用户名: 密码: 验证码:
脑电信号同步:方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑电的同步被认为是脑功能区域整合或绑定的表现。高级脑功能需要具有特定功能的多区域神经系统间进行不同层次的整合和协调来完成。多年的动物实验证明:大脑信息整合和信息处理的主要潜在机制是各神经网络的同步振荡。脑电中的同步现象,尤其是脑电中高频段的同步振荡,被认为是建立不同脑区之间信息交流的一个关键部分。
     头表上记录到的脑电信号是大脑皮层及皮层下大量神经元或神经网络的同步活动的反映,因此,在宏观水平下,可以应用脑电(EEG)来研究这种机制,即在一定时间分辨率下,通过研究局部范围和全局范围分布的脑电信号的同步,估计出局部皮层之间和整体皮层内部生物电活动的概貌。
     脑电同步问题涉及的内容比较广泛,本文主要从研究方法入手,较为系统的分析、比较、总结及改进现有的相关研究方法,并将这些方法应用于视觉信息处理机制(视通路、视觉空间注意、视听同步分析)的研究。本论文所做主要工作如下:
     1.基于128道高分辨脑电测量技术,采用基于傅里叶变换的事件相关脑电线性相干处理技术,通过测量大脑对图形形状知觉(任务1)、图形形状和空间位置知觉(任务2)两种任务的事件相关电位,并基于电极数大致相同的原则,从枕叶至额叶把头表分成了7个区,然后计算了枕叶与其它各区在不同频段的相干系数。结果发现:在γ1频段(28-39Hz),任务2时的平均相干系数值显著大于任务1时的相应值,并且满足这一条件(任务2的相干系数大于任务1的相干系数)的电极对数,显著地多于其它频段。同时还发现在枕叶与额叶间,任务2的相干系数大于任务1的相干系数的所对应的电极对数,显著地多于其它区域,而且平均相干系数的差异也具有显著性。结合视觉双通路理论,这一结果从相干性角度表明,背侧通道的参与强化了枕叶与额叶之间的信息沟通,而这种沟通主要在γ1频段。
     2.上下视野的视觉信息处理对于研究人脑的功能具有重要意义,脑电的同步是脑功能区域整合或绑定的一个潜在机制,可用来研究上下视野的差异问题。这种差异通过计算不同任务时左右视觉区电极ERP的非线性关联得到反映。这些结果一致的支持人的下视野是优势视野的观点。
     3.提出了一种基于分段Prony的研究相位同步的方法。分段Prony方法(piecewise Prony method,PPM)是将EEG信号分解为具有指数上升或下降幅度正弦波的组合,从而获得脑电各频率成分的幅度、频率和相位信息,并以此为基础计算两通道信号的相位差,然后用香侬熵来度量两路信号间的相位同步程度。论文中该方法与其它方法的数值比较结果,说明了PPM具有较好的抗噪性能,具有较高的频率和相位分辨率,基于PPM的相位同步分析方法是非平稳信号的相位同步检测的有效工具。该方法用于实际脑电信号获得的结果与生理事实一致,也证实了该方法在研究脑电同步性方面的有效性。
     4.研究了视听觉脑区在认知过程中的同步性。通过设计视听觉同时刺激模式下的脑电实验,采用128导脑电采集系统记录脑电数据,并运用希尔伯特(Hilbert)相位同步算法对视听觉区域的事件相关脑电位(ERP)进行处理。研究结果表明,此实验条件下,枕叶与颞叶脑区间的同步指数明显大于枕叶与顶叶间的同步指数。同时研究也表明人在感知和认知事物时,相关的脑区间会自动产生神经活动的同步化。
EEG Synchronization is considered the conformity or binding of the brainfunctional areas. Advanced brain function requires many relevant brain regions with aspecific function between the nervous system at different levels to achieve integrationand coordination. Years of animal experiments proved that the major potentialmechanisms of information integrating and information processing for the brain are thesynchronization oscillation of the neural network. Synchronization phenomenon of EEG,especially in the high frequency band, EEG synchronization oscillation, is considered akey part of the establishment of communicating information between different brainregions
     EEG recorded on the scalp is the synchronous reflection of the synchronousactivities of many neurons or neural networks in the brain. Therefore, at the macro level,EEG is available to study such a mechanism. That is, at a certain temporal resolution, bystudying the local scope and global scope of the distribution of EEG synchronization,estimate the general picture of biological activity profile of electricity of the localcortical cortex and the overall cortical internal.
