用户名: 密码: 验证码:
乳铁蛋白修饰生物可降解纳米粒的脑内递药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血脑屏障(Blood-brain barrier,BBB)在防止脑内环境受到外界毒物侵害的同时也很大程度上限制了药物的脑内转运及脑部疾病的治疗。以非侵袭性给药途径提高药物脑内递送的研究,因其能够克服外科手术所带来的创伤和危险,已成为国内外脑内靶向给药的研究重点。其中尤以通过受体介导转运入脑的微粒递药系统的研究最为成功,转铁蛋白受体的单克隆抗体OX26连接的空间稳定免疫脂质体已被证明可以通过血脑屏障上的特异受体,成功将小分子药物、蛋白及基因药物递送入脑,但OX26为小鼠抗大鼠转铁蛋白受体的单克隆抗体,具有很强的种属特异性,只能与大鼠转铁蛋白受体特异性结合,还存在严重的免疫原性。此外,载药系统脂质体的体内外稳定性均较差,若载药系统在未到达脑微血管的吸收部位前解体即会严重影响药物的脑内递送效果。鉴于此,有必要而且也亟需探寻新型的靶向功能分子和载药系统,构建更为合理、有效的脑内靶向递药系统。
     为了克服以上缺陷,本课题构建两种新型的生物可降解脑内递药系统—乳铁蛋白修饰聚乳酸—聚羟基乙酸纳米粒载药系统(Lf-NP_(PLGA))和乳铁蛋白修饰聚乳酸纳米粒载药系统(Lf-NP_(PLA))。乳铁蛋白(Lactoferrin,Lf)是一种存在于哺乳动物体内的阳离子糖蛋白,已有研究证实Lf可以通过受体介导的胞吞转运入脑,且其入脑量显著高于转铁蛋白和OX26。Lf-NP_(PLGA)和Lf-NP_(PLA)可借助表面Lf以受体介导胞吞转运方式增加其脑内转运;将生物可降解的纳米粒作为药物的载体,不仅安全性好,还能显著提高药物的稳定性和输送能力;纳米粒采用复乳/溶媒蒸发法制备,适合于包载水溶性大分子药物,如蛋白多肽和基因药物,可以掩盖其自身的理化性质,代之以纳米粒的特性;纳米粒表面经PEG修饰,可避免单核巨噬系统的吞噬,延长在血浆中的半衰期,提高血浆药时曲线下面积(Area under curve,AUC),具有长循环作用。
     帕金森病(Parkinson’s disease,PD)是一种常见的神经系统退行性疾病,在50岁以上的人群中发病率达1~2%,目前尚缺乏能够根治的药物和手段,临床仍以对症治疗为主。近年来,神经保护药物的开发为PD的治疗带来了新的希望。脑内注射实验证明,促肾上腺皮质激素释放激素相关肽Urocortin(UCN)对大鼠PD模型具有很好的治疗效果。但UCN静脉注射后不能入脑,极大限制了其应用。鉴于此,我们采用新型生物可降解脑靶向纳米载药系统Lf-NP_(PLGA)包载UCN进行脑内递送,以期提高对PD的治疗效果。
     本文第一部分为Lf-NP_(PLGA)的脑内递药研究。第一章首先由复乳/溶媒蒸发法制备马来酰亚胺—聚乙二醇(Maleimide-PEG,MAL-PEG)和甲氧基聚乙二醇(MPEG)表面共修饰的聚乳酸-聚羟基乙酸(PLGA)纳米粒,然后通过其表面MAL-PEG与巯基化Lf共价连接而制备Lf-NP_(PLGA)。该纳米粒的平均粒径在100nm以下,Zeta电位在-20 mV以下。免疫电镜观察证实纳米粒表面存在具有活性的Lf,Lf-NP_(PLGA)可由表面的Lf通过受体介导的胞吞转运入脑。利用ELISA法测得每个Lf-NP_(PLGA)表面连接的Lf约为42个。以粒径为指标,最终筛选的优化制备条件为:聚合物总量25mg,巯基化试剂2-IT∶Lf摩尔比为40∶1;外水相为1%的胆酸钠溶液。
     第一部分第二章采用香豆素-6作为纳米粒的荧光探针,bEnd.3作为体外BBB模型,以未连接Lf的普通纳米粒NP_(PLGA)为对照,对Lf-NP_(PLGA)的脑内递药特性进行了体外评价。在pH 7.0和4.0的条件下,香豆素-6在NP_(PLGA)和Lf-NP_(PLGA)中24 h的累积泄漏量均小于3.5%,证实香豆素-6是一种较为理想的纳米粒探针,能用以较为准确的示踪NP_(PLGA)和Lf-NP_(PLGA)体内外生物学行为。细胞摄取实验结果发现,bEnd.3在15,30和60 min时,对Lf-NP_(PLGA)的摄取均显著高于NP_(PLGA)。摄取抑制实验的结果证实,Lf-NP_(PLGA)是由LfR转运入脑,通过穴样凹陷,包被凹陷和巨胞饮途径内吞,为高尔基体和溶酶体参与的能量依赖过程。细胞活力测定结果显示,Lf,NP_(PLGA)和Lf-NP_(PLGA)浓度高达3 mg/mL时均对细胞活力没有显著影响。以上体外实验证明,Lf-NP_(PLGA)是一种具有脑内递药特性且毒性较低的药物传递系统。
     第一部分第三章以香豆素-6作为Lf-NP_(PLGA)的荧光探针,NP_(PLGA)作为对照,采用药动学方法考察了Lf-NP_(PLGA)小鼠脑内递送特性。结果显示,Lf-NP_(PLGA)在脑中的AUC是NP_(PLGA)的2.49倍,在血中AUC为NP_(PLGA)的1.14倍,与NP_(PLGA)相比较其脑靶向指数为2.19。组织分布结果表明,两种纳米粒主要在肝脾聚集,与NP_(PLGA)相比,Lf-NP_(PLGA)在心和脾的分布增多,但在肾的分布减少。小鼠尾静脉注射60 mg/kg载香豆素-6的Lf-NP_(PLGA)和NP_(PLGA) 1 h后,脑组织切片显示,Lf-NP_(PLGA)在黑质区,纹状体区及大脑皮质区的绿色荧光颗粒分布均显著高于NP_(PLGA)。单核—巨噬细胞特异性染色结果显示,高剂量Lf-NP_(PLGA)不引起BALB/c鼠大脑、小脑、心和肺的巨噬细胞增多,仅对肝、脾和肾产生一过性的轻微毒性。以上体内评价结果证实,Lf-NP_(PLGA)具有一定的脑内递药特性,并且是一种毒性较低的脑内递药系统。
     第一部分第四章建立了单侧损毁的急性6-OHDA PD大鼠模型及慢性鱼藤酮PD大鼠模型。采用Lf-NP_(PLGA)包载UCN多肽,通过行为学、免疫组织化学、神经递质的代谢产物三方面指标考察了Lf-NP_(PLGA)-NUC对于两种PD大鼠模型的治疗作用。结果表明,高剂量的Lf-NP_(PLGA)-NUC对于6-OHDA和鱼藤酮PD模型大鼠的行为都有显著的改善作用,并能提高纹状体内TH和DA的含量,显著优于同等剂量的未修饰纳米粒NP_(PLGA)-NUC。以上结果充分证实Lf-NP_(PLGA)是一种有效的脑内递药系统,为具有脑内治疗活性药物,特别是稳定性差、难以通过血脑屏障的蛋白多肽药物脑内递送提供了有效手段。
     本文第二部分为Lf-NP_(PLA)的脑内递药研究。第一章设计并制备了Lf-NP_(PLA)脑靶向纳米载药系统。Lf-NP_(PLA)的平均粒径在150 nm以下,Zeta电位为-20 mV左右。X射线光电子能谱对Lf-NP_(PLA)的表面元素分析结果显示,Lf-NP_(PLA)表面的N元素来自于Lf,证实NP_(PLA)与Lf共价连接的存在。免疫电镜观察结果进一步证实Lf-NP_(PLA)表面存在Lf,并从另一个角度证实Lf-NP_(PLA)可由表面的Lf通过受体介导的胞吞转运入脑。利用ELISA法测得MAL-PEG-PLA∶MPEG-PLA和Lf-SH∶MAL-PEG-PLA为不同比例时,Lf-NP_(PLA)表面连接的Lf的量。以粒径和表面Lf的量为指标,最终筛选的优化制备条件为:MPEG-PLA∶MAL-PEG-PLA质量比为9∶1;巯基化试剂2-IT∶Lf摩尔比为40∶1;MAL-PEG-PLA∶巯基化蛋白摩尔比为3∶2;反应时间为9 h。
     第二部分第二章以香豆素-6作为荧光探针,对Lf-NP_(PLA)的脑内递药特性进行了体外评价。结果显示,pH 7.0和4.0的条件下,香豆素-6在NP_(PLA)和Lf-NP_(PLA)中24 h的累积泄漏量均小于6%,证实香豆素-6能用以较为准确的示踪其体内外的生物学行为。小鼠脑毛细血管内皮细胞bEnd.3摄取载香豆素-6的NP_(PLA)和Lf-NP_(PLA)的定性观察结果显示,bEnd.3在30,60和120 min时,对Lf-NP_(PLA)的摄取均显著高于NP_(PLA)。摄取抑制试验的结果证实了Lf-NP_(PLA)可以通过Lf介导的胞吞转运过程被摄取,通过包被凹陷和巨胞饮途径内吞,为高尔基体参与的能量依赖过程。细胞活力测定结果显示,3 mg/mL的Lf,NP_(PLA)和Lf-NP_(PLA)对细胞活力均没有显著影响。以上体外实验证明,Lf-NP_(PLA)可以借助Lf经由受体介导的胞吞转运入脑,是一种具有脑内递药特性且毒性较低的药物传递系统。
