用户名: 密码: 验证码:
黑河水库坝肩边坡云母石英片岩三轴蠕变机理及蠕变模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黑河水库左坝肩的云母石英片岩为研究对象,采用试验研究、理论分析相结合,宏、微观研究相结合的研究方法,基于三轴蠕变试验结果,电子显微镜和偏光显微镜扫描测试结果,对云母石英片岩的蠕变特性、蠕变机理进行了分析,并建立了云母石英片岩的蠕变模型,为边坡变形破坏预测奠定理论基础。
     首先,对片理发育的软弱变质岩—云母石英片岩,在轴向力与片理垂直的条件下,采用岩石全自动流变伺服仪进行了三轴压缩蠕变试验,对轴向蠕变和径向蠕变进行了对比分析,提出径向蠕变比轴向蠕变敏感,以径向蠕变长期强度作为长期强度更合理。研究了围压对云母石英片岩三轴蠕变的影响,进一步指出围压越大,对径向变形的约束能力越强,径向蠕变长期强度和轴向蠕变长期强度均增加,径向蠕变长期强度与轴向蠕变长期强度的比值减小。在单轴蠕变时,轴向蠕变长期强度可以作为软岩的长期强度。总结出轴向、径向等时应力应变曲线的特点,表明云母石英片岩的蠕变具有明显的非线形特征。总结出三种类型的轴向、径向蠕变速率—时间曲线和对应的三种类型粘滞系数—时间关系曲线。指出现有的蠕变元件组合模型无法描述加速蠕变阶段的根本原因是模型中的粘滞系数没有反映出其实际变化规律。
     然后,通过偏光显微镜和电子显微镜测试不同蠕变阶段云母石英片岩径轴向的微观结构变化,将云母石英片岩内部分为空隙、裂隙等缺陷、坚硬部分和软弱部分共三部分,提出了张开裂隙的闭合、软弱部分的位置调整、微破裂和坚硬部分的位置调整四种微结构变化,在此基础上,探讨了云母石英片岩的微观蠕变机理,对衰减蠕变阶段、等速蠕变阶段和加速蠕变阶段的微观机理进行了合理解释,并将微观结构变化引起的效应归结为空隙率的变化和损伤效应,通过建立空隙率、损伤变量和宏观应力、应变的关系,间接地建立了宏观力学变量和微观结构变化的关系。
     接着,建立了云母石英片岩的七元件线性粘弹塑性蠕变模型和非线性粘弹塑性蠕变模型,对轴向蠕变和径向蠕变曲线采用同一模型分别进行了拟合,确定了模型参数,根据试验曲线和拟合曲线的吻合情况,验证了模型的正确性;用各模型参数的平均值作为代表值研究了围压对模型参数的影响,轴向和径向模型参数的区别。总结出由试验曲线拟合求模型参数过程中的影响因素,提出用参数综合辩识法来进行模型参数选择。
     最后,定义了蠕变损伤变量,该蠕变损伤变量只有2个模型参数,能全面地反映蠕变过程中的四种微结构变化和蠕变机理,简化分解后的蠕变损伤变量能描述在破坏应力下和中高应力下的粘滞系数η_3和时间关系。采用全解耦合的方法来考虑云母石英片岩损伤和蠕变的耦合作用,得到了能反映蠕变机理的云母石英片岩蠕变损伤本构方程,对模型进行了验证,确定了模型参数,并进行了参数敏感性分析。
In this paper, aimed at mica-quartzose schist at left dam abutment of heihe reservoir, by using the study method that test study combined with theoretical analysis, macro-scope study combined with micro-scope study, the creep characteristics and creep mechanism of mica-quartzose sschist are analyzed, the creep constitution models are alse established on the basis of triaxial creep tests, polarization microscope analysis and scanning electron microscope analysis.
     Firstly, triaxial compression creep tests with mica-quartzose schist which is a kind of soft metamorphic rock with lots of schistosity surfaces were carried out on the rock servo-controlling rheology testing machine under the condition of the axial stress vertical to the direction of the schistosity surface. Axial creep characteristics of mica-quartzose schist were analyzed by comparing with radial creep characteristics. It was proposed that, for the mica-quartzose schist, taking the long-term strength of radial creep as the long-term strength was more reasonable since the radial creep is more sensitive than the axial creep. Besides, the higher confining compression is, the stronger the restrain of compression was to radial deformation, which resulted in increase of both the long-term strength of radial creep and the long-term strength axial creep. However, the ratio of the long-term strength of radial creep to the long-term strength axial creep reduces with increased confining compression, therefore, the long-term strength of axial creep can be taken as the long-term strength when studying the uniaxial creep characteristics. The test results alse show that the schistosity surfaces have little influence on the creep characteristic of mica-quartzose schist and it can not control the creep of mica-quartzose. The characteristics of radial isochrounous stress-strain curve and axial isochrounous stress-strain curve are concluded, which shows that the creep of mica-quartzose schist has apparent nonlinesrity. Three kinds of axial creep rate-time surves and radial creep rate-time curves with the related three kinds of viscous coefficient-time curves have been summarized as well, furthermore, it proposes that the radical reasons of the component-combined creep model can not describe the speedup creep phase are that they can not reflect the true variation regularity of viscosity coefficient.