     EEG synchronization problem are involved in a wide range of research problems,in this article, starting from the research methods, more systematic analysis, comparison,conclusions and improvement the relevance of existing research methods and theirapplication to visual information processing mechanisms study including the two visualpathways, the spatial attention and the integration between visual and audio perception.The main works done in this thesis are as follows:
     1. Based on the 128-channel high temporal-spatial resolution EEG and Fouriertransform, event-related coherence technique is adopted to study the cognitiveactivation patterns in the two visual pathways. In this study, two different ERPs, oneresponding to the task of form perception (task 1) and another evoked by both formdiscrimination and spatial location (task 2), are involved into calculation ofevent-related coherence. The coherence is calculated between occipital area and othersix areas in different EEG frequency bands. Those sub-areas located between occipital and frontal occipital are determined by the similarity of neighbored electrodes beforecoherence calculation. The results indicated that inγl band (28-39Hz) , both thecoherence and the electrode-pair density responding to simultaneously form perceptionand spatial location are statistically stronger than those in only form perception task,which was even more obvious in occipital and frontal area. These findings furthersuggest that the increasing of synchronization found inγl band is due to theparticipation of dorsal stream, which can strengthen the information exchangingbetween occipital and frontal occipital.
     2. Information processing mechanism in the upper and lower visual fields plays animportant role to study brain functions. Synchronous activity of brain areas is a latentmechanism for the integration or binding of brain functional areas, and can be used tostudy the difference between the upper and lower eye fields. The difference of thesynchronization is revealed by calculating a nonlinear interdependence of ERP fromleft-right temporal electrode in the visual fields for different task. These results supportthat the lower visual field is superior to the upper visual field in the ability of processingvisual information.
     3. A method based piecewise Prony method (PPM) was presented to research thephase synchronization. The piecewise Prony method (PPM) decomposes EEG signalinto a summation of sinusoidal components with decaying or growing envelope in orderto obtain the magnitude of the frequency components, frequency and phase information,and use this phase information to calculate difference of the phase of two-channel signal.And then, we can measure the degree of phase synchronization of two-channel signalsaccording to Shannon entropy. The method is firstly evaluated and compared with othermethods using simulated transient non-stationary data, and the simulated results showedthat PPM has better anti-noise performance, with higher frequency and phase resolution.The phase synchronization entropy based PPM is consistent with the physiologicalstates when this method is applied to a real rat EEG data. These results confirmed thatthis phase synchronization analytic method based PPM is robust to noise andnon-stationary, and it is a promising tool for EEG signal processing.
     4. To study synchronization between visual area and audio area during cognitiveprocessing, an experiment of visual-audio simultaneous stimulus is designed to acquirecontinuous 128-channel EEG recordings. ERP evoked by stimulus is processed bymeans of Hilbert phase synchronization method. Under such trial condition, thesynchronous index between occipital area and temporal area is larger than the indexcalculated between occipital area and parietal area. Moreover, synchronous activity willoccur among other relevant brain areas automatically during the cognitive procedure.
引文
[1] H. A. Simon. How big is a chunk? Science, 1974, 183:482-487
    [2] 饶恒毅,中国科学院生物物理所博士论文,2003:56-73
    [3] Z.W. Pylyshyn. Information Science: its roots and relations as viewed from the perspective science. The Study of Information: Interdisciplinary Messangers. Wiley, New York. 1983
    [4] D. Norman. Perspectives on Cognitive Sciences. New Jersey, Ablex Publishing Co. & Lawrence Erlbaum Associate. 1981
    [5] A. M. Treisman, G. A. Gelade. A feature-integration theory of attention. Cognitive psychology, 1980,12:97-136
    [6] V. D. Malsburg. The correlation theory of brain function (Internal report no 81-82).Gottingen Germany: M. Planck Institute for biophysical chemistry, department of neurobiology
    [7] A. R. Damasio. The brain binds entities and events by multiregional activation from convergence zones. Neural Computation. 1989,1(1):123-132
    [8] V. D. Malsburg. Binding in model of perception and brain function. Cunrrent Opinion in Neurobiology. 1995,5(4):520-536