     第二部分第三章以香豆素-6作为Lf-NP_(PLA)的荧光探针,以NP_(PLA)作为对照,采用药动学方法考察了Lf-NP_(PLA)小鼠脑内递药的特性。小鼠尾静脉注射60 mg/kg载香豆素-6的Lf-NP_(PLA)和NP_(PLA) 1h后,脑组织切片显示,Lf-NP_(PLA)第三脑室室周区,纹状体区及大脑皮质区的绿色荧光颗粒分布均显著高于NP_(PLA)。Lf-NP_(PLA)在脑中的AUC是NP_(PLA)的2.98倍,在血中AUC为NP_(PLA)的0.92倍,Lf-NP_(PLA)的脑靶向指数为3.22。组织分布结果表明,两种纳米粒主要在肝脾聚集,与NP_(PLA)相比,Lf-NP_(PLA)在肝、脾和肾的分布显著增多。单核—巨噬细胞特异性染色结果显示,高剂量Lf-NP_(PLA)对BALB/c鼠不引起大脑、小脑、心、肾和肺的巨噬细胞增多,仅对肝和脾产生轻微的一过性毒性。
     本文第三部分制备了包载牛血清白蛋白(BSA)的Lf-NP_(PLGA)和Lf-NP_(PLA),比较了两种纳米载药系统在体外的释放和降解情况,并对它们的脑内递药性能进行了比较。体外释放试验结果表明,在37℃的PBS两者释放行为相似,均符合Weibull分布,15天的累积释放百分率在45%左右。在含有血浆的PBS中,Lf-NP_(PLGA)和Lf-NP_(PLA)的释放均有所加快,15天的累积释放百分率分别达到88%和61%,Lf-NP_(PLGA)的释放已比较完全。以Lf作为靶向功能分子构建的Lf-NP_(PLGA)和Lf-NP_(PLA)均能显著提高药物的入脑。相比较而言,Lf-NP_(PLA)在具有较高脑靶向效率的同时,被网状内皮系统摄取也更为显著。Lf-NP_(PLGA)虽然脑靶向性能稍逊,但可能具有更好的安全性。
Blood-brain barrier(BBB) protects the internal environment of brain fromoutside toxicities, but meanwhile, it restricts entry of most drugs for brain diseasetherapy. Therefore, the research of enhancement of brain drug delivery throughnoninvasive means, especially development of novel drug delivery system for braindrug targeting, is on focusing in pharmaceutics. Among them, the most successfulstrategy is nanoparticle delivery systems targeting to the brain through receptormediated transcytosis. A murine anti-rat transferrin receptor monoclonal antibody,OX26, was used as brain targeting molecule and coupled with liposome, the formedimmunoliposome was proved delivery successfully small molecule drugs, proteins, aswell as gene therapies into the brain via receptor-mediated transcytosis. Nevertheless,the OX26 is only effective in rats, and it also possesses strong immunogenicity. Inaddition to that, liposome has poor stability both in vitro and in vivo, if itdisintegrated before arriving at the brain microvessels, the brain delivery capacity ofthe system will be largely impaired. In view of these, there is an urgent need toexplore new brain targeting molecule as well as drug loading vehicle to constructmore reasonable and effective brain drug delivery systems.
     To solve this problem, two novel biodegradable brain drug targeting systems,lactoferrin conjugated polyethylene glycol-polylactide-polyglycolide nanoparticlesystem(Lf-NP_(PLGA)) and lactoferrin conjugated polyethylene glycol-polylactidenanoparticle system(Lf-NP_(PLA)) were developed. Lactoferrin is a mammalian cationiciron-binding glycoprotein which has been demonstrated to cross the BBB viareceptor-mediated transcytosis. Markedly high brain uptake was observed forlactoferrin relative to transferrin and OX26 in vivo. The surface modified lactoferrincan enhance the nanoparticles' brain entrance via receptor-mediated transcytosis; thebiodegradable nanoparticle served as drug carrier, which can endow the drug deliverysystem with good safety and increase its drug loading capacity; the double-emulsionand solvent evaporation preparation method facilitated encapsulation ofmacromolecules such as proteins, peptides and genes, and can mask theirphysico-chemical characteristics instead of nanoparticle properties; the stealthy pegylated nanoparticle can avoid the uptake by reticuloendothelial system, prolongtheir plasma half-life, and enhance area under the concentration-time curve(AUC).
     Parkinson's disease is a devastating degenerative neurological illness affecting1-2% of the 'over 50' population. There are no effective therapies for PD at presentand clinical available treatments are all for symptom relief. Nowadays, thedevelopment of neuroprotective agents throws some new light on PD therapy.Following intracerebral injection, a corticotrophin releasing hormone related peptide,urocortin(UCN) significantly improved the behavior of PD model rats. But thepeptide does not cross the BBB after intravenous injection, which greatly restrains itsutilization. Therefore, we encapsulated it into the novel biodegradable brain drugtargeting system Lf-NP_(PLGA), in order to enhance its therapeutic effect for PD.
