用户名: 密码: 验证码:
物理过程对半封闭海湾养殖容量影响的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑沟湾是我国黄海沿岸重要的水产增养殖水域,近年来,随着对水产品需求的不断提高,人们在扩大养殖面积的同时,也提高养殖密度,而随之带来的结果是养殖设施和养殖生物对桑沟湾的水动力结构产生很大影响,使该湾的潮流结构改变,潮流流速明显减小,海水交换周期延长等等,进而营养盐的补充受到限制,反过来影响养殖生物的生长和产出。
     首先,为了了解养殖活动对桑沟湾水动力场的影响,于2006年4月和7月在桑沟湾进行了潮流特征综合观测。由于高密度筏式养殖,养殖设施和养殖生物占据了上层水体,阻碍了海水流动,形成了潮流上边界层,潮流垂直结构与一般非养殖海区明显不同,同一位置,最大流速出现在中下层,表层海水先涨先落;从湾口到湾顶,潮流流速显著衰减,相距仅5.2 km的两站,表层平均流速衰减达63%,湾顶站比湾口站潮流相位提前1 h,可见养殖活动对海水流动的阻碍作用不容忽视。
     基于观测得到的桑沟湾潮流结构特征,对养殖设施和主要养殖生物(海带)带来的阻力分别进行参数化,加入POM水动力模型中,对桑沟湾的水动力场进行模拟。进而,用此水动力模型驱动保守物质输运模型模拟该湾半交换时间的分布,并与不考虑养殖阻力的模拟结果进行比较。加入养殖阻力的水动力模型能够模拟出桑沟湾更加真实的潮流流速大小和特有的垂直结构,即高密度筏式养殖活动带来的潮流上边界层的存在;由于养殖活动的影响,桑沟湾的水动力场与开展大规模养殖前相比,平均流速减小40%,平均半交换时间延长71%。
     其次,将加入养殖阻力的POM水动力模型与桑沟湾生态模型和海带个体生长模型耦合得到桑沟湾养殖模型,模拟无机氮营养盐和浮游植物的季节变化和大面分布,无机氮营养盐收支情况和海带养殖产量。无机氮与浮游植物存在明显的季节变化,养殖活动的季节性增大了无机氮和浮游植物季节变化幅度,二者的大面分布受大面积海带和贝类养殖的影响;海带生长期间,外海补充是无机氮的最重要的源;模拟得到海带的总产量为7.01万吨干重,最终产量分布受外海对营养盐补充的控制,靠近湾口的养殖区产量大,湾内营养盐补充不足的区域,产量较小。
     应用桑沟湾养殖模型进行数值实验,研究各个过程的改变对海带养殖产量的影响。结果表明:(1)如果不采用贝藻间养,由于缺少贝类排泄对无机氮的补充,最终海带总产量减小0.3万吨,减产4.3%,海带-贝类混养区减产更为明显,达19.6%。(2)如果海带养殖期内多大风事件,搅动底沉积物,使得底沉积释放无机氮增大一倍,海带的总产量增加0.29万吨,增产4.1%,贝藻混养区增产明显,达19.6%。(3)温度对产量影响不大。(4)在无机氮缺乏的海带养殖后期,对营养盐补充不足海带-贝类混养区集中施肥,肥料利用率最高,得到的海带产量提高最大。(5)在不考虑养殖设施和养殖生物的水动力场的驱动下,海带生长期内,高估外海对桑沟湾内无机氮营养盐补充81.5%,进而高估海带产量38.5%。
     最后,改变养殖密度,研究水动力场的变化,随之带来的无机氮营养盐补充的变化,及最终海带养殖产量的变化,探讨最适养殖密度和最大养殖产出。养殖密度越大,对海水流动的阻碍作用越强,海带生长期间由外海输送到湾内的无机氮营养盐就越少,因此,提高养殖密度,最终的海带产量不一定得到相应的增加。不同养殖密度下,海带产量的模拟结果表明,养殖密度为现有养殖密度的0.9倍时,海带的产量最大,即由本模型计算得到,0.9倍于现有养殖密度为最适养殖密度,对应的最大海带养殖产出为7.21万吨干重。
Sungo Bay is among the largest aquaculture production site in China. With the increasing need of the aquaculture products, the culture area has been enlarged and the culture density has been raised. Consequently, the aquaculture establishment and spices have great influence on the tidal dynamic features, such as forming an unique vertical structure of tidal current, decreasing the current velocity, prolonging the water exchange cycle and so on. As a result, the production that based on the supply of nutrients will be inhibited.
