用户名: 密码: 验证码:
基于磷脂脂肪酸(PLFA)分析技术的土壤微生物群落结构多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是生态系统的分解者,对于维持生态系统的平衡起着至关重要的作用。然而由于土壤微生物种类的多样性、数量的庞大性和土壤环境的复杂性,人们对于土壤微生物的认识还非常有限。本论文以磷脂脂肪酸(PLFA)技术为切入点,以土壤微生物群落结构为主线,探讨了土壤微生物群落的分布规律,及其多样性对于生态功能的影响,获得以下主要成果:
     (1)在国内首次确定了应用PLFA技术对土壤纯培养细菌菌株鉴定的方法和土壤PLFA的提取测定方法,并分别对这两种试验方法的试验条件进行了优化。
     (2)采集了我国东部自北而南的14个典型地带性土壤,对土壤微生物PLFAs进行了提取和测定。首次发现我国地带性土壤中微生物如同动植物一样,具有地带性分布规律,表现在北方温带土壤中含有较多的革兰氏阳性菌PLFAs,而南方热带及亚热带土壤中真菌和革兰氏阴性菌PLFAs含量较高,年降水量和土壤pH为影响微生物地带性分布的最主要因子。
     (3)以黑龙江黑土、江苏黄棕壤和广西红壤为对象,研究了温度和水分对土壤微生物生物量和群落结构分布的影响,结果表明,土壤微生物对于温度的响应与采样地气候条件有关,表现在黑土土壤微生物群落结构对较高温度(35℃)的响应明显,而红壤中微生物群落结构的变化不大;在40-80%WHC水分范围内,土壤微生物生物量和群落结构没有明显变化。
     (4)采集了英国洛桑研究所Highfield长期定位试验上具有约60年不同管理措施的休闲地、农耕地和草地土壤,研究了这三种土壤对于两种不同类型底物(较容易被利用的酵母菌提取物和较难被利用的黑麦草粉末)的矿化作用及土壤微生物生物量和群落结构的变化。结果表明,三种长期不同管理措施的土壤在微生物生物量和群落结构上有显著差异,但外源添加的底物在这些土壤中的矿化以及相对应的土壤微生物生物量的响应差异不大。土壤有机质的矿化主要取决于底物类型。土壤微生物生物量和群落结构与土壤微生物代谢土壤有机质的生态功能并没有直接联系。
     (5)以Highfield的农耕地和草地土壤为研究对象,采用DNA-DGGE技术研究了氯仿熏蒸作用对于土壤微生物的影响。结果表明,氯仿熏蒸杀死大部分土壤微生物后,熏蒸土壤对土壤有机质的矿化能力并未减弱,土壤微生物生物量以外的其它因素影响土壤有机质的矿化;熏蒸土壤与仅含耐热孢子体筛选土壤具有相似的DNA-DGGE谱图,土壤微生物可能以孢子体形态在氯仿熏蒸中幸存。
Soil microbes are the decomposers of ecosystem, play an important role in keepingecosystem balance. However, as there are large range of soil microbes and the habitatin which they live is very complicated, our knowledge about this versatile microbialcommunity is very limeted. Thus, the thesis is stringed along soil microbialcommunity structure to study the distribution of soil microbes and the relationshipbetween soil microbial diversity and ecosystem function, based on the phospholipidfatty acid(PLFA) analysis. The following main results were obtained:
     The methods about using PLFAs to identify pure soil bacteria strains, extractingand quantifying PLFAs from soils were built first time in China. Moreover, weoptimized the soil PLFAs extraction method, which is an important complementary tosoil PLFA extraction in the world and the first integrated, easy handling PLFAextracting methods in China.
     We collected 14 typical climate zonal soils from north to south of China andmeasured the soil microbial PLFAs. The results showed that soil microbes are just likeplants and animals, distributing regularly from north to south. The northern soilscontain more gram positive bacterial PLFAs, while the southern soils have more gramnegative and fungi PLFAs. Mean annual rainfall and soil pH are the two majorcontributors to the distribution of soil microbes in this study.
     Besides, Heilongjiang, Jiangsu and Guangxi soils were used to determine theresponses of soil microbes under incubation at different temperature and water content.The results showed that the response of soil microbes to different temperature wascorrelated with the climate history of the sampling site. The microbial biomass andcommunity structure of Heilongjiang soil(from the coldest temperature region)changed most when incubated at 35℃. Guangxi soil from the hottest region changedleast. Both soil microbial biomass and community structure did not change very muchwhen soils were incubated at 40-80% WHC for up to 56 days..