     The first part described the research of Lf-NP_(PLGA) brain delivery system. Thefirst chapter is construction and characterization of Lf-NP_(PLGA). The pegylated polylactide-poly glycolide nanoparticle, whose surface was co-modified withmaleimide-polyethylene glycol(MAL-PEG) and methoxy-polyethylene glycol(MPEG), was made by double-emulsion and solvent evaporation method andcovalently conjugated with thiolated lactoferrin(Lf) via its maleimide functionalgroup. The average particle size of Lf-NP_(PLGA) was below 100 nm, and its zetapotential was around -20 mV. Immuno-gold staining result showed that bioactive Lfwas covalently coupled to the nanoparticle's surface. ELISA detected the surface Lfnumber per nanoparticle was around 42. The optimized preparation conditions are:total polymer amount is 25 mg; 2-IT: Lf when thiolation is 40: 1; and the outer waterphase is 1% sodium cholate solution.
     In the second chapter of part one, a lipophilic fluorescent dye, coumarin-6,serving as a nanoparticle probe, was incorporated in Lf-NP_(PLGA) to investigate its braindrug delivery characteristics in a bEnd.3 BBB model with unconjugated nanoparticle(NP_(PLGA)) as control. The uptake results demonstrated that the uptake amount ofLf-NP_(PLGA) was significantly higher than that of NP_(PLGA) at 15, 30 and 60 min. MTTresults illustrated that after incubation with Lf-NP_(PLGA), NP_(PLGA) and Lf respectively,the cell viability was always above 80% even at a relative high concentration of 3mg/mL. The uptake inhibition experiment results showed that Lf-NP_(PLGA) wastransport into brain by an energy-dependent process involving LfR, caveolae, clathrin,golgi apparatus, lysosome and macropinocytosis. All the in vitro results showed thatLf-NP_(PLGA) is a good brain delivery system with very low toxicity. Besides, the release of coumarin-6 from Lf-NP_(PLGA) and NP_(PLGA) in pH 7.0 and pH 4.0 PBS after 24 h wereall below 3.5% which proved that coumarin-6 is an ideal nanoparticle probe that canindicate accurately the in vitro and in vivo behavior of Lf-NP_(PLGA) and NP_(PLGA).
     In the third chapter, the brain delivery property of Lf-NP_(PLGA) was evaluated bypharmacokinetics studies with NP_(PLGA) as control. The biodistribution result in micerevealed the AUC of Lf-NP_(PLGA) in cerebrum was 2.49 times of that of NP_(PLGA), andthe brain drug targeting index of Lf-NP_(PLGA) was 2.19 compared with NP_(PLGA). The twokinds of nanoparticles were both mainly distributed to the liver and spleen. Whilecompared to NP_(PLGA), Lf-NP_(PLGA) distributed more to heart and spleen but less tokidney. One hour after a dose of 60 mg/kg Lf-NP_(PLGA) or NP_(PLGA) injection in micecaudal vein, fluorescent microscopy of brain coronal sections revealed a higheraccumulation of Lf-NP_(PLGA) in the substantia nigra, striatum and cerebral cortex regionthan that of NP_(PLGA). Immunostaining of monocyte-macrophage demonstrated thathigh dose of Lf-NP_(PLGA) cannot induce the increase amount of macrophage incerebrum, cerebellum, heart and lung in BALB/c mice, only had light toxicity to liver,spleen and kidney, and its acute toxicity was transient. These results proved the braindelivery property and safety of Lf-NP_(PLGA) in vivo.
     In the fourth chapter, the urocortin(UCN) peptide was encapsulated inLf-NP_(PLGA) and NP_(PLGA) and their pharmacodynamics studies were carried out inunilateral 6-OHDA lesioned acute rat Parkinson's disease(PD) model and chronicrotenone rat PD model with evaluation of behavioral, immunohistochemical andneurotransmitters' changes. The results illustrated that the high dose Lf-NP_(PLGA)-UCNimproved the behavior of the rats in both PD model with increase of their striatumtyrosine hydroxylase and domapine levels, which is much better than the same dose ofunconjugated NP_(PLGA)-UCN. The above results proved that Lf-NP_(PLGA) is an effectivebrain delivery system which is promise in delivery brain active drugs, especiallyprotein and peptides with poor stability and low BBB transport.
     The second part describes the research of Lf-NP_(PLA) brain delivery system. In thefirst chapter we constructed and characterized Lf-NP_(PLA). The average particle size ofLf-NP_(PLA) was below 150 nm, and its zeta potential was around -20 mV. X-rayphotoelectron spectroscopy and immuno-gold staining result showed that bioactive Lfwas covalently coupled to the nanoparticle's surface. ELISA detected the surface Lfnumber per nanoparticle constructed with different ratios of MAL-PEG-PLA toMPEG-PLA and Lf-SH to NP_(PLA). The optimized preparation conditions are: MAL-PEG-PLA: MPEG-PLA weight ratio is 1: 9; Lf-SH: MAL-PEG-PLA is 2: 3;2-IT: Lf when thiolation is 40: 1; and the reacting time is 9 h.
     In the second chapter of part two, the brain delivery property of Lf-NP_(PLA) wascompared with unconjugated nanoparticle(NP_(PLA)) in a bEnd.3 BBB model withcoumarin-6 incorporated in them as nanoparticle probe. The results showed that thecoumarin-6 release from Lf-NP_(PLA) and NP_(PLA) in pH 7.0 and pH 4.0 PBS after 24 hwere all below 6% which proved that coumarin-6 can indicate accurately the in vitroand in vivo behavior of Lf-NP_(PLA) and NP_(PLA). The bEnd.3 cells uptake resultsdemonstrated that the uptake amount of Lf-NP_(PLA) was significantly higher than that ofNP_(PLA) at 30, 60 and 120 min. The uptake inhibition test showed that Lf-NP_(PLGA) wasuptake by an Lf mediated energy-dependent process involving clathrin, golgiapparatus and macropinocytosis. MTT results showed that none of Lf-NP_(PLA), NP_(PLA)or Lf has significant toxicity on the cells. All the in vitro results showed that Lf-NP_(PLA)can be delivery into the brain through Lf receptor mediated process and Lf-NP_(PLA) is agood brain delivery system with low toxicity.
     In the third chapter of part two, the brain delivery property of Lf-NP_(PLA) wasevaluated by pharmacokinetics studies with NP_(PLA) as control. One hour after a dose of60 mg/kg coumarin-6 loaded Lf-NP_(PLA) or NP_(PLA) injection in mice caudal vein,fluorescent microscopy of brain coronal sections revealed a higher accumulation ofLf-NP_(PLA) in third ventricle region, striatum and cerebral cortex region than that ofNP_(PLA). The biodistribution result in mice revealed the AUC of Lf-NP_(PLA) in cerebrumwas 2.98 times of that of NP_(PLA), and the brain drug targeting index of Lf-NP_(PLA) was3.22 compared with NP_(PLA). The two kinds of nanoparticles were mainly distributed tothe liver and spleen. While compared to NP_(PLA), Lf-NP_(PLA) distributed more to liver,spleen and kidney. Immunostaining of monocyte-macrophage demonstrated that highdose of Lf-NP_(PLA) cannot induce the increase amount of macrophage in cerebrum,cerebellum, heart kidney and lung in BALB/c mice, only had light toxicity to liver,and spleen, and its acute toxicity was transient.