    [9] W. Singer. C. M. Gray. Visual feature integration and the temporal correlation hypothesis.Annual Review of Nueroscience,1995,18:555-586
    [10] A. K.Engel, W. Singer. Temporal binding and the neural correlates of sensory awareness. Trends in cognitive Sciences. 2001,5(1): 16-25
    [11] M. J. Farah, L. L. Weisberg, M. Monheit. Brain Activity Underlying Mental Imagery: Event-related Potentials During Mental Image Generation. Journal of Cognitive Neuroscience. 1996,1(4): 302-316
    [12] S. A. Hillyard, L. Anllo-Vento. Event-related brain potentials in the study of visual selective attention. PNAS. 1998,95(3):781-787
    [13] P. M. Milner. A model for visual shape recognition. Psychol Rev. 1974,81(6):521-535
    [14] L. Mioche, W. Singer. Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive field properties. J. Neurophysiol. 1989,62(1): 185-19
    [15] A. K. Kreiter, W. Singer. Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J. Neurosci. 1996,16(7): 2381-2396
    [16] S. Neuenschwander, A. K. Engel, P. K(o|¨)nig, W. Singer, F. J. Varela. Synchronization of neuronal responses in the optic rectum of awake pigeons. Vis. Neurosci. 1996,13(3): 575-584
    [17] A. K. Engel, A. K. Kreiter, P. Konig, W. Singer. Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc. Natl. Acad. Sci. USA. 1991,88(14): 6048-6052
    [18] A. K. Engel, P. Konig, A. K. Kreiter, W. Singer. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science. 1991(b), 252(5009): 1177-1179
    [19] M. Brecht, W. Singer, A. K. Engel. Correlation analysis of corticotectal interactions in the cat visual system. J. Neurophysiol. 1998,79(5): 2394-2407
    [20] C. M. Gray. The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron. 1999,24(1): 31-47
    [21] W. Singer. Neuronal synchrony: A versatile code for the definition of relations? Neuron. 1999,24(1): 49-65
    [22] V. N. Murthy, E. E. Fetz. Coherent 25Hz-35Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci. 1992,89: 5670-5674
    [23] P. R. Roelfsema, A. K. Engel, P. Konig, W. Singer. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature. 1997,385 (6612) :157-161
    [24] M. H. J. Munk, P. R. Roelfsema, P. Konig, A. K. Engel, W. Singer. Role of reticular activation in the modulation ofintracortical synchronization. Science. 1996,272 (5259) :271-274
    [25] S. Herculano-Houzel, M. H. J. Munk, S. Neuenschwander, W. Singer. Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J. Neurosci. 1999,19(10): 3992-4010
    [26] P. Fries, P. R. Roelfsema, A. K. Engel, P. Konig, W. Singer. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. USA. 1997,94(23): 12699-12704
    [27] P. Fries, J.-H. Schroder, P. R. Roelfsma, W. Singer, A. K. Engel. Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 2002,22(9):3739-3754
    [28] J. Biederlack, M. Castelo-Branco, S. Neuenschwander, D. W. Wheeler, W. Singer, D. Nikolic. Brightness induction: Rate enhancement and neuronal synchronization as complementary codes. Neuron. 2006,52(6): 1073-1083
    [29] M. Volgushev, M. Chistiakova, W. Singer. Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neurosci. 1998,83(1): 15-25
    [30] P. Fries, S. Neuenschwander, A. K. Engel, R. Goebel, W. Singer. Rapid feature selective neuronal synchronization through correlated latency shifting. Nature Neurosci. 2001, 4(2): 194-200
    [31] P. Fries, D. Nikolic,W. Singer. The gamma cycle. Trends Neurosci. 2007,30(7): 309-316.
    [32] W. Singer. Synchrony, oscillations, and relational codes. L. M. Chalupa, J. S.Werner. The Visual Neurosciences. Cambridge, Massachusetts: The MIT Press, A Bradford Book; 2004; pp. 1665-1681
    [33] P. J. Uhlhaas, D. E. J. Linden, W. Singer, C. Haenschel, M. Lindner, K. Maurer, E. Rodriguez. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J. Neurosci. 2006, 26(31): 8168-8175
    [34] P. J. Uhlhaas, W. Singer. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006,52(1): 155-168
    [35] H. B. Barlow. Single units and sensation: A neuron doctrine for perceptual psychology.Perception. 1972,1:371-394
    [36] 郭爱克,自涌动态神经元集群-脑的时空编码新概念.1997,13(4):695-701
    [37] Tanaka K. Neuronal mechanisms of object recognition. Science, 1993, 262(5134):685-688
    [38] M. P. Young, S.Yamane. Sparse population coding of faces in the inferotemporal cortex. Science, 1992,256(5061): 1327-1331
    [39] F. Hiroshi, I. Hiroyuki, A. Kazuyuki et al. Dynamical cell assembly hypothesis- theoretical possibility of spatio-temporal coding in the cortex. Neural Networks. 1996,9(8): 1303-1350
    [40] J. J. Hopfield. Pattern recognition computation using action potential timing for stimulus representation. Nature. 1995,376(6):33-36
    [41] D. Hebb. The organization of behavior: a neurophysiological theory. New York. John Wiley, 1949
    [42] F. Varela. Resonant cell assemblies: a new approach to cognitive fimctions and neuronal synchrony. Biol Res. 1995,28(1):81-95
    [43] 吴健辉,罗跃嘉,神经元活动的时相同步与脑功能整合.心理科学进展,2002,10(4):367-374.