     Three very contrasting managements: permanent fallow, permanent arable andpermanent grassland, which have been applied from the same soil for at least 60 years,were used to determine the relationships of community structure and ecosystemfunction(mineralizing labile substrates(yeast extract) and more complex substrate (ryegrass)). The results showed that although the three soils have quite differentmicrobial biomass and community structures, the metabolism of the substrates and theefficiencies of microbial biosynthesis were quite similar. The ability of mineralizationwas mainly determined by the type of substrates. Soil microbial community structuresmeasured by PLFA analysis responded differently to different substrates, mainlydetermined by the history of substrates utilization.
     Arable and grassland soils collected from Highfield Ley-Arable experiment wereused to determine the response of soil microbes to chloroform fumigation. Thecommunity structure was indexed by DNA-DGGE method. Chloroform fumigationkilled most but not all microbes. However, the respiration rate did not decrease in thechloroform fumigated soils. Soil microbial community structures after chloroformfumigation were quite similar to that in the heat-resistant spore forming treated soils.Spores may be the predominant microbes left after chloroform fumigation.
引文
1.曹志平主编.土壤生态学.北京:化学工业出版社.2007.pp41。
    2.吕萍萍,王慧,施汉昌,陈国强.基因工程菌强化芳香化合物的处理工艺.中国环境科学.2003,23(1):12-15。
    3.唐晓敏,高志贤.基因芯片快速检测常见水中致病菌的初步应用研究.解放军预防医学杂志.2003,21:94-96。
    4.王学东,欧晓明,王慧利,樊德方.除草剂咪唑烟酸在土壤中的微生物降解研究.土壤学报.2004,41:156-159。
    5.吴建军,蒋艳梅,吴愉萍,徐建明.重金属复合污染对水稻土壤微生物生物量和群落结构的影响.土壤学报.2008,45:1102-1109。
    6.谢家仪,王永力.BIOLOG细菌自动鉴定系统的应用与研究.微生物学通报.1996,23:264-267。
    7.信乃诠主编.农业气象学.重庆:中国重庆出版社.2001。
    8.徐向阳,任艳红,黄绚,郑平.典型有机污染物微生物降解及其分子生物学理的研究进展.浙江大学学报(农业与生命科学版).2004,30:684-689。
    9.张瑞福,崔中利,李顺鹏.土壤微生物群落结构研究方法进展.土壤.2004,36:476-480。
    10.中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社.1983。
    11.钟文辉,蔡祖聪.土壤微生物多样性研究方法.应用生态学报.2004,15:899-904。
    12. Abaye, DA., Brookes, PC. Relative importance of substrate type and previous soil management in synthesis of microbial biomass and substrate mineralization. European Journal of Soil Science. 2006, 57:179-189.
    13. Alexander, M. Introduction to soil microbiology. Second edition. Printed in the United States of America. 1930, pp16.
    14. Andren, O., Baalandreau, J. Biodiversity and soil functioning - from black box to can of worms?. Applied Soil Ecology. 1999, 13: 105-108.
    15. Amann, RI., Ludwig, W., Schleifer, KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews. 1995, 59:143-169.
    16. Asuming-Brempong, S., Gantner, S., Adiku, SGK., Archer, G, Edusei, V., Tiedje, JM. Changes in the biodiversity of microbial populations in tropical soils under different fallow treatments. Soil Biology and Biochemistry. 2008,40:2811-2818.
    17. B(?)(?)th, E., Anderson, T.-H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry. 2003, 35:955-963.
    18. Balkwill, DL., Leach, FR., Wilson, JT., McNabb, JF., White, DC. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate and direct counts in subsurface aquifer sediments. Microbial Ecology. 1988,16:73-84.
    19. Bakken, LR. Culturable and nonculturable bacteria in soil. In: Modern Soil Microbiology (Eds Van Elsas, JD., Trevors, JT., Wellington, EMH.). New York: Marcel Dekker. 1997, pp:47-61.
    20. Barros, N., Gomez-Orellana, I., Feijoo, S., Balsa, R. The effect of soil moisture on soil microbial activity studied by microcalorimetry. Thermochimica Acta. 1995,249:161-168.
    21. Bausenwein, U., Gattinger, A., Langer, U., Embacher, A., Hartmann, H-P., Sommer, M., Munch, JC, Schloter, M. Exploring soil microbial communities and soil organic matter: variability and interactions in arable soils under minimum tillage practice. Applied Soil Ecology. 2008,40:67-77.
    22. Bjork, RG, Bjo(?)rkman, MR, Andersson, MX., Klemedtsson, L. Temporal variation in soil microbial communities in Alpine tundra. Soil Biology and Biochemistry. 2008,40:266-268.
    23. Bligh, EG, Dyer, WJ. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology. 1959, 37:911-917.
    24. Blum, SAE., Lorenz, MG, Wackernagel, W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Systematic and Applied Microbiology. 1997, 20:513-521.
    25. Bohme, L., Langer, U., Bohme, F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture Ecosystems and Environment. 2005,109:141-152.