     In order to study the influences of the aquaculture activities on the dynamic structures, two cruises were carried out during spring and summer of 2006. Many interesting phenomena were observed comparing with normal coastal water of China. The current profile has the maximum value the middle or lower layer and phase lag propagate from upper to lower depth caused by the long kelp in water. The maximum speed decrease by 63% at these two sites which 5.2 km apart. There forms another boundary at the surface due to the frames and buoys which may have stronger friction than the seabed.
     Based on the observation, Princeton Ocean Model (POM) has been improved to simulating the dynamic structure of the Sungo Bay, by adding the parameterization of the frictional effects of both the establishments and kelp. Results of model output indicate that suspended aquaculture results a 40% reduction in the average current speed and a 71% prolonger in the average half-life time.
     Then, a three-dimensional coupled physical-ecosystem-kelp model, called Sungo Bay Culture Model, is established to simulate the annual cycle and seasonal distribution of DIN (dissolved inorganic nitrogen) and phytoplankton, the sink and source of nutrient, and the production of kelp. The seasonal aquaculture activities make the seasonal variations of DIN and phytoplankton biomass more obvious. The distributions of DIN and phytoplankton biomass are mainly influenced by the aquaculture scenarios. During the period of kelp culture, DIN from the open sea due to the exchange of water is an important source of nutrient supporting the growth of kelp. Model result indicates that the final production of kelp is 7.01*104 t dry weights, and the distribution of kelp production is mainly controlled by the supply of nutrient from the open sea. The production near the mouth of the bay is much larger than the inner part where DIN is deficient due to the poor water exchange ability.
     Using the Sungo Bay Culture Model, a series of numerical experiments are implemented to study the influences of different processes on the kelp production. Polyculture of kelp and bivalve is a scientific aquaculture scenario for the growth of kelp. If only the monoculture of kelp is implemented, the final kelp production will decrease by 0.3*104 t (4.3%), because of the lack of 278.46 t N from the excretion of the bivalve. Strong wind events in winter make a positive contribution to the kelp production by increase the benthic release of DIN. The variation of water temperature has no significant influence on the kelp production. Fertilizing in polyculrure area of kelp and bivalve, where there is less DIN supply from the open sea, during the latter stages (from February) when DIN gradually becomes deficient is the most efficient way of fertilization and increase kelp production most. Disregard of physical barriers associated with culture results in a serious overestimation of the DIN supply by 81.5% and thus an overestimation of kelp production by 38.5%.
     When increasing the density of kelp culture, the frictions caused by the culture activities increase at the same time, which inhibit the supply of DIN from the open sea. As a consequence, there is no definite increase in the kelp production when increasing the culture density. Model results under different culture density indicate that when the culture density is 0.9 times of present culture density, the kelp production reaches to the peak, and the value is 7.21*104 t. So, 0.9 times of present density is the optimum culture density according to this Sungo Bay Culture Model.
引文
[1]奥德姆(Odum, 1971)著,孙儒泳译.生态学基础.北京:人民教育出版社,1982.
    [2]蔡立胜,方建光,梁兴明.规模化浅海养殖水域沉积作用的初步研究.中国水产科学,2003,10(4):305-310.
    [3]蔡立胜,方建光,董双林.桑沟湾养殖海区沉积物-海水界面氮、磷营养盐的通量.海洋水产研究,2004,25(4):57-64
    [4]陈长胜.海洋生态系统动力学与模型.北京:高等教育出版社,2003.
    [5]董双林,李德尚,潘克厚.论海水养殖的养殖容量.青岛海洋大学学报,1998,28(2):253-258.
    [6]方建光,孙慧玲,匡世焕,孙耀,周诗赉,宋云利,崔毅,赵俊,杨琴芳,李峰.桑沟湾海水养殖现状评估及优化措施.海洋水产研究,1996a,17(2):95-102.
