et al. Hyperphosphorylation of the N-terminal domain of Cdc25 regulates activity toward cyclin B1/Cdc2 but not cyclin A/Cdk2. J Biol Chem. 1997. 272 (45): 28607-14.
    [18] Sanchez Y, Wong C, Thoma RS, et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997. 277 (5331): 1497-501.
    [19] Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998. 282 (5395): 1893-7.
    [20] Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001.20 (15): 1803-15.
    [21] Tobey RA. Effects of cytosine arabinoside, daunomycin, mithramycin, azacytidine, adriamycin, and camptothecin on mammalian cell cycle traverse. Cancer Res. 1972. 32 (12): 2720-5.
    [22] Tsao YP, D'Arpa P, Liu LF. The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res. 1992. 52(7): 1823-9.
    [23] Janss AJ, Maity A, Tang CB, et al. Decreased cyclin B1 expression contributes to G2 delay in human brain tumor cells after treatment with camptothecin. Neuro Oncol. 2001. 3(1): 11-21.
    [24] Sanchez-Alcazar JA, Ault JG, Khodjakov A, et al. Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells. Cell Death Differ. 2000. 7 (11): 1090-100.
    [25] Yuan Q, Ray RM, Johnson LR. Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome c. Am J Physiol Cell Physiol. 2002. 282 (6): C1290-7.
    [26] Guo X, Zhang J, Fu X, et al. Analysis of common gene expression patterns in four human tumor cell lines exposed to camptothecin using cDNA microarray:identification of topoisomerase-mediated DNA damage response pathways. Front Biosci. 2006.11: 1924-31.
    [27] Fu YR, Yi ZJ, Yan YR, et al. Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway. Mitochondrion. 2006. 6 (4): 211-7.
    [28] Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002. 192 (2): 131-7.
    [29] Micheau O, Solary E, Hammann A, et al. Sensitization of cancer cells treated with cytotoxic drugs to fas-mediated cytotoxicity. J Natl Cancer Inst. 1997. 89 (11):783-9.
    [30] Shao RG, Cao CX, Nieves-Neira W, et al. Activation of the Fas pathway independently of Fas ligand during apoptosis induced by camptothecin in p53 mutant human colon carcinoma cells. Oncogene. 2001. 20 (15): 1852-9.
    [31] Ciusani E, Perego P, Carenini N, et al. Fas/CD95-mediated apoptosis in human glioblastoma cells: a target for sensitisation to topoisomeraseⅠinhibitors. Biochem Pharmacol. 2002. 63 (5): 881-7.
    [32] Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998. 94 (4):491-501.
    [33] Luo X, Budihardjo I, Zou H, et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998. 94 (4): 481-90.
    [34] Hirao A, Cheung A, Duncan G, et al. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol Cell Biol. 2002. 22 (18): 6521-32.
    [35] Chaturvedi P, Eng WK, Zhu Y, et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene. 1999. 18(28): 4047-54.
    [36] Takemura H, Rao VA, Sordet O, et al. Defective Mre 11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J Biol Chem. 2006. 281 (41):30814-23.
    [37] Yang S, Kuo C, Bisi JE, et al. PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol. 2002. 4 (11):865-70.
    [38] Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell.2002. 108(2): 165-70.
    [39] Kohn KW, Pommier Y. Molecular interaction map of the p53 and Mdm2 logic elements, which control the Off-On switch of p53 in response to DNA damage.Biochem Biophys Res Commun. 2005. 331 (3): 816-27.
    [40] Caspari T. How to activate p53. Curr Biol. 2000. 10 (8): R315-7.
    [41] Hirao A, Kong YY, Matsuoka S, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 2000. 287 (5459): 1824-7.
    [42] Melchionna R, Chen XB, Blasina A, et al. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol. 2000. 2(10): 762-5.
    [43] Stevens C, Smith L, La Thangue NB. Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol. 2003. 5 (5): 401-9.
    [44] Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995. 270 (5240): 1326-31.
    [45] Seimiya H, Mashima T, Toho M, et al. c-Jun NH2-terminal kinase-mediated activation of interleukin-1beta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis. J Biol Chem. 1997. 272 (7): 4631-6.
    [46] Shiah SG, Chuang SE, Chau YP, et al. Activation of c-Jun NH2-terminal kinase and subsequent CPP32/Yama during topoisomerase inhibitor beta-lapachone-induced apoptosis through an oxidation-dependent pathway. Cancer Res. 1999. 59 (2): 391-8.