    26. Bossio, DA., Scow, KM. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Applied and Environmental Microbiology. 1995,61:4043-4050.
    27. Bossio, DA., Scow, KM. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology. 1998, 35:265-278.
    28. Bossio, DA., Scow, KM., Gunapala, N., Graham, KJ. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipids fatty acid profiles. Microbial Ecology. 1998, 36:1-12.
    29. Brock, TD. The study of microorganisms in situ: progress and problems. Symposia of the Society for General Microbiology. 1987,41:1-17.
    30. Brookes, PC, Newcombe, AD., Jenkinson, DS. Adenylate energy charge measurements in soil. Soil Biology and Biochemistry. 1987,19:211-217.
    31. Callaway, RM., Thelen, GC., Barth, S., Ramsey, PW., Gannon, JE. Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology. 2004a, 85:1062-1071.
    32. Callaway, RM., Thelen, GC, Rodriquez, A., Holben, WE. Soil biota and native plant invasion. Nature. 2004b, 427:731-733.
    33. Camel, V. Solid phase extraction of trace elements. Spectrochimica Acta Part B. 2003,58:1177-1233.
    34. Cao, M., Woodward, FI. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology. 2002,4:185-198.
    35. Cho, JC, Tiedje, JM. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Applied Environmental Microbiology. 2000, 66:5448-5456.
    36. Coleman, DC., Crossley, DA. Fundamentals of Soil Ecology. Academic Press, London. 1996.
    37. Colwell, RK., Mao, CX., Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology. 2004, 85:2717-2727.
    38. Contin, M., Corcimaru, S., Nobili, MDe., Brookes, PC. Temperature changes and the ATP concentration of the soil microbial biomass. Soil Biology and Biochemistry. 2000, 32:1219-1225.
    39. Curtis, TP., Sloan, WT. Exploring microbial diversity-A vast below. Science. 2005,309:1331-1333.
    40. de Candolle, AP. Essal elementaire de Geographie Botanique Pairs: F.GLevrault.1820.
    41. Degens, BP, Schipper, LA., Sparling, GP., Vojvodic-Vukovic, M. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry. 2000, 32:189-196.
    42. Dighton, J. Is it possible to develop a microbial test system to evaluate pollution effects on soil nutrient cycling? In: Ecological Risk Assessment of Contamination in Soil (Eds van Straalen, NM., Lokke, M). London: Chapman and Hall. 1997, pp:51-69.
    43. Drenovsky, RE., Elliott, GN., Graham, KJ., Scow, KM. Comparison of phospholipids fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biology and Biochemistry. 2004, 36:1793-1800.
    44. Drijber, RA., Doran, JW., Parkhurst, AM., Lyon, DJ. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology and Biochemistry, 2000, 32:1419-1430.
    45. Federle, TW. Microbial distribution in the soil-new techniques, In: Perspectives in microbial ecology (Eds Megusar, F., Gantar, M.). Ljubljana, Slovenia: Slovene Society for Microbiology. 1986, pp:493-498.
    46. Fernandez, A., Huang, SY., Seston, S., Xing, J., Hickry, R., Criddle, C, Tiedje, J. How stable is stable? Function versus community composition. Applied and Environmental Microbiology. 1999, 65:3697-3704.
    47. Fierer, N., Jackson, RB. The diversity and biogeography of soil bacterial communities. Proceedings of National Academy of Sciences of the United States of America. 2006, 103:626-631.
    48. Fierer, N., Schimel, JP. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry. 2002, 34:777-787.
    49. Findlay, RH. The use of phopholipid fatty acids to determine microbial community structure. In: Molecular Microbial Ecology Manual (Eds Akkermans, AD., van Elsas, JD., de Bruijn, FJ.), Norwell, Mass: Kluwer Academic Publishers. 1996, pp:l-17.
    50. Fitter, AH. Darkness visible: reflections on underground ecology. Journal of Ecology. 2005,93:231-243.
    51. Foster, RC. Microorganisms and soil aggregates. In: Soil Biota: Management in Sustainable Farming Systems (Eds Pankhurst,CE., Doube, BM., Gupta, VVSR., Grace, PR.). East Melbourne, Australia: CSIRO. 1994, pp:144-155.
    52. Frostegard, A, Baath, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils. 1996,22:59-65.
    53. Frostegard, A., B(?)(?)th, E., Tunlid, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipids fatty acid analysis. Soil Biology and Biochemistry. 1993a, 25:723-730.
    54. Frosteg(?)rd, A., Tunlid, A., Baath, E. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology. 1993b, 59:3605-3617.