    [7]方建光,孙慧玲,匡世焕,孙耀,周诗赉,宋云利,崔毅,赵俊,杨琴芳,李峰.桑沟湾海带养殖容量的研究.海洋水产研究,1996b,17(2):8-17.
    [8]方建光,匡世焕,孙慧玲,孙耀,周诗赉,宋云利,崔毅,赵俊,杨琴芳,李锋.桑沟湾栉孔扇贝养殖容量的研究.海洋水产研究,1996c,17(2):18-30.
    [9]高抒,谢钦春.狭长形海湾与外海水体交换的一个物理模型.海洋通报,1991,10(3):1-9.
    [10]海洋图集编委会.渤海黄海东海海洋图集水文.北京:海洋出版社, 1992.
    [11]贾厚磊,舒廷飞,温琰茂.水产养殖容量的研究.水产科技情报,2003,30(1):16-21.
    [12]匡世焕,方建光,孙慧玲,李锋.桑沟湾海水中悬浮颗粒物的动态变化.海洋水产研究,1996,17(2):60-67.
    [13]李长松,房斌,王慧,庄平,周凯,么宗利.贝类养殖容量研究进展.上海水产大学学报,2007, 16(5):478-482.
    [14]李德冰,李博.普通生态学,北京高等教育出版社,1993.
    [15]李德尚,熊邦喜.水库对投饵网箱养鱼的负荷力.水生生物学报,1994,18(3):223-229.
    [16]李庆彪.养殖扇贝的大量死亡与环境容纳量.国外水产,1990,2:9-11.
    [17]李顺志,张言怡,王宝捷,丛沂之,王利超,杨清明.贝类海带间养试验研究.海洋湖沼通报,1983,18:69-75.
    [18]刘慧,方建光,董双林,王立超,连岩.莱州湾和桑沟湾养殖海区主要营养盐的周年变动及其限制因子.中国水产科学,2003,10(3):227-234.
    [19]刘剑昭,李德尚,董双林.关于水产养殖容量的研究.海洋科学,2000, 24(9):33-35.
    [20]任玲.胶州湾生态系统中浮游体系氮循环模型研究.青岛:青岛海洋大学博士学位论文,2000.
    [21]宋强,方建光,刘慧,张继红,王玲玲,王巍.沉积再悬浮颗粒物对3种滤食性贝类摄食生理的影响.海洋水产研究,2006,27(2):21-28.
    [22]宋云利,崔毅,孙耀,方建光,孙慧玲,杨琴芳,匡世焕.桑沟湾养殖海域营养状况及其影响因素分析.海洋水产研究,1996,17(2):41-51.
    [23]孙耀,宋云利,崔毅,方建光.桑沟湾养殖海域无机氮营养盐的分布与行为.海洋水产研究,1996a,17(2):52-59.
    [24]孙耀,宋云利,崔毅,方建光,孙慧玲,杨琴芳,殷丽.桑沟湾养殖水域的初级生产力及其影响因素的研究.海洋水产研究,1996b,17(2):32-40.
    [25]孙耀,赵俊,周诗赉,宋云利,崔毅,陈聚法,方建光,孙慧玲,匡世焕.桑沟湾养殖海域的水环境特征.中国水产科学,1998,5(3):69-75.
    [26]孙英兰,陈时俊,俞光耀.海湾物理自净能力分析和水质预测—胶州湾.山东海洋学院学报,1988, 18(2): 60-65.
    [27]唐启升.关于容纳量及其研究.海洋水产研究,1996,17(2):1-6.
    [28]田恬,魏皓,苏建,郑昌硕,孙文心.黄海氮磷营养盐的循环和收支研究.海洋科学进展,2003, 21(1):1-11.
    [29]王波,游奎,刘哲,高会旺.秋季桑沟湾贝类养殖对海域水质影响的数值研究.中国海洋大学学报,2007,37:47-52.
    [30]王丽霞,石磊,孙长青.桑沟湾海域的潮流数值计算.青岛海洋大学学报,1994a,S1:77-83.
    [31]王丽霞,赵可胜,孙长青.桑沟湾海域物理自净能力分析.青岛海洋大学学报,1994b,S1:84-91.
    [32]魏皓,田恬,周锋,赵亮.渤海水交换的数值研究—水质模型对半交换时间的模拟.青岛海洋大学学报,2002, 32(4):519-525.