     In the third part, we prepared BSA loaded Lf-NP_(PLGA) and Lf-NP_(PLA), comparedthe releasing and degradation behavior of them as well as its brain delivery properties.The release results showed that, the two kinds of nanoparticles possess similar releasebehavior in PBS at 37℃, which all fit the Weibull distribution, with a 45% release ofBSA during the 15 days period. While in PBS containing 5% plasma, the release ofthe two kinds of nanoparticles was more complete, with an 88% release for Lf-NP_(PLGA) and 61% release for Lf-NP_(PLA). Using Lf as a targeting molecule, bothLf-NP_(PLGA) and Lf-NP_(PLA) can enhance brain delivery. Lf-NP_(PLA) has a better braintargeting property but its uptake by the reticuloendothelial system was moreprominent. In comparison, Lf-NP_(PLGA) has a moderate brain targeting property withgood safety.
引文
[1] Persidsky Y, Ramirez SH, Haorah J et al. Blood-brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions[J]. J Neuroimmune Pharmacol, 2006, 1(3): 223-236.
    [2] Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation[J]. Cell Mol Neurobiol, 2005, 25(1): 5-23.
    [3] Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities[J]. Pharmacol Ther, 2004, 104(1): 29-45.
    [4] Brasnjevica I, Steinbuscha WMH, Schmitza C et al. Delivery of peptide and protein drugs over the blood-brain barrier[J]. Prog Neurobiol, 2009, 87(4): 212-251.
    [5] Pardridge, WM. Brain Drug Targeting: The future of brain drug development[M]. Cambridge: Cambridge University Press, 2001.
    [6] De Boer AG, Gaillard PJ. Strategies to improve drug delivery across the blood-brain barrier[J]. Clin Pharmacokinet, 2007, 46(7): 553-576.
    [7] Gaillard PJ, Visser CC, De Boer AG. Targeted delivery across the blood-brain barrier[J]. Expert Opin Drug Deliv, 2005, 2(2): 299-309.
    [8] Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes[J]. Proc Natl Acad Sci U S A, 1996, 93(24): 14164-14169.
    [9] Nuijens JH, van Berkel PH, Schanbacher FL. Structure and biological actions of lactoferrin[J]. J Mammary Gland Biol Neoplasia, 1996, 1(3): 285-295.
    [10] Suzuki YA, Lopez V, L(o|¨)nnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci, 2005, 62(22): 2560-2575.
    [11] Fillebeen C, Descamps L, Dehouck MP et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier[J]. J Biol Chem, 1999, 274(11): 7011-7017.
    [12] Huang RQ, Ke WL, Qu YH et al. Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain[J]. J Biomed Sci, 2007, 14(1): 121-128.
    [13] Fillebeen C, Dehouck B, Bena(i|¨)ssa Met al. Tumor necrosis factor-alpha increases lactoferrin transcytosis through the blood-brain barrier[J]. J Neurochem, 1999, 73(6): 2491-2500.
    [14] Ji B, Maeda J, Higuchi M et al. Pharmacokinetics and brain uptake of lactoferrin in rats[J]. Life Sci, 2006, 78(8): 851-855.
    [15] Grau AJ, Willig V, Fogel W et al. Assessment of plasma lactoferrin in Parkinson's disease[J]. Mov Disord, 2001, 16(1): 131-134.
    [16] Faucheux BA, Nillesse N, Damier P et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease[J]. Proc Natl Acad Sci U S A, 1995, 92(21): 9603-9607.
    [17] Olivier JC. Drag transport to brain with targeted nanoparticles[J]. NeuroRx, 2005, 2(1): 108-119.
    [18] Avgoustakis K. Pegylated poly(Lactide) and poly(Lactide-Co-Glycolide) nanoparticles: preparation, properties and possible applications in drug Delivery[J]. Curr Drug Deliv, 2004, 1(4): 321-333.
    [19] Thomas B, Beal MF. Parkinson's disease[J]. Hum Mol Genet, 2007, 16(2): R183-R194.
    [20] Kastin AJ, Akerstrom V, Pan W. Activation of urocortin transport into brain by leptin[J]. Peptides, 2000, 21 (12): 1811-1817.
    [21] Abuirmeileh A, Lever R, Kingsbury AE et al. The corticotrophin-releasing factor-like peptide urocortin reverses key deficits in two rodent models of Parkinson's disease[J]. Eur J Neurosci, 2007, 26(2): 417-423.
    [1] Marty JJ, Oppenheim RC, Speiser P. Nanoparticles-a new colloidal drug delivery system[J]. Pharm Acta Helv, 1978, 53(1): 17-23.
    [2] Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery[J]. J Pharm Sci, 2003, 92(7): 1343-1355.
    [3] Gref R, L(u|¨)ck M, Quellec P et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption[J]. Colloids Surf B Biointerfaces, 2000, 18: 301-313.
    [4] Bazile D, Prud'homme C, Bassoullet MT et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocyte system[J]. J Pharm Sci, 1995, 84(4): 493-498.
    [5] Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles[J]. J Biomater Sci Polym Ed, 2006, 17(3): 247-289.
    [6] Beletsi A, Leontiadis L, Klepetsanis P et al. Effect of preparative variables on the properties of poly (dl-lactide-co-glycolide)-methoxypoly (ethyleneglycol) copolymers related to their application in controlled drug delivery[J]. Int J Pharm, 1999, 182(2): 187-197.
    [7] Konstantinos A. Pegylated poly (lactide) and poly (lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery[J]. Current Drug Delivery, 2004, 1: 321-333.
    [8] Quellec P, Gref R, Perrin L. Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization[J]. J Biomed Mater Res, 1998, 42(1): 45-54.
    [9] Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes[J]. Proc Natl Acad Sci, 1996, 93(24): 14164-14169.
    [10] Ellmann GL. Tissue sulfhydryl groups[J]. Arch Biochem Biophys, 1959, 82(1): 70-77.
    [11] Olivier JC, Huertas R, Lee HJ et al. Synthesis of pegylated immunonanoparticles[J]. Pharm Res, 2002, 19(8): 1137-1143.
    [12] Hyuk SY, Tae GP. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer[J]. J Control Release, 2001, 70: 63-70.
    [13] Avgoustakis K, Beletsi A, Panagi Z et al. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles[J]. Int J Pharm, 2003, 259: 115-127.
    [14] Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs[J]. Biomaterials, 2004, 25(14): 2843-2849.
    [15] Calvo P, Gouritin B, Chacun H et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery[J]. Pharm Res, 2001, 18(8): 1157-1166.
    [1] 乐飞,张国平,金惠铭.小鼠脑微血管内皮细胞株bEnd.3的细胞特征及基因表达谱分析[J].中国病理生理杂志,2004,20(8):1340-1344.
    [2] Pepper MS, Tacchini-Cottier F, Sabapathy TK et al. Endothelial cells transformed by polyomavirus middle T oncogene: a model for haemangiomas and other vascular tumours. In: Bicknell R, Lewis CE, Ferrara N, eds. Tumour Angiogenesis[M]. Oxford, UK: Oxford University Press, 1997: 309-331.
    [3] Brown RC, Morris AP, O'Neil RG. Tight junction protein expression and barrier properties of immortalized mouse brain micro vessel endothelial cells [J]. Brain Res, 2007,1130:17-30.
    [4] Olivier JC, Huertas R, Lee HJ et al. Synthesis of pegylated immunonanoparticles[J]. Pharm Res, 2002,19(8): 1137-1143.
    [5] Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells[J]. Int J Pharm, 2002,233: 51-59.
    [6] Seto ES, Bellen HJ, Lloyd TE. When cell biology meets development: endocytic regulation of signaling pathways[J]. Genes Dev, 2002, 16(11):1314-1316.