    [44] V. D. Malsburg, W. Schnei. A neural cocktail-party processor: Biological Cybernetics. 1986,54(1):29-40
    [45] C. R. Legendy. The brain and its information trapping device. Progress in Cybernetics. In Rose J. (Ed.), Progress in cybernetics, vol. Ⅰ. New York: Gordon and Breach.
    [46] C. M. Gray, P. Konig, A. K. Engel, Singer. W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989,338 (6213):334-337
    [47] S. Neuensehwander, W. Singer. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature. 1996, 379(6567):728-733
    [48] K. W. Konen, T. Maure, V. D. Malsburg. A fast dynamic link matching algorithm for invariant pattern recognition. Neural Networks. 1994,7(67): 1019-1030
    [49] P. A. Fries. Mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Science. 2005, 9(10):474-480
    [50] Y. Sakurai. How do cell assemblies encode information in the brain? Neuroscience and Biobehavioral, Reviews. 1999,23(6):785-796
    [51] F. Varela, J. P. Lachaux, E. Rodriguez, et al. The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience. 2001,2(4): 229-239
    [52] E Vaadia, et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature. 1995,373(6514): 515-518
    [53] C. M. Gray, W. Singer. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA. 1989,86(5):1698-1702
    [54] C. M. Gray, D. P. Viana. Stimulus-dependent neuronal oscillations and local synchronization in striate cortex of the alert cat. J. Neurosci. 1997,17(9):3239-3253
    [55] R. Eckhorn, R. Bauer, W. Jordan, et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern. 1988,60(2):121-130
    [56] C. Tallon-Baudry, O. Bertrand. Oscillatory gamma activity in humans: a possible role for object representation. TICS. 1999,38(3):151-162
    [57] W. H. Miltner, C. Braun, M. Arnold, et al. Coherence of gamma-band EEG activity as a basis for associative learning. Nature. 1999,397:434-436
    [58] G. Buzsaki. The hippocampo-neocortical dialogue. Cereb Cortex. 1996,6(2): 81-92
    [59] E. Rodriguez, et al. Perception's shadow: long-distance synchronization of human brain activity. Nature. 1999,397: 430-433
    [60] R. Srinivasan, D. P. Russell, G. M. Edelman, et al. Increased synchronization of neuromagnetic responses during conscious perception. J. Neurosci. 1999,19(13):5435-5448
    [61] F. Pulvermuller, et al. Brain rhythms, cell assemblies and cognition: evidence from the processing of words and pseudowords. Psycoloquy. 1994,5 (48):l-30
    [62] C. S. Herrmann, et al. Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn. Sci. 2004, 8(8):347-355
    [63] J. Kaiser, and W. Lutzenberger. Induced gamma-band activity and human brain function. Neuroscientist. 2003,9(6):475-484
    [64] M. Le Van Quyen, et al. The dark side of high-frequency oscillations in the developing brain. Trends Neurosci. 2006,29(7):419-427
    [65] E. Salinas, T. J. Sejnowski. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2001,2:539-550
    [66] S. H. Williams, D. Johnston. Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. J. Neurophysiol. 1991,66(3): 1010-1020
    [67] S. L. Bressler. Large-scale cortical networks and cognition. Brain Res. Brain Res. Rev. 1995,20(3):288-304
    [68] P. Fries. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 2005,9(10):474-480
    [69] S. Treue. Neural correlates of attention in primate visual cortex. Trends Neurosci. 2001, 24(5):295-300
    [70] N. P. Bichot, et al. Parallel and serial neural mechanisms for visual search in macaque area V4. Science. 2005,308(5721):529-534
    [71] P. Fries, et al. Modulation of oscillatory neuronalsynchronization by selective visual attention. Science. 2001,291: 1560-1563
    [72] P. N. Steinmetz, et al. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature. 2000,404:187-190
    [73] M. Bauer, et al. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J. Neurosci. 2006,26(2): 490-501
    [74] T. Gruber, et al. Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin. Neurophysiol. 1999,110(12):2074-2085
    [75] A. Sokolov, et al. Reciprocal modulation of neuromagnetic induced gamma activity by attention in the human visual and auditory cortex. Neuroimage. 2004,22(2):521-529
    [76] A. Brovelli, et al. High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. Neuroimage. 2005,28(1): 154-164
    [77] M. Bauer, R. Oostenveld, M. Peeters, et al. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital reas. J Neurosci. 2006,26(2): 490-501