    [33]武晋宣,孙耀,张前前,王晓丽.桑沟湾养殖水域沉积物中营养要素(TOC、TN和TP)溶出动力学特性.海洋水产研究,2005,26(2):62-67.
    [34]武晋宣.桑沟湾养殖海域氮、磷收支及环境容量模型.青岛:中国海洋大学硕士毕业论文,2005.
    [35]徐永福.模拟浮游植物的季节变化.生态学报,1995,15(3):245-250.
    [36]袁柱翰.渤海海峡水交换的研究.青岛海洋大学学报,1997,22.
    [37]翟雪梅.渤海增养殖水文环境及年代变异特点.海洋水产研究,1997,18(2):86-100.
    [38]张继红,方建光.栉孔扇贝对春季桑沟湾颗粒有机物的摄食压力.水产学报,2006,30(2):277-280.
    [39]张继红.滤食性贝类养殖活动对海域生态系统的影响及生态容量评估.青岛:中国科学院研究生院博士学位论文,2008.
    [40]张新玲,郭心顺,无增茂.渤海海面太阳辐照度的观测分析与计算方法研究.海洋学报,2001, 23(2):46-51.
    [41]赵亮,魏皓,赵建中.胶州湾水交换的数值研究.海洋与湖沼,2002,1(33):23-29.
    [42]赵亮.渤海浮游植物生态动力学模型研究.青岛:中国海洋大学博士毕业论文,2002.
    [43]赵俊,周诗赉,孙耀,方建光.桑沟湾增养殖水环境研究.海洋水产研究,1996,17(2):68-79.
    [44]周毅,杨红生,何义朝,张福绥.四十里湾浅海养殖生物即附着生物的化学组成、有机净产量及其生态效应.水产学报,2002,26(1):21-27.
    [45]朱明远,张学雷,汤庭耀,Ferreira,J.G.,方建光,王兴章.海洋科学进展,2002,20(4):34-42.
    [46] Aksnes, D. L., Lie, U. A coupled physical-biological pelagic model of a shallow sill Fjord. Estuarine, Coastal and Shelf Science, 1990. 31: 459-486.
    [47] Bachelor, C.K. An introduction to fluid dynamics. Cambridge University Press, New York, 1967. 615.
    [48] Backhaus, J. Estimates of the variability of low frequency currents and flushing-times of the North Sea. ICES Hydrography Committee, C. M., 1984. c: 24.
    [49] Blumberg, A. F., Mellor, G. L. A description of a three-dimensional coastal ocean Circulation model. In: Three-dimensional Coastal Ocean Model, Coastal and Estuarine Sciences. Washington, D. C: AGU, 1987. 1-16.
    [50] Blumberg, A. F., Goodrich, D. M. Modelling of wind-induced destratification in Chesapeake Bay. Estuaries, 1990. 13: 3-11.
    [51] Booth, J.G., Miller, R.L., McKee, B.A. et al. Wind-induced bottom sediment resuspension in a macrotidal coastal environment. Cont. Shelf. Res., 2000. 20: 785-806.
    [52] Boyd, A.J., Heasman, K.G. Shellfish mariculture in the Benguela System: water flow patterns within a mussel farm in Saldanha Bay, South Africa. J. Shellfish Res., 1998. 17(1): 25-32.
    [53] Cacchione, D. A., Drake, D. E. Shelf sediment transport: an overview with applications to the northern California continental Shelf. In: LeMehaute, B., Hanes, D. M., The Sea, Wiley Interscience, New York, 1990. 9 (Part B): 729-773.
    [54] Caver, C.E.A., and Mallet, A.L. Estimating the carrying capacity of a coastal inlet for mussel culture. Aquaculture, 1990. 88(1): 39-53.
    [55] Chen, C. S., Wiesenburg, D. A., Xie, L. Influences of river discharge on biological production in the inner shelf: A coupled biological and physical model of the Louisiana-texas Shelf. J. Mar. Res., 1997. 55: 293-320.
    [56] Choi, B. A Strategy to Evaluate Coastal Defense Levels of Seas Around Korean Peninsula. In: Hong, G., Zhang, J., Park, B., eds. Health of the Yellow Sea. Seoul. The Earth Love Publication Association, 1999. 79-108.