    [7] Mo Y, Lim LY. Mechanistic study of the uptake of wheat germ agglutinin-conjugated PLGA nanoparticles by A549 cells[J]. J Pharm Sci, 2004, 93(1):20-28.
    [8] Legen I, Zakelj S, Kristl A. Polarised transport of monocarboxylic acid type drugs across rat jejunum in vitro: the effect of mucolysis and ATP-depletion[J].Int J Pharm, 2003,256(1-2): 161-166.
    [9] Liu J, Shapiro JI. Endocytosis and signal transduction: basic science update[J].Biol Res Nurs, 2003, 5(2):117-128.
    [10] Jiang S, Rhee SW, Gleeson PA et al. Capacity of the Golgi Apparatus for Cargo Transport Prior to Complete Assembly [J]. Mol Biol Cell, 2006, 17(9):4105-4117.
    [11] Gabor F, Schwarzbauer A, Wirth M. Lectin-mediated drug delivery: binding and uptake of BSA-WGA conjugates using the Caco-2 model[J]. Int J Pharm, 2002,237(1-2): 227-239.
    [12] Panyam J, Sahoo SK, Prabha S et al. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles[J]. Int J Pharm, 2003, 262(1-2): 1-11.
    [13] Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems[J]. Curr Pharm Biotechnol, 2005,6(1): 3-5.
    [14] Plard JP, Bazile D. Comparison of the safety profiles of PLA_(50) and Me.PEG-PLA_(50) nanoparticles after single dose intravenous administration to rats[J]. Colloid Surface B, 1999, 16: 173-183.
    [15] Matsusue Y, Hanafusa S, Yamamuro T et al. Tissue reaction of bioabsorbable ultra high strength poly (L-lactide) rod. A long-term study in rabbits[J]. Clin Orthop, 1995, 317: 246-253.
    [16] Zambaux MF, Bonneaux F, Gref R et al. Protein C-loaded monomethoxypoly (ethylene oxide)-poly(lactic acid) nanoparticles[J]. Int J Pharm, 2001, 212: 1-9.
    [17] Thotathil Z, Jameson MB. Early experience with novel immunomodulators for cancer treatment[J]. Expert Opin Investig Drugs, 2007, 16(9): 1391-1403.
    [18] Tomita M, Wakabayashi H, Yamauchi K et al. Bovine lactoferrin and lactoferricin derived from milk: production and applications[J]. Biochem Cell Biol, 2002, 80(1): 109-112.
    [1] Konstantinos A. Pegylated poly (lactide) and poly (lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery[J]. Current Drug Delivery, 2004, 1: 321-333.
    [2] Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications[J]. Adv Drug Deliv Rev, 2003, 55: 403-419.
    [3] Duan Y, Xu J, Lin Y et al. A preliminary study on MeO-PEG-PLGA-PEG-OMe nanoparticles as intravenous carriers[J]. J Biomed Mater Res A, 2008, 87(2): 515-523.
    [4] Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles[J]. Pharm Res, 2008, 25(1): 55-71.
    [5] Gref R, Domb A, Quellec P et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres[J]. Adv Drug Deliv Rev, 1995, 16: 215-223.
    [6] Stolnik S, Heald CR, Neal J et al. Polylactide-poly(ethylene glycol) micellar-like particles as potential drug carriers: production, colloidal properties and biological performance[J]. Drug Target, 2001, 9: 361-378.
    [7] Bazile D, Prud'Homme C, Bassoullet MT et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system[J]. Pharm Sci, 1995, 84: 493-498.
    [8] 陈慰峰.医学免疫学[M].北京:人民卫生出版社,2002:79.
    [9] Janeway CA, Travers P, Walport M et al. Immunobiology[M]. New York: Garland publishing, 2001: 665.
    [10] Thom SR, Bhopale VM, Fisher D et al. Delayed neuropathology after carbon monoxide poisoning is immune-mediated[J]. Proc Natl Acad Sci, 2004, 101(37): 13660-13665.
    [11] Alric L, Orfila C, Carrere N et al. Reactive oxygen intermediates and eicosanoid production by kupffer cells and infiltrated macrophages in acute and chronic liver injury induced in rats by CCl_4[J]. Inflamm Res, 2000, 49(12): 700-707.
    [12] Smetana K Jr, Petrovicky P, Zach P et al. Brain lesion-induced alteration of selected phenotypic properties of spleen macrophages and their partial restoration in the course of foreign body reaction against intraperitoneally implanted polymers[J]. J Mater Sci Mater Med, 1999, 10(7): 425-429.
    [13] Liu N, Makino T, Honda G et al. Suppressive effects of Sairei-to on mesangial proliferation in a rat model of glomerulonephritis[J]. Clin Exp Nephrol, 2004, 8(3): 216-222.
    [14] Calvo P, Gouritin B, Chacun H et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery[J]. Pharm Res, 2001, 18(8): 1157-1166.
    [15] Hunt CA, MacGregor RD, Siegel RA. Engineering targeted in vivo drug delivery: I. The physiological and physicochemical principles governing opportunities and limitations[J]. Pharm Res, 1986, 3(2): 333-344.
    [16] 成令忠,王一飞,钟翠平.组织胚胎学[M].上海:上海科学技术文献出版社,2003:249-253.
    [17] Demoy M, Gibaud S, Andreux JP et al. Splenic trapping of nanoparticles: complementary approaches for in situ studies[J]. Pharm Res, 1997, 14(4): 463-468.
    [18] Gibaud S, Demoy M, Andreux JP et al. Cells involved in capture of nanoparticles in hematopoetic organs[J]. J Pharm sci, 1996, 85(9): 944-950.
    [19] Pardridge WM. Brain drug targeting[M]. Cambridge: Cambridge University Press, 1998: 82.
    [20] Pardridge WM. Blood-brain barrier drug targeting the future of brain drug development[J]. Mol Interv, 2003, 3(2): 90-105.
    [21] Alexis F, Pridgen E, Molnar LK et al. Factors Affecting the clearance and biodistribution of polymeric nanoparticles[J]. Mol Pharm, 2008, 5(4): 505-515.
    [22] Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles[J]. Int J Pharm, 2006, 307(1): 93-102.
    [23] Suzuki YA, Lonnerdal B. Characterization of mammalian receptors for Lactoferrin[J]. Biochem Cell Biol, 2002, 80(1): 75-80.
    [24] Suzuki YA, Lopez V, Lonnerdal B. Mammalian lactoferrin receptors: structure and function[J]. Cell Mol Life Sci, 2005, 62(22): 2560-2575.
    [25]Nuijens JH, van Berkel PH, Schanbacher FL. Structure and Biological Actions of Lactoferrin[J]. J Mammary Gland Biol Neoplasia, 1996,1(3): 285-295.
    [1] Vaux DL, Korsmeyer SJ. Cell death in development[J]. Cell, 1999, 96: 245-254.
    [2] Gandhi S, Wood NW. Molecular pathogenesis of Parkinson's disease[J]. Hum Mol Genet, 2005, 14: 2749-2755.
    [3] Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms[J]. Nature Neurosci, 2007, 8: 57-69.
    [4] Whitton PS. Inflammation as a potential causative factor in the aetiology of Parkinson's disease[J]. Br J Pharmacol, 2007, 150(8): 963-976.
    [5] Pederson WA, Wan R, Zhang P et al. Urocortin, but not urocortin Ⅱ, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type 1[J]. J Neuroscience, 2002, 22:404-412.