    [47] Fan M, Chambers TC. Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist Updat. 2001.4 (4): 253-67.
    [48] Lee S, Lee HS, Baek M, et al. MAPK signaling is involved in camptothecin-induced cell death. Mol Cells. 2002. 14 (3): 348-54.
    [49] Huang TT, Wuerzberger-Davis SM, Seufzer BJ, et al. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J Biol Chem. 2000. 275 (13): 9501-9.
    [50] Cusack JC, Jr., Liu R, Houston M, et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor kappaB inhibition. Cancer Res. 2001. 61 (9): 3535-40.
    [51] Bottero V, Busuttil V, Loubat A, et al. Activation of nuclear factor kappaB through the IKK complex by the topoisomerase poisons SN38 and doxorubicin: a brake to apoptosis in HeLa human carcinoma cells. Cancer Res. 2001. 61 (21):7785-91.
    [52] He L, Kim BY, Kim KA, et al. NF-kappaB inhibition enhances caspase-3 degradation of Akt1 and apoptosis in response to camptothecin. Cell Signal.2007.19 (8): 1713-21.
    [53] Lagadec P, Griessinger E, Nawrot MP, et al. Pharmacological targeting of NF-kappaB potentiates the effect of the topoisomerase inhibitor CPT-11 on colon cancer cells. Br J Cancer. 2008. 98 (2): 335-44.
    [54] Nakashio A, Fujita N, Rokudai S, et al. Prevention of phosphatidylinositol 3'-kinase-Akt survival signaling pathway during topotecan-induced apoptosis. Cancer Res. 2000. 60 (18): 5303-9.
    [55] Saga Y, Mizukami H, Suzuki M, et al. Overexpression of PTEN increases sensitivity to SN-38, an active metabolite of the topoisomeraseⅠinhibitor irinotecan, in ovarian cancer cells. Clin Cancer Res. 2002. 8 (5): 1248-52.
    [56] Mei Y, Xie C, Xie W, et al. Noxa/Mcl-1 balance regulates susceptibility of cells to camptothecin-induced apoptosis. Neoplasia .2007. 9 (10): 871-81.
    [57] Giovannetti E, Mey V, Danesi R, et al. Interaction between gemcitabine and topotecan in human non-small-cell lung cancer cells: effects on cell survival, cell cycle and pharmacogenetic profile. Br J Cancer. 2005. 92 (4): 681-9.
    [58] Liu Y, Xing H, Weng D, et al. Inhibition of Akt signaling by SN-38 induces apoptosis in cervical cancer. Cancer Lett. 2009. 274 (1): 47-53.
    [59] Nakashio A, Fujita N, Tsuruo T. Topotecan inhibits VEGF- and bFGF-induced vascular endothelial cell migration via downregulation of the PI3K-Akt signaling pathway. Int J Cancer. 2002. 98 (1): 36-41.
    [60] Weller M, Winter S, Schmidt C, et al. Topoisomerase-Ⅰinhibitors for human malignant glioma: differential modulation of p53, p21, bax and bcl-2 expression and of CD95-mediated apoptosis by camptothecin and beta-lapachone. Int J Cancer. 1997. 73 (5): 707-14.
    [61] Li G, Bush JA, Ho VC. p53-dependent apoptosis in melanoma cells after treatment with camptothecin. J Invest Dermatol. 2000.114 (3): 514-9.
    [62] Ullmannova V, Haskovec C. Gene expression during camptothecin-induced apoptosis in human myeloid leukemia cell line ML-2. Neoplasma. 2004. 51 (3):175-80.
    [63] Fortin A, MacLaurin JG, Arbour N, et al. The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressors p53 and E2F1. J Biol Chem. 2004.279 (27): 28706-14.
    [64] Uo T, Kinoshita Y, Morrison RS. Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons. J Neurosci. 2007. 27 (45): 12198-210.
    [65] Takeba Y, Kumai T, Matsumoto N, et al. Irinotecan activates p53 with its active metabolite, resulting in human hepatocellular carcinoma apoptosis. J Pharmacol Sci. 2007. 104 (3): 232-42.
    [66] Essmann F, Pohlmann S, Gillissen B, et al. Irradiation-induced translocation of p53 to mitochondria in the absence of apoptosis. J Biol Chem. 2005. 280 (44):37169-77.
    [67] Kang MR, Muller MT, Chung IK. Telomeric DNA damage by topoisomeraseⅠ. A possible mechanism for cell killing by camptothecin. J Biol Chem. 2004. 279 (13):12535-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700