    [57] Dame, R.F. Bivalve carrying capacity in coastal ecosystems. Aquatic Ecology, 1998. 31: 409-421.
    [58] Davies, A. Meteorologically-induced circulation on the North-West European continental shelf: from a three-dimensional numerical model. Oceanologica Acta, 1982. 5 (3): 269-280.
    [59] Duarte, P., Meneses, R., Hawkins, A.J.S., Zhu, M., Fang, J., Grant, J. Mathematical modeling to assess the carrying capacity for multi-species culture within coastal waters. Ecological Modelling, 2003. 168(2): 132-147.
    [60] Eigenheer, A., Kuhn, W., and Radach, G. On the sensitivity of ecosystem box model simulations on mixed-layer depth estimates. Deep Sea Res., 1996. 43 (7): 1011-1027.
    [61] Eppley, R. W., Reid, F. M. H., and Strickland, J. D. H. Estimates of phytoplankton crop size, growth rate and primary production. In: Strickland, J. D. H., The ecology of plankton off La Jolla, California, in the period April Through September 1967, Bull. Scripps Inst. Oceanogr., 1970. 17: 33-42.
    [62] Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish Bull, 1972. 1063-1085.
    [63] European Regional Seas Ecosystem Model I. In: Beukema, J., and Baratta-Bekker, J. Neth. J. Sea Res., Netherlands, Casparie, Heerhugowaard, 1995. 33 (3/4).
    [64] Fang, J., Sun, H., Yan, J., Kuang, S., Li, F., Newkirk, G.F., and Grant. J. Polyculture of scallop Chlamys farreri and kelp Laminaria japonica in Sungo Bay. Chin. J. Oceanogr. Limnol., 1996d. 14: 322-329.
    [65] FAO. Culture of kelp (Laminaria japonica) in China. RAS/86/034. Training Manual, 1989. 140.
    [66] Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 1990. 48 (3): 591-639.
    [67] Ferreira, J.G., Duarte, P., Ball, B. Trophic capacity of Carlingford Lough for oyster culture-analysis by ecological modeling. Aquatic Ecology, 1998. 31: 361-378.
    [68] Fransz, H. G., Verhagen, H. G. Modelling research on the production cycle of phytoplankton in the Southern Bight of the North Sea in relation to riverborne nutrient load. NJSR, 1985. 19: 241-250.
    [69] Fréchette, M., Butman, C.A., and Geyer, W.R. The importance of boundary layer flows in supplying phytoplankton to the suspension feeder, Mytilus edulis L. Limnol. Oceanogr.,1989. 34: 19-36.
    [70] Frost, B. W. A modeling study of process regulating plankton standing stock and production in the open subarctic Pacific Ocean. Prog. Oceanog., 1993. 32: 17-56.
    [71] Galperin, B., Mellor, G. L. A time-dependent, three-dimensional model of the Delaware Bay and river system. Part One: Description of the model and tidal analysis. Estuarine, Coastal and Shelf Science, 1990, 31: 231-253.
    [72] Grant, J., Maller, K.L. Estimating the carrying capacity of a coastal inlet for mussel culture in eastern Cananda. J. Shellfish. Res., 1988, 7 (3): 535-574.
    [73] Grant, J., Dowd, M., Thompson, K. Prospectives on field studies and related biological model of bivalve growth and carrying capacity. In: Bivalve filter feeders and marine ecosystem processes, edited by Dame, R.F., NATO ASI series, vol.G. 33, Sptinger-veriag, Berlin, 1993. 371-420.
    [74] Grant, J. The relationship of bioenergtics and the environment to the field growth of cultured bivalves. J. Exp. Mar. Biol. Ecol., 1996. 200 (1-2): 239-256.
    [75] Grant, J., Stenton-Dozey, J., Monteiro, P., Pitcher, G., and Heasman, K. Shellfish culture in Benguela system: a carbon budget of Saldanha Bay for raft culture of Mytilus galloprovincialis. J. Shellfish Res., 1998. 17 (1): 41-49.