    [78] J. R. Vidal, M. Chaumon, J. K. O'Regan, et al. Visual grouping and the focusing of attention induce gamma~band oscillations at different frequencies in human magnetoencephalogram signals. J Cogn Neurosci. 2006,18(11):1850-1862
    [79] S. Debener, C. S. Herrmann, C. Kranczioch, et al. Top-down attentional processing enhances auditory evoked gamma band activity. NeuroReport. 2003,14(5): 683-686
    [80] C. Tallon-Baudry, et al. Induced gamma-band activity during the delay of a visual short-term memory task in humans. J. Neurosci. 1998,18(11):4244-4254
    [81] D. Jokisch, O. Jensen. Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral tream. J. Neurosci. 2007,27(12):3244-3251
    [82] M. W. Howard, et al. Gamma oscillations correlate with working memory load in humans. Cereb. Cortex. 2003,13(12): 1369-1374
    [83] N. Mainy, et al. Neural correlates of consolidation in working memory. Hum. Brain Mapp. 2007,28(3): 183-193
    [84] J. Jung, et al. Functional significance of olfactory-induced oscillations in the human amygdala. Cereb. Cortex. 2006,16(1):1-8
    [85] V. Wespatat, et al. Phase sensitivity of synaptic modifications in oscillating cells of rat visual cortex. J. Neurosci, 2004,24(41):9067-9075
    [86] T. Gruber, et al. Induced gamma band responses: an early marker of memory encoding and retrieval. Neuroreport. 2004,15(11): 1837-1841
    [87] D. Osipova, et al. Theta and gamma oscillations predict encoding and retrieval of declarative memory. J. Neurosci. 2006,26(28):7523-7531
    [88] P. B. Sederberg, et al. Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 2003, 23(24): 10809-10814
    [89] P. B. Sederberg, et al. Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cereb. Cortex. 2007,17(5): 1190-1196
    [90] S. Weiss, P. Rappelsberger. EEG coherence within the 13-18 Hz band as a correlate of a distinct lexical organization of concrete and abstract nouns in humans. Neurosci Lett. 1996, 209(1): 17-20
    [91] S. Weiss, M. Horst, Mueller. The contribution of EEG coherence to the investigation of language. Brain and Language. 2003,85(2):325-343
    [92] B. Schack, A. C. Chen, S. Mescha, et al. Instantaneous EEG coherence analysis during the Stroop task. Clinical Neurophysiology. 1999,110(8):1410-1426
    [93] 刘小峰,祁欢,王怡,等.第一和第二语言stroop任务中EEG同步化分析.生物物理学报.2005,12(3):233-240
    [94] J. M. Palva, S. Palva, K. Kaila. Phase synchrony among neuronal oscillations in the human cortex. J Neurosci. 2005,25(15):3962-3972
    [95] A. von Stein, P. Rappelsberger, J. Sarnthein, et al. Synchronization between temporal and parietal cortex during multimodal object processing in man. Cerebral Cortex. 1999, 9(2): 137-150
    [96] S. Weiss, H. M. Mueller, B. Schack, et al. Increased neuronal communication accompanying sentence comprehension. Int. J. Psychophysiol. 2005, 57(2): 129-141
    [97] W. Klimesch. EEG α and θ oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews. 1999,29(2-3): 169-195
    [98] J. Sarnthein, H. Petsche, P. Rappelsberger, et al. Synchronization between prefrontal and posterior association cortex during human working memory. Proceedingd of the National Academy of Sciences USA. 1998,95(15):7092-7096
    [99] P. Sauseng, W. Klimesch, M. Schabus, et al. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology. 2005,57(2):97-103
    [100] N. R. Cooper, R. J. Croft, S. J. J. Dominey, A. P. Burgessa, et al. Paradox lost? exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology. 2003,47(1):65-74
    [101] S. Reiterer, C. Hemmelmann, P. Rappelsberger, et al. Characteristic functional networks in high-versus low-proficiency second language speakers detected also during native language processing: An explorative EEG coherence study in 6 frequency bands. Neural basis of behavior. Cognition, 2005,25(2):566-578
    [102] T. Demiralp, Z. Bayraktaroglu, D. Lenz, et al. Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Psychophysiol. 2007,64(1):24-30
    [103] J. E. Lisman, M. A. P. Idiart. Storage of 7±2 short-term memories in oscillatory subcycles. Science. 1995,267(5203):1512-1514
    [104] O. Jensen, J. E. Lisman. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neuroscience. 2005,28(2):67-72
    [105] M. M(o|¨)lle, Marshall, L. Horst, et al. EEG theta synchronization conjoined with alpha desynchronization indicate intentional encoding. European Journal of Neuroscience. 2002, 15(5): 923-928
    [106] 李颖洁,邱意弘,朱贻盛.脑电信号分析方法及应用.北京:科学出版社,2009,7-9
    [107] 尧德中,脑功能探测的电学理论与方法,北京:科学出版社,2003,273-275。
    [108] D. Z. Yao. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas, 2001, 22(4): 693-711.