    55. Frosteg(?)rd, A., Courtois, S., Ramisse, V., Clerc, S., Bernillon, D., Le Gall, F., Jeannin, P., Nesme, X., Simonet, P. Quantification of bias related to the extraction of DNA directly from soils. Applied and Environmental Microbiology. 1999, 65:5409-5420.
    56. Frosteg(?)rd, A., Tunlid, A., Baath, E. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods. 1991,14:151-163.
    57. Garland, JL., Mills, AL. Classification and characterization of heterotrophic microbial community-level sole-carbon source utilization. Applied and Environmental Microbialogy. 1991, 57:2351-2359.
    58. Gordon, H., Haygarth, PM., Bardgett, RD. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biology and Biochemistry. 2008,40:302-311.
    59. Gould, GW., Dring, JC. Mechanisms of spore heat resistance. Advances in Microbial Physiology. 1974,2:137-161.
    60. Grayston, SJ., Campbell, CD., Bardgett, RD., Mawdsley, JL., Clegg, CD., Ritz, K., Griffiths, BS., Rodwell, JS., Edwards, SJ., Davies, WJ., Elston, DJ., Millard, P. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology. 2004,25:63-84.
    61. Grayston, SJ., Prescott, CE. Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biology and Biochemistry. 2005,37:1157-1167.
    62. Green, JL., Bohannan, BJM., Whitaker, RJ. Microbial biogeography from taxonomy to traits. Science. 2008, 320:1039-1043.
    63. Griffiths, BS., Ritz, K., Wheatley, RE., Kuan, HL., Boag, B., Christensen, S., Ekelund, F., S(?)rensen, SJ., Muller S., Bloem, J. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry. 2001, 33:1713-1722.
    64. Grisi, B., Grace, C, Brookes, PC, Benedetti, A., Dell'abate, MT. Temperature effects on organic matter and microbial biomass dynamics in temperate and tropical soils. Soil Biology and Biochemistry. 1998, 30:1309-1315.
    65. Guckert, JB., Antworth, CP., Nichols, PD., White, DC. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbial Ecology. 1985,31:147-158.
    66. Guckert, JB., Hood, MA., White, DC. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholera: increases in the translcis ratio and proportions of cyclopropyl fatty acids. Applied and Environmental Microbiology. 1986, 52:794-801.
    67. Haack, SK., Garchow, H., Odelson, DA., Forney, LJ., Klug, MJ. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Applied and Environmental Microbiology. 1994, 60:2483-2493.
    68. Hackl, E., Pfeffer, M., Donat, C, Bachmann, G, Zechmeister-Boltenstern, S. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biology and Biochemistry. 2005, 37:661-671.
    69. Hamer, U., Marschner, B. Priming effects in soils after combined and repeated substrate additions. Soil Biology and Biochemistry. 2004,128:38-51.
    70. Hattori, T. Microbial life in soil. New York: Marcel Dekker. 1973.
    71.Hedlund, K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry. 2002, 34:1299-1307.
    72. Heipieper, HJ., Meulenbeld, G, van Oirchot, Q., de Bont, AA. Effects of environmental factors on the translcis ratio of unsaturated fatty acids in Pseudomonas putida S12. Applied and Environmental Microbiology. 1996,62:2773-2777.
    73. Hill, GT., Mitkowski, NA., Aldrich-Wolfe, 1., Emele, L.R., Jurkonie, DD., Ficke, A., Maldonado-Ramirez, S., Lynch, ST., Nelson, EB. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology. 2000, 15:25-36.
    74. Hines, J., Megonigal, P., Denno, RF. Nutrient subsidies to belowground microbes impact aboveground food web interactions. Ecology. 2006, 87:1542-1555.
    75. Houghton, RA. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus. 2003, 55B:378-390.
    76. Huang, PM., Bollag, J-M. Minerals-organics-microorganisms interaction in the soil environment. In: Structure and Surface Reactions of Soil Particles (Eds Huang, PM., Senesi, N., Bollag, J-M.), New York: John Wiley and Sons. 1998, pp: 155-182.
    77. Hurtley, S., Szuromi, P. Millions of microbe species, if left alone.Science. 2005, 309:1298.
    78. Ingham, RE., Trofymow, JA., Ingham, ER., Coleman, DC. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs. 1985, 55:119-140.
    79. Jeffery, S., Harris, JA., Rickson, RJ., Ritz, K. Microbial community phenotypic profiles change markedly with depth within the first centimetre of the arable soil surface. Soil Biology and Biochemistry. 2007,39:1226-1229.
    80. Jenkinson, DS. Studies on decomposition of plant material in soil. 2. Partial sterilization of soil and soil biomass. Journal of soil science. 1966,17:280-302.
    81. Jenkinson, DS. Determination of microbial biomass nitrogen and carbon in soil. In: Advances in Nitrogen Cycling in Agricultural Ecosystems (Eds Wilson, JT.), Wallingford: Commonwealth Agricultural Bureau International. 1988, pp: 368-386.