    [6] Facci L, Stevens DA, Pangallo M et al. Corticotropin-releasing factor (CRF) and related peptides confer neuroprotection via type 1 CRF receptors[J].Neuropharmacology 2003,45: 623-636.
    [7] Reul JM, Holsboer F. Corticotropin-releasing factor receptors 1 and in anxiety and depression[J]. Curr Opin Pharmacol, 2002, 2: 23-33.
    [8] Brar BK, Jonassen AK, Stephanou A et al. Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway[J]. J Biol Chem, 2000,275: 8508-8514.
    [9] Intekhad-Alam NY, Chowdrey HS, Knight RA et al. A CRF family peptide protects a human chondrocyte cell line against apoptosis[J]. Osteoarthr Cartilage,2004,12: 107.
    [10] Gonzalez-Rey E, Fernandez-Martin A, Chomy A et al. Therapeutic effect of urocortin and adrenomedullin in a murine model of Crohn's disease[J]. Gut, 2006,55: 824-832.
    [11] Choi JS, Pham TT, Jang YJ et al. Corticotropin-releasing factor (CRF) and urocortin promote the survival of cultured cerebellar GABAergic neurons through the type 1 CRF receptor[J]. J Korean Med Sci, 2006,21: 518-526.
    [12] Kastin AJ, Akerstrom V, Pan W. Activation of urocortin transport into brain by leptin[J]. Peptides, 2000, 21(12): 1811-1817.
    [13] Abuirmeileh A, Lever R, Kingsbury AE et al. The corticotrophin-releasing factor-like peptide urocortin reverses key deficits in two rodent models of Parkinson's disease[J]. Eur J Neurosci, 2007, 26(2): 417-423.
    [14] Abuirmeileh A, Harkavyi A, Lever R et al. Urocortin, a CRF-like peptide,restores key indicators of damage in the substantia nigra in a neuroinflammatory model of Parkinson's disease[J]. J Neuroinflammation, 2007, 21(4): 19.
    [15] Faucheux BA, Nillesse N, Damier P et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease[J]. Proc Natl Acad Sci USA Neurobiolog, 1995, 92: 9603-9607.
    [16] Grau AJ, Willig V, Fogel W et al. Assessment of Plasma Lactoferrin in Parkinson's Disease Movement Disorders[J]. Mov Disord, 2001, 16(1): 131-134.
    [17] George P,Charles W,诸葛启钏.大鼠脑立体定位图谱.第三版[M].北京:人民卫生出版社,2005.
    [18] Reglodi D, Tam(?)s A, Lubics A et al. Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats[J]. Regul Pept, 2004, 123(1-3): 85-94.
    [19] Baluchnejadmojarad T, Roghani M. Evaluation of functional asymmetry in rats with dose-dependent lesions of dopaminergic nigrostriatal system using elevated body swing test[J]. Physiol Behav, 2004, 82(2-3): 369-373.
    [20] Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats[J]. Behav Brain Res, 2002, 136(1): 317-324.
    [21] Blandini F, Armentero MT, Martignoni E. The 6-hydroxydopamine model: news from the past[J]. Parkinsonism Relat Disord, 2008, 14 Suppl 2: S124-129.
    [22] Schober A. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP[J]. Cell Tissue Res, 2004, 318: 215-324.
    [23] Lee CS, Sauer H, Bjorklund A. Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intrastriatal 6-hydroxydopamine in the rat[J]. Neuroscience, 1996, 72: 641-653.
    [24] Blandini F, Levandis G, Bazzini E et al. Timecourse of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model[J]. Eur J Neurosci, 2007, 25:397-405.
    [25] Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat[J]. Neuroscience, 1994, 59: 401-415.
    [26] Betarbet R, Sherer TB, MacKenzie G. Chronic systemic pesticide exposure reproduces features of Parkinson's disease[J]. Nat Neurosci, 2000, 3(12): 1301-1306.
    [27] Ferrante RJ, Schluz JB, Kowall NW et al. Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not the substantia nigra[J]. Brain Res, 1997, 753: 157-162.
    [28] Perier C, Bov(?) J, Vila M et al. The rotenone model of Parkinson's disease[J]. Trends Neurosci, 2003, 26(7): 345-346.
    [1] Dong YC, Feng SS. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy[J]. Biomaterials, 2007, 28: 4154-4160.
    [2] Tobio M, Gref R, Sanchez A et al. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration[J]. Pharm Res, 1998, 15(2): 270-275.
    [3] Zhang Y, Zhang QZ, Zha LS et al. Preparation, characterization and application of pyrene-loaded methoxy poly(ethylene glycol)-poly(lactic acid) copolymer nanoparticles[J]. Colloid Polymer Sci, 2004, 282(8): 1323-1328.
    [4] Dong Y, Feng SS. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs[J]. Biomaterials, 2004, 25(14): 2843-2849.
    [5] 查刘生.热响应性水凝胶纳米粒子和可生物降解聚合物纳米粒子的合成、表征与初步应用[D].上海:复旦大学,2002.
    [6] Olivier JC, Huertas R, Lee HJ et al. Synthesis of pegylated immunonanoparticles[J]. Pharm Res, 2002, 19(8): 1137-1143.
    [7] Scholes PD, Coombes AG, Illum L et al. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS[J]. J Control Release, 1999, 59(3): 261-278.
    [8] Feng SS, Mu L, Win KY et al. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel[J]. Curr Med Chem, 2004, 11(4): 413-424.
    [9] Dehouck MP, Dehouck B, Schluep C et al. Drug transport to the brain: comparison between in vitro and in vivo models of the blood-brain barrier[J]. Eur J Pharm Sci, 1995, 3(3): 357-365.
    [10] Calvo P, Gouritin B, Chacun H et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery[J]. Pharm Res, 2001, 18(8): 1157-1166.
    [1] Olivier JC, Huertas R, Lee HJ et al. Synthesis of pegylated immunonanoparticles[J]. Pharm Res, 2002, 19(8): 1137-1143.
    [2] Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells[J]. Int J Pharm, 2002, 233: 51-59.
    [3] Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation[J]. Pharm Res, 2004, 21(2): 344-353.
    [4] Suzuki YA, Lopez V, L(o|¨)nnerdal B. Mammalian lactoferrin receptors: structure and function[J]. Cell Mol Life Sci, 2005, 62: 2560-2575.
    [5] Huang RQ, Ke WL, Qu YH et al. Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain[J]. J Biomed Sci, 2007, 14: 121-128.
    [6] Grau AJ, Willig V, Fogel W et al. Assessment of plasma lactoferrin in Parkinson's disease[J]. Mov Disord, 2001, 16(1): 131-134.
    [7] Faucheux BA, Nillesse N, Damier P et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease[J]. Proc Natl Acad Sci USA Neurobiol, 1995, 92: 9603-9607.
    [8] Kawamata T, Tooyama I, Yamada T et al. Lactotransferrin immunocytochemistry in Alzheimer and normal human brain[J]. Am J Pathol, 1993, 142(5): 1574-1585.
    [1] Calvo P, Gouritin B, Chacun H et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery[J]. Pharm Res, 2001, 18(8): 1157-1166.
    [2] Hunt CA, MacGregor RD, Siegel RA. Engineering targeted in vivo drug delivery: I. The physiological and physicochemical principles governing opportunities and limitations[J]. Pharm Res, 1986, 3(2): 333-344.