    [76] Grant, J., Bacher, C. A numerical model of flow modification induced by suspended aquaculture in a Chinese Bay. Can. J. Fish. Aquat. Sci., 2001. 58: 1003-1011.物理过程对半封闭海湾养殖容量影响的数值研究
    [77] Grant, W. D., Madsen, O. S. The continental shelf bottom boundary layer. Annu. Rev. Fluid Mechi., 1986. 18: 265-305.
    [78] Green, M.O., Hewitt, J.E., and Thrush, S.F. Seabed drag coefficient over natural beds of horse mussel(Atrina zelandica). J. Mar. Res., 1998. 56: 613-637.
    [79] Grenz, C., Masse, H., Morchid, A.K. An estimate of energy budget between cultivated biomass and the environment around a mussel-park in the northwest Mediterranean Sea. ICES Mar. Sci. Symp, 1991. 192: 63-67.
    [80] Gibbs, M.M, James, M.R., Pickmere, S.E., Woods, P.H., Shakespear, B.S., Hickman, R.W., and Illingworth, J. Hydrodynamics and water column properties at six stations associated with mussel farming in Pelorus Sound, 1984-85. N.Z. J. Mar. Freshwater Res., 1991. 25: 239-254.
    [81] Grizzl, R.E., Lutz, R.A. A statistical model relating horizontal seston fluxes and bottom sediment characteristics to growth of Mercenaria meranaria. Marine Biology, 1989. 102: 95-105.
    [82] Hepher, B., Pruginin, Y. Commercial Fish Farming with Special Reference to Fish Culture in Israel. Wiley Interscience Publ, New York, 1981. 261: 21-30.
    [83] Huang, W., Jones, W. K., Wu, T. S. Modelling wind effects on subtidal salinity in Apalachicola Bay, Florida. Estuarine, Coastal and Shelf Science, 1998. 55: 33-46.
    [84] Jackson, G.A., Winant, C.D. Effect of a kelp forest on coastal currents. Continental Shelf Research, 1983. 2 (1): 75-80.
    [85] Kashiwai, M. History of carrying capacity concept as an index of ecosystem productivity. Bull. Hokkaido. Natl. Fish. Res. Inst., 1995. 59: 81-101.
    [86] Long, C. E., Wiberg, P. L., Nowell, A. R. M. Evaluation of von Karman’s constant from integral flow parameters. J. Hydraul. Eng., 1993. 119 (10): 1182-1190.
    [87] Luff, R., Pohlmann, T. Calculation of water exchange times in the ICES-boxes with a Eulerian dispersion model using a half-life time approach. Dtsch Hydrogr Z, 1996. 47 (4):287-299.
    [88] McGillicuddy, D. J., Robinson, A. R., and Mccarthy, JJ. Coupled physical and biology modeling of the spring bloom in the North Atlantic (II): three-dimensional bloom and postbloom processes. Deep Sea Res. I, 1995. 42 (8): 1359-1398.
    [89] McKindsey, C.W., Thetmeyer, H., Landry, T., Silvert, W. Review of Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture, 2006. 261 (2): 451-462.
    [90] Mellor, G. L., and Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 1974. 31: 1791-1806.
    [91] Mellor, G. L., and Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 1982. 200: 851-875.
    [92] Miller, D.C., and Sternberg, R.W. The fluid and sediment-dynamic environment of a benthic deposit feeder. J. Mar. Res., 1998. 46: 771-796.
    [93] Moisan, J. R., Hofmann, E. E., and Haidvogel, D. B. Modeling nutrient and plankton process in the California coastal transition zone. 2. A three-dimensional physical-bio-optical model. J. Geophys. Res., 1996. 101:22677-22691.
    [94] Norberg, J., and Deangelis, D. Temporetureeffects on stocks and stability of a phytoplankton-zooplankton model and the dependence on light and nutrients. Ecological modeling, 1997. 95: 75-86.
    [95] Nunes, J.P., Ferreira, J.G., Gazeau, F., Lencart-Silva, J., Zhang, X.L., Zhu, M.Y., Fang, J.G. A model for sustainable management of shellfish polyculture in coastal bays. Aquaculture, 2003. 219: 257-277.
    [96] Oguz, T., Ducklow, H., and Malanotte-Rizzoli, P. Simulation of annual plankton productivity cycle in the Black Sea by a one-dimension physical-biological model. J. Geophys. Res., 1996. 101 (C7): 16585-16599.