    [109] D. Z. Yao, L. Wang, R. Oostenveld, K. D. Nielsen,et al. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Physiol Meas, 2005, 26(3): 173-184.
    [110] W. R. Adey, R. T. Kado, D. O. Walter. Analysis of brain wave records from Gemini flight GT-7 by computations to be used in a thirty day primate flight. Life Sci. Space Res. 1967b,5:65-93
    [111] K. J. Friston, K. M. Stephan, R. S. Frackowiak. Transient phase-locking and dynamic correlations: Are they the same thing? Hum. Brain Mapp. 1997,5:48-57
    [112] V. A. Lamme, H. Spekreijse. Neuronal synchrony does not represent texture segregation. Nature, 1998, 396:362-366
    [113] A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: a Universal Concept in Nonlinear Science Cambridge University Press, Cambridge, 2001
    [114] P. Tass, M. Rosenblum, J. Weule, et al. Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett., 1998, 81(15):3291
    [115] R. Eckhom, B. Popel. Rigorous and extended application of information theory to the afferent visual system of the cat: I. Basic concepts. Biol. Cybem., 1974, 16(4): 191-200.
    [116] S. Yamada, M. Nakashima, K. Matsumoto, S. Shiono. Information theoretic analysis of action potential trains. I. Analysis of correlationbetween two neurons. Biol. Cybem, 1993, 68(3):215-220.
    [117] R. Wessel, C. Koch, F. Gabbiani. Coding of time-varying electric field amplitude modulations in a wave-type electric fish. J. Neurophysiol., 1996, 75(6):2280-2293.
    [118] C. K. Machens. Adaptive sampling by information maximization. Phys. Rev. Lett., 2002, 88(22),228104
    [119] T. Sharpee, N. C. Rust, W. Bialek. Analyzing neural responses to natural signals: maximally informative dimensions. Neural Comput, 2004, 16(2):223-250.
    [120] S. H. Na, S. H. Jin, S. Y. Kim, et al. EEG in schizophrenic patients: mutual information analysis. Clin. Neurophysiol, 2002, 113(12): 1954-1960.
    [121] J. Jeong, C. Gore, B. S, Peterson. Mutual information analysis of the EEG in patients with Alzheimer's disease. Clin. Neurophysiol, 2001, 112(12):827-835.
    [122] T. Kreuz, R. G. Andrzejak, F. Mormann, et al. Measure profile surrogates: a method to validate the performance of epileptic seizure prediction algorithms. Phys. Rev. E, 2004, 69, 061915.
    [123] S. Micheloyannis, E. Pachou, C. J. et al.Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett., 200, 402(3):273-277.
    [124] M. Breakspear, J. R. Terry, K. J. Friston et al. A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia. Neuroimage,2003, 20(1):466-478.
    [125] C. J. Stam, A. M. van Cappellen van Walsum, S. Micheloyannis. 2002a. Variability of EEG synchronization during a working memory task in healthy subjects. Int. J. Psychophysiol. 46(1), 53-66.
    [126] A. S. Gevins et al. Event-related covariance during a bimanual visuomotor task. I. Method and analysis of stimulus- and response-locked data. Electroencephalography and clinical Neurophysiology. 1989,74(1):58-75
    [127] C. Andrew, G. Pfurtscheller. Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalography and clinical Neurophysiology. 1996, 98(2): 144-148
    [128] G. Maria, M. Giorgio, et al. EEG coherence studies in the normal brain and after early-onset cortical pathologies. Brain Research Review. 2001,36(2-3):119-128
    [129] W. Merigan, J. H. R.Maunsell. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 1993,16:245-264
    [130] 魏景汉,罗跃嘉.认知事件相关脑电位教程,北京:经济日报出版社,2002,24-80
    [131] L. G. Ungerleider, M. Mishkin. Two cortical visual systems. In: D. J. Ingle, M. A. Goodale, R. J. W. Mansfield (Eds.) Analysis of Visual Behavior. MIT Press. Cambridge.1982,549-586
    [132] L. G. Ungerleider, J. V. Haxby, "What" and "where" in the human brain". Curr Opin Neurobiol. 1994,4(2): 157-165
    [133] A. R. Damasio. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition. 1989,33(1-2):25-62
    [134] F. Newcombe, G. Ratcliff, H. Damasio. Dissociable visual and spatial impairments following right posterior cerebral lesions: Clinical, neuropsychological and anatomical evidence. Neuropsychologia. 1987, 25(1): 149-161
    [135] J. V. Haxby, C. L. Grady, B. Horwitz, et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc. Natl. Acad. Sci. USA. 1991, 88(5): 1621-1625.