    [3] Konstantinos A. Pegylated poly (lactide) and poly (lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery [J]. Current Drug Delivery, 2004, 1: 321-333.
    [4] Dong YC, Feng SS. In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy[J]. Biomaterials, 2007, 28: 4154-4160.
    [5] Mosqueira VC, Legrand P, Morgat JL et al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density[J]. Pharm Res, 2001, 18(10): 1411-1419.
    [6] Yi Y, Kim JH, Kang HW et al. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution[J]. Pharm Res, 2005, 22(2): 200-208.
    [7] Li SD, Huang L. Pharmacokinetics and Biodistribution of Nanoparticles[J]. Mol Pharm, 2008, 5(4): 496-504.
    [8] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice[J]. Pharmacol Rev, 2001, 53(2): 283-318.
    [1] Lee SH, Zhang Z, Feng SS. Nanoparticles of poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymers for protein drug delivery[J]. Biomaterials, 2007, 28(11): 2041-2050.
    [2] Avgoustakis K, Beletsi A, Panagi Z et al. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties[J]. J Control Release, 2002, 79(1-3): 123-135.
    [3] Li SD, Huang L. Pharmacokinetics and Biodistribution of Nanoparticles[J]. MolPharm, 2008, 5(4): 496-504.
    [4] Andresen TL, Jensen SS, Kaasgaard T. Triggered activation and release of liposomal prodrugs and drugs in cancer tissue by secretory phospholipase A2[J]. Curr Drug Deliv, 2005, 2: 353-362.
    [5] Jensen SS, Andresen TL, Davidsen J et al. Secretory phospholipase A2 as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids [J]. Mol Cancer Ther, 2004, 3: 1451-1458.
    [6] 何应,魏树礼.聚乳酸微球的体外降解[J].北京大学学报(医学版),2001,33(4):853-856.
    [7] Li XH, Deng XM, Yuan ML et al. In vitro degradation and release profiles of poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped proteins[J]. J Appl Polym Sci, 2000, 78, 140-148.
    [1] Pardridge WM. Drug Targeting to the Brain[J]. Pharm Res, 2007, 24(9): 1733-1744.
    [2] Ulrich B, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier[J]. Adv Drug Deliv Rev, 2001, 46: 247-279.
    [3] Grasso P, Dattatreyamurty B, Dias JA et al. Transglutaminase activity in bovine calf testicular membranes: Evidence for a possible role in the interaction of follicle-stimulating hormone with its receptor[J]. Endocrinology, 1987, 121: 459-465.
    [4] Gex-Fabry M, DeLisi C. Receptor-mediated endocytosis: A model and its implications for experimental analysis[J]. Am J Physiol, 1984, 247: R768-R779.
    [5] Verner K, Schatz G. Protein translocation across membranes[J]. Science, 1988, 241: 1307-1313.
    [6] Clarke BL, Weigel PH. Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes[J]. J Biol Chem, 1985, 260: 128-133.
    [7] Solenski HJ, Williams SK. Insulin binding and vesicular ingestion in capillary endothelium[J]. J Cell Physiol, 1985, 124: 87-95.
    [8] Willingham MC, Hanover JA, Dickson RB et al. Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells[J]. Proc Natl Acad Sci USA, 1984, 81: 175-179.
    [9] Ahnert-Hilger G, Bhakdi S, Gratzl M et al. Minimal requirements for exocytosis[J]. J Biol Chem, 1985, 260: 12730-12734.
    [10] McAbee DD, Weigel PH. ATP depletion causes a reversible redistribution and inactivation of a subpopulation of galactosyl receptors in isolated rat hepatocytes[J]. J Biol Chem, 1987, 260: 128-133.
    [11] Vilmart-Seuwen J, Kersken H, Sturzl R et al. ATP keeps exocytosis sites in a primed state but is not required for membrane fusion: An analysis with Paramecium cells in vivo and in vitro[J] J Cell Biol, 1986, 103: 1279-1288.
    [12] Almers M. Exocytosis[J]. Annu Rev Physiol, 1990, 52: 607-624.
    [13] 张豪,沈明山,方宏清等.转铁蛋白/转铁蛋白受体介导的药物运输[J].2004,中国生物工程杂志,24(6):1-5.
    [14] Fishman JB, Rubin JB, Handrahan JV et al. Receptor-mediated transcytosis of transferrin across the blood-brain barrier[J]. J Neurosci Res, 1987, 18: 299-304.
    [15] Visser CC. Stevanovi(?) S, Heleen Voorwinden L et al. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro[J]. J Drug Target, 2004, 12(3): 145-150.
    [16] Soni V. Kohli DV, Jain SK. Transferrin coupled liposomes as drug delivery carriers for brain targeting of 5-florouracil[J]. J Drug Target, 2005, 13(4): 245-250.
    [17] Mishra V. Mahor S, Rawat A et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles[J]. J Drug Target, 2006, 14(1): 45-53.
    [18] Huang RQ, Qu YH, Ke WL et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer[J]. 2007, FASEB J, 2007; 21(4): 1117-1125.
    [19] Seligman P. Structure and function of the transferrin receptor[J]. Prog Hematol, 1983, 13: 131-147.
    [20] Qian ZM, Li H, Sun H et al. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway[J]. Pharmacol Rev, 2002, 54(4): 561-587.
    [21] Laske DW. Tumor regression with regional distribution of the targeted toxin Tf-CRM107 in patients with malignant brain tumors[J]. Nat Med, 1997, 3:1362-1368.
    [22] Jefferies WA, Brandon MR, Hunt SV et al. Transferrin receptor on endothelium of brain capillaries[J]. Nature, 1984,312: 162-163.
    [23] Pardridge WM, Buciak JL, Friden P. Selective transport of an anti-transferrin receptor antibody through the blood-brain barier in vivo[J]. J Pharmacol Exp Ther,1991,259:66-70.
    [24] Huwyler J, Yang J, Pardridge WM. Targeted delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat[J]. J Pharmacol Exp Ther, 1997,282: 1541-1546.
    [25] Zhang Y, Pardridge WM. Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system[J]. Stroke, 2001, 32(6): 1378-1384.
    [26] Song BW, Vinters HV, Wu D et al. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector[J]. J Pharmacol Exp Ther, 2002, 301(2): 605-610.
    [27] Shi N, Pardridge WM. Noninvasive gene targeting to the brain[J]. Proc Natl Acad Sci, 2000,97(13): 7567-7572.
    [28] Lee HJ, Engelhardt B, Lesley J. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse[J]. J Pharmacol Exp Ther, 2000,292: 1048-1052.
    [29] Zhang Y Pardridge WM. Delivery of beta-galactosidase to mouse brain via the blood-brain barrier transferrin receptor[J]. J Pharmacol Exp Ther, 2005, 313:1075-1081.
    [30] Lee HJ, Boado RJ, Braasch DA. Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington's disease with an antisense radiopharmaceutical and drug-targeting technology[J]. J Nucl Med, 2002, 43:948-956.
    [31] Lee HJ, Zhang Y, Zhu C et al. Imaging brain amyloid of Alzheimer disease in vivo in transgenic mice with an Abeta peptide radiopharmaceutical[J]. J Cereb Blood Flow Metab, 2002, 22: 223-231.
    [32] Nuijens JH, van Berkel PH, Schanbacher FL. Structure and biological actions of lactoferrin[J]. J Mammary Gland Biol Neoplasia, 1996, 1(3): 285-295.
    [33] Suzuki YA, Lopez V, Lonnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci, 2005, 62(22): 2560-2575.