    82. Jenkinson, DS., Hart, PBS., Rayner, JH., Parry, LC. Modelling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bull. 1987, 15:1-8.
    83. Jenkinson, DS., Ladd, JN. Microbial biomass in soil: measurement and turnover. In: Soil Biochemistry (Eds Paul, EA., Ladd, JN.) Vol 5. New York: Marcel Dekker. 1981, pp:415-471.
    84. Jenkinson, DS., Oades, JM. A method for measuring adenosine triphosphate in soil. Soil Biology and Biochemistry. 1979,11:193-199.
    85. Jenkinson, DS., Powlson, DS. The effects of biocidal treatments on metabolism in soil-I,?Fumigation with chloroform. Soil Biology and Biochemistry. 1976a, 8:167-177.
    86. Jenkinson, DS., Powlson, DS. The effects of biocidal treatments on metabolism in soil-V. A method for measuring soil biomass. Soil Biology and Biochemistry. 1976b, 8:209-213.
    87. Joergensen, RG, Brookes, PC, Jenkinson, DS. Survival of the soil microbial biomass at elevated temperatures. Soil Biology and Biochemistry. 1990, 22:1129-1136.
    88. Johnston, AE. The effects of ley and arable cropping systems on the amounts of soil organic matter in the Rothamsted and Woburn Ley arable experiments. Rothamsted Experimental Station Annual Report for 1972, part 2. 1973:131-159.
    89. Johnston, AE. The Rothamsted classical experiments. In: Long-term Experiments in Agricultural and Ecological Sciences (Eds Leigh, RA., Johnston, AE.). UK: CAB International. 1994.
    90. Joseph, SJ., Hugenholtz, P., Sangwan, P., Osborne, CA., Janssen, PH. Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology. 2003, 69:7210-7215.
    91. Kates, M. Techniques in lipidology. Isolation, analysis and identification of lipids. New York: Elsevier. 1982.
    92. Kemmitt, SJ., Lanyon, CV., Waite, IS., Wen, Q. Addiscott, TM., Bird, NRA., O'Donnell, AG., Brookes, PC. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective. Soil Bioliology and Biochemistry. 2008, 40:61-73.
    93. Kieft, TL., Ringelberg, DB., White, DC. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Applied and Environmental Microbiology. 1994, 60:3292-3299.
    94. Kieft, TL., Soroker, E., Firestone, MK. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry. 1987, 19:119-126.
    95. Killham, K. Soil Ecology. Cambridge: Cambridge University Press. 1994.
    96. Knowles, CJ. Microbial metabolic regulation by adenine nucleotide pools. Symposium of the Society for General Microbiology. 1977,27:241-283.
    97. Kuzyakov, Y., Blagodatskaya, E., Blagodatsky, S. Comments on the paper by Kemmitt et al. (2008) 'Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass- A new perspective' [< Soil Biology & Biochemistry> 40, 61-73]: The . Soil Biology and Biochemistry. 2009,41:435-439.
    98. Lechevalier, MP. Lipids in bacterial taxonomy-a taxonomist's view. Critical Reviews in Microbiology. 1997, 5:109-210.
    99. Leckie, SE. Methods of microbial community profiling and their application to forest soils. Forset Ecology and Management. 2005,220:88-106.
    100. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, JP., Hector, A., Hooper, DU., Huston, MA., Raffaelli, D., Schmid, B., Tilman, D., Wardle, DA. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science. 2001,294:804-808.
    101. Lucas, RW., Casper, BB., Jackson, JK., Balser, TC. Soil microbial communities and extracellular enzyme activity in the New Jersey pinelands. Soil Biology and Biochemistry. 2007, 39:2508-2519.
    102. Macalady, JL., Mack, EE., Nelson, DC, Scow, KM. Sediment microbial community structure and mercury methylation in mercurypolluted Clear Lake, California. Applied and Environmental Microbiology. 2000,66:1479-1488.
    103. McCarthy, CM., Murray, L. Viability and metabolic features of bacteria indigenous to a contaminated deep aquifer. Microbial Ecology. 1996, 32:305-321.
    104. Martiny, JBH., Bohannan, BJM., Brown, JH., Colwell, RK., Fuhrman, JA., Green, JL., Horner-Devine, MC, Kane, M., Krumins, JA., Kuske, CR., Morin, PJ., Naeem, S., (?)vre(?)s, L., Reysenbach, A., Smith, VH., Staley, JT. Microbial biogeography: putting microorganisms on the map. Nature. 2006,4:102-112.
    105. McKinley, VL., Peacock, AD., White, DC. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biology and Biochemistry. 2005, 37:1946-1958.