    [136] E. J. Haxby, P. N. Robinson. Suxamethonium in obstetric anaesthesia. Int J Obstet Anesth. 1993,2(2):124-128
    [137] S. Zeki. Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience. 1983, 9(4):767-81.
    [138] V. P. Clark, K. Keil, J. M. Maisog, et al. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage. 1996, 4(1): 1-15
    [139] B. Guly(?)s, P. E. Roland.Cortical fields participating in form and colour discrimination in the human brain. Neuroreport. 1991, 2(10):585-588
    [140] A. R. Damasio Category-related recognition defects as a clue to the neural substrates of knowledge. Trends Neurosci. 1990, 13(3):95-98
    [141] R. Malach, J. B. R. R. Reppas. Benson. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci. 1999, 92(18):8135-81399
    [142] Z. Kourtzi, N. Kanwisher. Cortical regions involved in perceiving object shape.J Neurosci. 2000,20(9):3310-3318
    [143] J. D. G. Watson, R. Myers, R. S. J. Frackowiak, et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex. 1993, 3(2):79-94
    [144] A. Moscovitch, M. Partinen, C. Guilleminault. The positive diagnosis of narcolepsy and narcolepsy's borderland. Neurology. 1993,43(l):55-60
    [145] H. Y. Rao, T. G. Zhou, Y. Zhuo et al. Spatiotemporal activation of the two visual pathways in form discrimination and spatial location: a brain mapping study. Human Brain Mapping, 2003,18(2):79-89.
    [146] W. R. Klemm, T. H. Li, J. L. Hernandez. Coherent EEG indicators of cognitive binding during ambiguous figure tasks.Consciousness and Cognition, 2000,9(l):66-85.
    [147] M. Tatsuya, O. Tomi, H. Taizo, H. Mark. Transient interhemispheric neuronal synchrony correlates with object recognition.The Journal of Neuroscience, 2001,21(11):3942-3948.
    [148] T. V. Sewards, M. A. Sewards. Alpha-band oscillations in visual cortex: part of the neural correlate of visual awareness.Psychophysiol, 1999,32(l):35-45.
    [149] M. Brecht, W. Singer, A. K. Engel. Correlation analysis of corticotectal interactions in the cat visual system. Neurophysiol,1998,79(5):2394-2407.
    [150] B. Schack, Grieszbach , W. Krause. The sensitivity of instantaneous coherence for considering elementary comparison processing. Part I: the relationship between mental activities and instantaneous EEG coherence. International Journal of Psychophysiology. 1999.31(3):219-240.
    [151] B. Schack, P. Rappelsberger, S. Weiss, et al. Adaptive phase estimation and its application in EEG analysis of word processing. Journal of Neuroscience methods. 1999, 93(l):49-59.
    [152] B. Schack, W. Krause. Instantaneous Coherence as a Sensible Parameter for Considering Human Information Processing. IEEE Proceedings of ICPR. 1996,2:45-49.
    [153] R. Q. Quiroga, A. Kraskov, T. Kreuz and P. Grassberger. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Physical Review E, 2002, 65(4), 041903
    [154] A. Babloyantz, J. M. Salazar, C. Nicolis. Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. 1985 111(3): 152-156.
    [155] E. Pereda, A.Gamundi, R. Rial et al. Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages. Neurosci. Lett, 1998,250(2):91-94.
    [156] J. Lamberts, P. L. C. van den Broek, L. Bener et al. Correlation dimension of the human electroencephalogram corresponds with cognitive load. Neuropsychobiology, 2000,41(3): 149-153.
    [147] J. P. Pijn. Quantitative evaluation of EEG signals in epilepsy, Ph.D. Thesis, 1990, Amsterdam University, Amsterdam.
    [158] N. F. Rulkov, M. M. Sushchik , L. S.T simring et al. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev., 1995,E 51(2):980-994.
    [159] M. G. Rosenblum, A. S. Pikovsky, J. Kurths. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996, 76(11):1804-1807.