    [34] Fillebeen C, Descamps L, Dehouck MP et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier[J]. J Biol Chem, 1999, 274(11):7011-7017.
    [35] Huang RQ, Ke WL, Qu YH et al. Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain[J]. J Biomed Sci, 2007,14(1): 121-128.
    [36] Fillebeen C, Dehouck B, Bena(?)ssa M et al. Tumor necrosis factor-alpha increases lactoferrin transcytosis through the blood-brain barrier[J]. J Neurochem, 1999, 73(6):2491-2500.
    [37] Ji B, Maeda J, Higuchi M et al. Pharmacokinetics and brain uptake of lactoferrin in rats[J]. Life Sci, 2006, 78(8): 851-855.
    [38] Grau AJ, Willig V, Fogel W et al. Assessment of Plasma Lactoferrin in Parkinson's Disease[J]. Mov Disord, 2001,16(1): 131-134.
    [39] Faucheux BA, Nillesse N, Damier P et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease[J]. Proc Natl Acad Sci U S A, 1995,92(21): 9603-9607.
    [40] Pardridge WM. Receptor-mediated peptide transport through the blood-brain barrier[J]. Endocrine Rev, 1986, 7: 314-330.
    [41] Gaillard PJ. Targeted delivery across the blood-brain barrier[J]. Drug Deliv, 2005, 2:299-309.
    [42] Duffy KD, Pardridge WM. Blood-brain barrier transcytosis of insulin in developing rabbits[J]. Brain Res, 1987,420: 32-38.
    [43] Fukuta M, Okada H, Iinuma S et al. Insulin fragment as a carrier for peptide delivery across the blood-brain barrier[J]. Pharm Res, 1994, 11(12): 1681-1688.
    [44] Wu DF, Yang J, Pardridge WM. Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor[J]. J Clin Invest, 1997, 100: 1804-1812.
    [45] Zhang Y, Schlachetzki F, Pardridge WM. Global nonviral gene transfer to the primate brain following intravenous administration[J]. Mol Ther, 2003, 7: 11-18.
    [46] Boado RJ, Zhang Y, Pardridge WM. Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular Trojan horse for delivery across the human blood-brain barrier[J]. Biotechnol Bioeng, 2007, 97: 1376-1386.
    [47] Coloma ML Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm. Res. 2000;17:266-274
    [48] Boado RJ, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier[J]. Biotechnol Bioeng, 2007, 96: 381-391.
    [49] Reinhardt RR, Bondy CA. Insulin-like growth factors cross the blood-brain barrier[J]. Endocrinology, 1994,135(5): 1753-1761.
    [50] Riikonen R. Insulin-like growth factor delivery across the Blood-Brain Barrier:potential use of IGF-1 as a drug in child neurology[J]. Chemotherapy, 2006, 52:279-281.
    [51] Clemmons DR, Cascieri MA, Camacho-Hubner C et al. Discrete alterations of the insulin-like growth factor I molecule which alter its affinity for insulin-like growth factor-binding proteins results in changes in bioactivity[J]. J Biol Chem, 1990, 265:12210-12216.
    [52] Urayama A, Grubb JH, Sly WS et al. Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier[J]. Proc Natl Acad Sci, 2004,101: 12658-12663.
    [53] Spencer BJ, Verma IM. Targeted delivery of proteins across the blood-brain barrier[J]. PNAS, 2007,104(18): 7594-7599.
    [54] Dehouck B, Fenart L, Dehouck MP et al. A new function for the LDL receptor:transcytosis of LDL across the blood-brain barrier[J]. J Cell Biol, 1997, 138:877-889.
    [55] Michaelis K, Hoffmann MM, Dreis S. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain[J]. J Pharmacol Exp Ther, 2006, 317(3): 1246-1253.
    [56] Sauer I, Dunay IR, Weisgraber K et al. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells[J]. Biochemistry, 2005,44(6): 2021-2029.
    [57] Sauer I, Nikolenko H, Keller S et al. Dipalmitoylation of a cellular uptake-mediating apolipoprotein E-derived peptide as a promising modification for stable anchorage in liposomal drug carriers[J]. Biochim Biophys Acta, 2006, 1758(4): 552-561.
    [58] Kreuter J, Shamenkov D, Petrov V et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier[J]. J Drug Target, 2002, 10:317-325.
    [59] Gulyaev AE, Gelperina SE, Skidan IN et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles[J]. Pharm Res, 1999, 16:1564-1569.
    [60] Steiniger SC, Kreuter J, Khalansky AS et al. Chemotherapy of glioblastoma in rats using doxorubicin loaded nanoparticles[J]. Int J Cancer, 2004,109: 759-767.
    [61] Abdel BA, Alyautdin RN, Evgenivetch PV. Brain targeting of nerve growth factor using poly(butylcyanoacrylate) nanoparticles[J]. Int J Pharm, 2005, 3(2): 11-24.
    [62] Anderson P, Pichichero ME, Insel RA et al. Immunogens consisting of oligosaccharides from the capsule of Haemophilusinfluenzae type-b coupled to diphtheria toxoid or the toxin protein CRM197[J]. J Clin Invest, 1985, 76: 52-59.
    [63] Buzzi S, Rubboli D, Buzzi G et al. CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients[J]. Cancer Immunol Immunother, 2004, 53: 1041-1048.
    [64] Gaillard P, Brink A, Boerde AG. Diphtheria toxin receptor-targeted brain drug delivery[J]. Int Congres Series, 2005,1277: 185-198.
    [65] Kumagai AK, Eisenberg J, Pardridge WM. Absorptive-mediated endocytosis of cationized albumin and a P-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of a potential blood-brain barrier transport[J]. J Biol Chem, 1987,262: 15214-15219.
    [66] Wu D, Pardridge WM. CNS pharmacologic effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analogue coupled to a blood-brain barrier drug delivery system[J]. J Pharmacol Exp Ther, 1996, 279:77-83.
    [67] Bickel U, Kang YS, Pardridge WM. In vivo cleavage of a disulfide-based chimeric opioid peptide in rat brain[J]. Bioconj Chem, 1995, 6: 211-218.
    [68] Deguchi Y, Kurihara A, Pardridge WM. Retention of biologic activity of human Epidermal growth factor following conjugaton to a blod-brain barier drug delivery vector via an extended poly(ethylene glycol ) linker[J]. Bioconj Chem, 1999, 10:32-37.
    [69] Green NM. Avidin and streptadvidin[J]. Methods Enzymol, 1990, 184: 51-67.
    [70] Kang YS, Saito Y, Pardridge WM. Pharmacokinetics of ~([3H])biotin bound to different avidin analogues[J]. J Drug Target, 1995, 3(2): 159-165.
    [71] Shin SU, Wu D, Ramanathan R et al. Functional and pharmacokinetic properties of antibody/avidin fusion proteins[J]. J Immunol, 1997, 158: 4797-4804.
    [72] Jones AR, Shusta EV. Blood-Brain Barrier Transport of Therapeutics via Receptor-Mediation[J]. Pharm Res, 2007, 24(9): 1759-1771.
    [73] Wang XX, Cho YK, Shusta EV. Mining a yeast library for brain endothelial cell-binding antibodies[J]. Nat Methods, 2007, 4: 143-145.
    [74] Shi NY, Zhang Y, Zhu C et al. Brain-specific expression of an exogenous gene after i.v. administration[J]. Proc Natl Acad Sci, 2001, 98: 12754-12759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700