    106. Mehfa, OP, Jackson, ML. Iron oxide removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals. 1960,7:317-329.
    107. Misra, A., Tyler, G. Influence of soil moisture on soil solution chemistry and concentrations of minerals in the calcicoles Phleum phleoides and Veronica spicata grown on a limestone soil. Annals of Botany. 1999, 84:401-410.
    108. Mutabaruka, R., Hairiah, K., Cadisch, G., Microbial degradation of hydrolysable and condensed tannin polyphenol-protein complexes in soils from different land-use histories. Soil Biology and Biochemistry. 2007, 39:1479-1492.
    109. Nannipieri, P., Ascher, J., Ceccherini, MT., Landi, L., Pietramellara, G, Renella, G Microbial diversity and soil functions. European Journal of Soil Science. 2003, 54:655-670.
    110. Nannipieri, P., Grego, S., Ceccanti, B. Ecological significance of the biological activity in soil. In: Soil Biochemistry, Volume 6 ( Eds Bollag, J-M., Stotzky, G.). New York: Marcel Dekker. 1990, pp:293-355.
    111. Nannipieri, P., Kandeler, E., Ruggiero, P. Enzyme activities and microbiological and biochemical processes in soil. In: Enzymes in the Environment (Eds Burns, RG, Dick, R.). New York: Marcel Dekker. 2002, pp:l-33.
    112. Nielsen, P., Petersen, SO. Ester-linked polar lipid fatty acid profiles of soil microbial communities: a comparison of extraction methods and evaluation of interference from humic acids. Soil Biology and Biochemistry. 2000, 32:1241-1249.
    113. Nishihara, T., Takubo, Y, Kawamata, E., Koshikawa, T., Ogaki, J., Kondo, M. Role of outer coat in resistance of bacillus megaterium spore. Journal of Biochemistry. 1989,106:270-273.
    114. Novitsky, JA. Degradation of dead microbial biomass in a marine sediment. Applied and Environmental Microbiology. 1986, 52:504-509.
    115. Oades, JN., Jenkinson, DS. Adenosine triphosphate content of the soil microbial biomass. Soil Biology and Biochemistry. 1979, 11:201-204.
    116. O'Donnell, AG, Seasman, M., Macrae, A., Waite, I., Davies, JT. Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant and Soil. 2001,232:135-145.
    117. O'Leary, WM., Wilkinson, SG Gram-positive bacteria. In: Microbial Lipids (1~(st) Edn.) (Eds Ratledge, C, Wilkinson, SG). London: Academic Press. 1988, pp: 117-202.
    118. Oka, N., Hartel, PG, Finlay-Moore, O., Gagliardi, J., Zuberer, DA., Fuhrmann, JJ., Angle, JS., Skipper, HD. Misidentification of soil bacteria by fatty acid methyl ester (FAME) and Biolog analyses. Biology and Fertility of Soils. 2000, 32:256-258.
    119. Papke, RT., Ramsing, NB., Bateson, MM., Ward, DM. Geographical isolation in hot spring cyanobacteria. Environmental Microbiology. 2003, 5:650-659.
    120. Paul, EA., Clark, FE. Soil microbiology and biochemistry (2~(rd) Edn.). London: Academic Press. 1996, pp:35-70.
    121. Pennanen, T., Fritze, H., Vanhala, P., Kiikkil(?), O., Neuvonen, S., B(?)(?)th, E., Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Applied and Environmental Microbiology. 1998, 64:2173-2180.
    122. Petersen, SO., Klug, MJ. Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Applied and Environmental Microbiology. 1994,60:2421-2430.
    123. Pettersson, M., B(?)(?)th, E., The rate of change of a soil bacterial community after liming as a function of temperature. Microbial Ecology. 2003,46:177-186.
    124. Piotrowska-Seget, Z., Cycon, M., Kozdroj, J. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Applied Soil Ecology. 2005, 28:237-246.
    125. Powlson, DS., Olk, D. Long-term soil organic matter dynamics, In: Carbon and Nitrogen dynamics in flooded soils (Eds Kirk, GJD., Olk, DC). Philiphines: Los Ba(?)os. 2000, pp:54.
    126. Ramsey, PW., Rillig, MC, Feris, Kp., Holben, WE., Gannon, JE. Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia. 2006, 50:275-280.
    127. Ratledge, C, Wilkinson, SG Microbial lipids. London: Academic Press. 1988.
    128. Rosacker, LL., Kieft, TL. Biomass and adenylate energy charge of a grassland soil during drying. Soil Biology and Biochemistry. 1990, 22:1121-1127.
    129. Rouser, G., Kritchevsky, G., Simon, G., Nelson, G.J. Quantitative analysis of brain and spinach leaf lipids employing silicic acid column chromatography and acetone for elution of glycolipids. Lipids. 1967,2:37-40.