    [160] 刘衍素,夏阳,吴宏伊,赖永秀,尧德中.痫样放电大鼠颅内脑电信号的同步分.生物医学工程学杂志,2007,24(3):496-499
    [161] 敖新宇,中国科学院生物物理所硕士论文,2003:11-20
    [162] J. H. Maunsell, W. T. Newsome. Visual processing in monkey extrastriate cortex. Annu Rev Neurosei. 1987, 10:363-401.
    [163] N. J. Rubin, K. Nakayama, et al. Enhanced perception of illusory contours in the lower verus upper visual hemifields. Science 1996, 271(5249): 651-653
    [164] S. He, P. Cavanagh, J. Intriligator. Attentional resolution and the locus of visual awareness. Nature, 1996,383(6598):334-337.
    [165] H.J. Heinze, G. R. Mangun, W. Burchert, et al. Combined spatial and temporal imaging of spatial selective attention in humans. Nature, 2002, 392:543-546.
    [166] M. Woldorff, P. Fox, M. Matzke, et al. Retinotopic organization of the early visual spatial attention effects as reveals by PET and ERPs. Human Brain Mapping, 1997, 5:280-286.
    [167] K. Roopun, M. O. Cunningham, C. Racca, K. Alter, R. D. Traub, and M. A. Whittington. Region-Specific Changes in Gamma and Beta2 Rhythms in NMDA Receptor Dysfunction Models of Schizophrenia.Schizophr Bull, September 1, 2008; 34(5): 962-973.
    [168] T. Womelsdorf, J. M. Schoffelen, R. Oostenveld, et al. Modulation of neuronal interactions through neuronal synchronization. Science. 2007, 15;316(5831):1609-1612
    [169] A. Destexhe, D. Contreras, M. Steriade. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci, 1999, 19(11): 4595-4608.
    [170] E.Pereda, R. Q. Quiroga, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol. 2005, 77(1-2):1-37.
    [171] L. T. Trujillo; M. A. Peterson, A, W. Kaszniaket al. EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods, CLINICAL NEUROPHYSIOLOGY 116(1): 172-189
    [172] 赵丽娜,王保强,尧德中.基于信号处理的脑电相位同步性分析方法研究,生物医学工程学杂志 2008,25(2):250-254。
    [173] P. Bob, M. Palus, M. Susta, et al. EEG phase synchronization in patients with paranoid schizophrenia Neurosci Lett., 2008, Dec 5,447(1):73-77.
    [174] J. Matias Palva, Satu Palva, and Kai Kaila. Phase Synchrony among Neuronal Oscillations in the Human Cortex. The Journal of Neuroscience, April 13, 2005, 25(15):3962-3972
    [175] H. Witte, H.B. Schack. Quantification of phase coupling and information transfer between electroencephalographic (EEG) signals: Analysis strategies, models and simulations. Theory in Biosciences, 2003, 122, (4): 361-381.
    [176] W. A. Teder-Salejarvi, J. J. McDonald. An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cognitive Brain Research, 2002,
    [177] G. Thomas, M. Matthias et al. Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 1999, 110(12):2074-2085.
    [178] E. Baar, P. Ungan. A component analysis and principles derived for the understanding of evoked potentials of the brain: Studies in the hippocampus . Kybernetik, 1973, 12(3): 133 -140.
    [179] V. Garoosi and B. H. Jansen. Development and Evaluation of the Piecewise Prony Method for Evoked Potential Analysis. IEEE Transaction on Biomedical Engineering, 2000, 47(12): 1549-53
    [180] C. Frank, Meinecke, Z. Andreas et al. Measuring Phase Synchronization of Superimposed Signals. Physical Review Letters, 2005, 94(8):084102
    [181] L. Marzetti, G. Nolte,c M.G. Perrucci, G. L. Romani, and C. Del Grattaa, The use of standardized infinity reference in EEG coherency studies, Neuroimage, 2007,15;36(l):48-63.
    [182] J. Fell, P. Klaver, H.Elfadil, et al. Rhinal-hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization? Eur. J. Neurosci.2003, 17(5):1082-1088.
    [183] D. A. Smirnov, R. G. Andrzejak. Detection of weak directional coupling: phase-dynamics approach versus state-space approach. Phys. Rev. E, 712005,036207.
    [184] O. David, D. Cosmelli, KJ.Friston. Evaluation of different measures offunctional connectivity using a neural mass model. Neuroimage, 2004, 21(2): 659-673.
    [185] M.Stopfer, S. Bhagavan, B. H.Smith, et al. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. 1997, Nature 390:70-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700