    [97] Panchang, V., Cheng, G., Newell, C. Modeling hydrodynamics and aquaculture wastetransport in coastal marine. Estuaries, 1997. 20: 14-41.
    [98] Parsons, T., Takahashi, M., and Hargrave, B. Biological oceanographic processes. UK: Pergamon Press, 1984. 330.
    [99] Peter, J. S., and Chen, C. Plankton production in tidal fronts: A model of Georges Bank insummer. J. Mar. Res., 1996. 54: 631-651.
    [100] PICES. Report of the PICES-GLOBEC International Program on Climate Change and Carrying Capacity: Science Plan and Implementation Plan. PICES Scientific Report, 1996. 4: 1-64.
    [101] Pilditch, C.A., Grant, J., and Bryan, K.R. Seston supply to sea scallops (Placopecten magellanicus) in suspended culture. Can. J. Fish. Aquat. Sci., 2001. 25: 241-253.
    [102] Prunet, P., Minster, J. F., and Ruiz-pino, D. Assimilation of surface data in one-dimensional physical-biogeochemical model of the surface ocean: 1 method and preliminary results. Global Biogeochem. Cycles, 1996. 10 (1): 111-138.
    [103] Radach, G., Moll, A. Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea. Prog. Oceanog., 1993. 31: 339-419.
    [104] Raillard, O., Ménesguen, A. An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Marine Ecology Progress Series, 1994. 115: 117-130.
    [105] Sarmiento, J. L., Slater, R. D., and Fasham, M. J. R. A seasonal three-dimensional ecosystem model of nitrogen cycling in the north Atlantic euphotic zone, Global Biogeochem. Cycles, 1993. 7 (2): 417-450.
    [106] Signell, R., Butman, B. Modelling tidal exchange and dispersion in Boston harbor. Journal of Geophysical Research, 1992. C10: 15591-15606.
    [107] Skogen, M. D., Soiland, H. A user’s guide to NORWECOM V2.0 (The Norwegian Ecological Model Statem). Institute of marine research. Bergen, 1998. 42.
    [108] Skogen, M. D., Aure, J., Danielssen, D., and Svendsen,. Natural fertilization of the marine environment-modelling of the glomma flood. Sarsia, 1998. 83: 361-372.
    [109] Skogen, M. D. A biophysical model applied to Benguela upwelling system. S. Afr. J. Mar. Sci., 1999. 21: 235-249.
    [110] Smagorinsky. General circulation experiments with the primitive equations I: The basic experiment. Mon. Wea. Rev., 1963. 91: 99-164.
    [111] Steele, J. H. Environmental control of photosynthesis in the sea. Limnology and Oceanography, 1962. 7: 137-150.
    [112] Stigebrandt, A., Wulff, F. A model for the dynamics of nutrients and oxygen in the Baltic Proper. J. Mar. Res., 1988. 45: 729-759.
    [113] Taylor, A. H., Harbour, D. S., and Harris, R. P. Seasonal succession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen. J. Plank. Res. , 1993. 15 (8): 875-891.
    [114] Tennekes, H., Lumley, J. L. A First Course in Turbulence. MIT Press, Cambridge, 1972.
    [115] Varela, R. A., Cruzado, A., and Gabaldon, J. E. Modelling the deep-chlorophyll maximum: A coupled physical-biological approach. J. Mar. Res., 1992. 50: 441-463.
    [116] Verhagen,J.H.G. A distribution and population model of Mytilusdulis in lake Grevelingen. Report R1310-12. Water loop kudig laboratorium delft hydraulic laboratory, 1985. 52:459-467.
    [117] Winddows, J. Combined effects of body size, food concentration and season on the physiology of Mytilus edulis. J. Mar. Biol., 1978. 58: 109-124.
    [118] Winant, C.D., Beardsley, R.C. A comparison of some shallow wind-driven current. Journal of Physical Oceanography, 1979. 9: 218-220.
    [119] Wildish, D., and Kristmanson, D. Benthic suspension feeders and flow. Cambridge University Press, New York, 1997.
    [120] Wu, R.S.S., Shin, P.K.S., MacKay, D.W., Johnson, D. Management of marine fish farming in the sub-tropical environment: a modeling approach. Aquaculture, 1999. 174: 279-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700