    130. Russell, NJ, Fukunaga, N. A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiology Reviews. 1990,75:171-182.
    131. Schimel, J., Balser, TC., Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007, 88:1386-1394.
    132. Schimel, JP., Gulledge, J. Microbial community structure and global trace gases. Global Change Biology. 1998,4:745-758.
    133. Schimper, AFW., Plant geography upon a physiological Basis (Oxford: Clarendon Press. 1903) [translation of Schimper, AFW., Pflanzengeographie Auf Physiologischer Grundlage (G.Fischer, Jena, Germany, 1898)].
    134. Schlesinger, WH., Andrews, JA. Soil respiration and the global carbon cycle. Biogeochemistry, 2000,48:7-20.
    135. Schnitzer, M., Neyroud, JA. Alkenes and fatty acids in humic substances. Fuel. 1975,54:17-19.
    136. Schnurer, J., Clarholm, M., Bostrom, S., Rosswall, T. Effects of moisture on soil microorganisms and nematodes: a field experiment. Microbial Ecology. 1986,12:217-230.
    137. Schutter, ME., Dick, RP. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Science Society of American Journal. 2000, 64:1659-1668.
    138. Scurlock, JMO., Hall, DO. The global carbon sink: a grassland perspective. Global Change Biology. 1998,4:229-233.
    139. Shen, J., Bartha, R. Priming effect of substrate addition in soil-based biodegradation tests. Applied and Environmental Microbiology. 1996, 62:1428-1430.
    140. Sherlock Microbial Identification System, Version 4.5, MIS Operating Mannual. MIDI, Inc.: Newark, DE. 2002.
    141. Six, J., Elliott, ET., Paustian, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal. 1999,63:1350-1358.
    142. Smith, JL., Paul, EA. The significance of soil microbial biomass estimations. In: Soil Biochemistry (6_(th)Edn.) (Eds. Bollag, J-MM., Stotzky, G). New York: Marcel Dekker. 1990, pp:357-396.
    143. Staddon, WJ., Trevors, JT., Duchesne, LC, Colombo, CA. Soil microbial diversity and community structure across a climatic gradient in western Canada.' Biodiversity and Conservation. 1998, 7:1081-1092.
    144. Stern, N. Stern Review. Report on the Economics of Climate Change.Cambridge University Press. 2006.
    145. Stevenson, BA., Sparling, GP., Schipper, LA., Degens, BP., Duncan, LC. Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration responses at a landscape scale. Soil Biology and Biochemistry. 2004, 36:49-55.
    146. Stotzky, G. Soil as an environment for microbial life. In: Modern Soil Microbiology (Eds van Elsas, JD., Trevors, JT., Wellington, EMH.). New York: Marcel Dekker. 1997, pp: 1-20.
    147. Stroud, JL., Paton, GI., Semple, KT. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. Journal of Applied Microbiology. 2007,102:1239-1253.
    148. Sulkava, P., Huhta, V. Habitat patchniness affects decomposition and faunal diversity: a microcosm experiment on forest floor. Oecologia. 1998, 116:390-396.
    149. Suzuki MT., Giovannoni SJ. Bias caused by template annealing in the amplification mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology. 1996, 62:625-630.
    150. Tate, KR., Jenkinson, DS. Adenosine triphosphate measurements in soil: an improved method. Soil Biology and Biochemistry. 1982,14:331-335.
    151. Tiedje, JM., Asuming-Brempong, S., Nusslein, K., Marsh, TL., Flynn, SJ. Opening the black box of soil microbial diversity. Applied Soil Ecology. 1999, 13:109-122.
    152. Tiedje, JM., Cho, JC, Murray, A., Treves, D., Xia, B., Zhou, J. Soil teeming with life: new frontiers for soil science. In: Sustainable Management of soil organic matter (Eds Rees, RM., Ball, BC, Campbell, CD., Watson, CA.). Wallingford: CAB International. 2001, pp:393-412.
    153. Torsvik, V., Ovreas, L., Thingstad, TF. Prokaryotic diversity-magnitude, dynamics and controlling factors. Science. 2002,296:1064-1066.
    154. Toyota, K., Ritz, K., Young, IM. Survival of bacterial and fungal populations following chloroform-fumigation: effects of soil matric potential and bulk density. Soil Biology and Biochemistry. 1996,28:1545-1547.
    155. Trevors, JT. DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip. Antonie van Leeuwenhoek. 1996,70:1-10.
    156. Trumbore, SE., Bonani, G., W(?)lfli, W. The rates of carbon cycling in several soils from AMS 14C measurements of fractionated soil organic matter. In: Soils and Greenhouse Effects (Eds Bouwman, AF.). New York: John Wiley. 1990, PP: 405-414.
    157. Tunlid, A., Barid, BH., Trexler, MB., Olsson, S., Odham, G, White, DC. Determination of phospholipids ester-linked fatty acid and polyβ-hydroxybutyrate for the stimulation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L.). Canadian Journal of Microbiology. 1985,31:1113-1119.
    158. Tunlid, A., Hoitink, HAJ., Low, C, White, DC. Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers. Applied and Environmental Microbiology. 1989, 55:1368-1374.
    159. Vance, ED., Brookes, PC, Jenkinson, DS. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry. 1987,19:703-707.
    160. Valdrighi, MM., Pera, A., Agnolucci, M., Frassinetti, S., Lunardi, D., Vallini, G Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: a comparative study. Agriculture, Ecosystems and Environment. 1996, 58:133-144.
    161. Vestal, JR., White, DC. Lipid analysis in microbial ecology: Quantitative approaches to the study of microbial communities. BioScience. 1989, 39:535-541.
    162. Vyverman, W., Verleyen, E., Sabbe, K., Vanhoutte, K., Sterken, M., Hodgson, DA., Mann, DG, Juggins, S., Vijver, BVD., Jones, V, Flower, R., Roberts, D., Chepurnov, VA., Kilroy, C, Vanormelingen, P., Wever, AD. Historical processes constrain patterns in global diatom diversity. Ecology. 2007, 88:1924-1931.
    163. Wardle, DA. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biology Reviews. 1992, 67:321-358.
    164. Waldrop, MP., Firestone, MK. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oceologia, (2004) 138,275-284.
    165. Watts, CW., Dexter, AR. The influence of organic matter in reducing the destabilization of soil by simulated tillage. Soil and Tillage Research. 1997, 42:253-275.
    166. Whitaker, RJ., Grogan, DW., Taylor, JW. Geographic barriers isolate endemic populations of hyperthemophillic Archaea. Science. 2003,301:976-978.
    167. White, DC, Burlage, RS. Signature lipid biomarker analysis. In:, Techniques in microbial ecology (Eds. S.Burlage, R., Atlas, R., Stahl, D., Geesey, G, Sayler, G). New York: Oxford University Press. 1998, pp:255-271.
    168. White, DC, Davis, WM., Nickels, JS., King, JD., Bobbie, RJ. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia. 1979,40:51-62.
    169. Winogradsky, S. Sur les cultures spontanees des microbes fixateurs. Compi. Rend. Acad. Sci. Pairs. 1926,182:999-1001.
    170. Witter, E., Kanal, A. Characteristics of the soil microbial biomass in soils from a long-term field experiment with different levels of C input. Applied Soil Ecology. 1998,10:37-49.
    171. Wu, J., Brookes, PC, Jenkinson, DS. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil. Soil Biology and Biochemistry. 1990, 25:1435-1441.
    172. Wu, J., Brookes, PC, Jenkinson, DS. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil. Soil Biology and Biochemistry. 1993,25:1435-1441.
    173. Wu, J., Joergensen, RG, Pommerening, B., Chassed, R., Brookes, PC. Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure. Soil Biology and Biochemistry. 1990,22:1167-1169.
    174. Wu, Y., Ding, N., Wang, G, Xu, J., Wu, J., Brookes, PC. Effects of different soil weights, storage times and extraction methods on soil phospholipid fatty acid analyses. Geoderma. 2009,150:171-178.
    175. Xiang, SR., Doyle, A., Holden, PA., Schimel, JP. Drying and rewetting effects on C and N mineralization and microb(?)al act(?)vity (?)n surface and subsurface California grassland soils. Soil Biology and Biochemistry. 2008, 40:2281-2289.
    176. Xu, JM, Wang, K., Bell, RW., Yang, YA., Huang, LB. Soil boron fraction and their relationship to soil properties. Soil Science Society of American Journal. 2001, 65:133-138.
    177. Young, IM., Crawford, JW. Interactions and self-organization in the soil-microbe complex. Science. 2004,304:1634-1637.
    178. Yong, IM., Ritz, K. Tillage, habitat space and function of soil microbes. Soil and Tillage Research. 2000, 53:201-213.
    179. Zhang, XH., Zhang, GS., Zhang, ZH., Xu, JH., Li, SP. Isolation and characterization of a dichlorvos-degrading strain DDV-1 of Ochrobactrum sp.. Pedosphere. 2006,16:64-71.
    180. Zelles, L., Palojarvi, A., Kandeler, E., Lutzow, MV. Changes in soil microbial properties and phospholipid fatty acid fractions after chloroform fumigation. Soil Biology and Biochemistry. 1997,29:1325-1336.
    181. Zogg, GP., Zak, DR., Ringleberg, DB., MacDonald, NW., Pregitzer, KS., White, DC. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of American Journal. 1997,61:475-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700