     Secondly, mica-quartzose schist is separated as defaults such as pores and cracks, relative rigid part and relative rigid soft which are altogether three parts on the basis of polarization microscope analysis and scanning electron microscope analysis of both axial and radial strip of mica-quartzose schist at different creep stage, at the same time, four kinds of microstructure change which are the close of open crack, the situation change of relative rigid part, the situation change of relative soft part and micro-cracking are put forward. Micro-creep mechanism of mica-quartzose schist is investigated, the reasonable interpretations of micro-mechanism on the initial attenuation creep phase , the stabilization creep phase and the speedup creep phase are put forward. The influence of microstructure change on mica-quartzose schist are summarized as the damage effect and the change of porosity, the relation between the macro-mechanics variable and microstructure change is established indirectly through establishing the relation of macro-stress and macro-strain with porosity and damage variable.
     Thirdly, seven-component linear viscoelastoplastic creep model and nonlinear viscoelastoplastic creep model of mica-quartzose schist are established. By using a same model, the model parameters of axial creep and radial creep are fitted in accordance with test curves and the comparison between the test curves and fitted curves shows that the creep model is right and reasonable. The influence of compression to model parameters and the different between axial model parameters and radial model parameters are also studied by comparing the average of every model parameters. The factors which influence the model parameters during in the course of fitting are summarized, and a comprehensive identification method to select model parameters is put forward.
     Finally, a creep damage variable which has two model parameters and can reflect both the creep mechanism and four microstructure change of creep is defined. After simplified and separated, this creep damage variable can reflect the change of viscosity coefficientη_3 with time not only under destroyed stress level but also under middle and high stress level. A damage creep constitutional model is obtained by considering the effect of damage and creep, and the comparison between the test curves and fitted curves shows that the creep model is right and reasonable. The model parameters are also determined, and the sensitivity of model parameters is analyzed.
引文
[1]杨天鸿,芮勇勤,李连崇等.顺层蠕动边坡变形破坏机理及稳定性动态分析[J].工程地质学报,2003,11(2):155-161.
    [2]山田刚二,渡正亮,小桥澄治.滑坡和斜坡崩塌及防治[M].北京:科学出版社,1980
    [3]刘雄.岩石流变学概论[M].北京:地质出版社,1994
    [4]袁龙蔚.流变力学[M].北京:科学出版社,1986
    [5]王启宏.材料流变学[M].北京:中国建筑工业出版社,1985
    [6]李四光.地质力学方法[M].北京:科学出版社,1976
    [7]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993
    [8]Fabre,G(?)raldine,Pellet Fr(?)d(?)ric.Creep and time-dependent damage in argillaceous rocks[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(6).: 950-960
    [9]Weidinger.P,Hampel.A,Blum.W.et al.Creep behaviour of natural rock salt and its description with the composite model[J].Materials Science and Engineering,(A234-23):646-648,Aug 30
    [10]M.S.Paterson.Relating experimental and geological rheology[J].International Journal of Earth Sciences,2001,90(1): 157-167
    [11]Patton,Thomas L.; Fletcher,Raymond C.Rheological model for fractured rock[J].Journal of Structural Geology,1998,20(5): 491-502
    [12]Tmanovic,Zvonko.Rheological model of soft rock creep based on the tests on marl[J].Mechanics of Time-Dependent Materials,2006,10(2): 135-1534
    [13]Ito H,Kumaqai.N.Creep experiment on a large granite beam started in 1980[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1994,31 (4): 359-367
    [14]李青麒.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998,17(5):559-564
    [15]Martin P.J.Schopfer,Gemold Zulauf.Strain-dependent rheology and the memory ofplasticine[J].Tectonophysics,2002,354(1/2): 85-99
    [16]袁海平,曹平,许万忠等.岩石黏弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报,2006,28(6):796-799
    [17]Singh.J.G,Upadhyay.P.C.Creep bending of rock beams[J].Mining science & technology,5(2): 163-169
    [18]E.Boidy,A.Bouvard,R Pellet,Back analysis of time-dependent behaviour of a test galley in claystone[J].Tunnelling and Underground Space Technology,2002,17(4):415-424
    [19]Enrico Maranini,Tsutomu Yamaguchi.A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J].Mechanics of Materials,2001,33(5): 283-293
    [20]来结合,张忠亭,罗居剑等.锦屏水电站绿片岩蠕变特性研究[A].第八届全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004,903-909
    [21]廖红建,苏立君,殷建华.硅藻质软岩的三维弹黏塑性模型分析[J].岩土力学,2004,25(3):337-341
    [22]Singh.T.N,Verma.A.K.Prediction of creep characteristic of rock under varying environment[J].Environmental Geology,2005,48(4-5): 559-568
    [23]Kinoshita,Naoki,Inada et al.Effects of high temperature on strength,deformation,thermal properties and creep of rocks[J].Journal of the Society of Materials Science,2006,55(5):489-494
    [24]Maranimi E.,Brignoli M.Creep Behavior of a Weak Rock Experimental Characterization[J].Int.J.Rock Mech&Min.Sci,1999,36(1): 127-138
    [25]Shin.K,Okubo.S,Fukui.K et al.Variation in strength and creep life of six Japanese rocks[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2): 251-260
    [26]张向东,李永靖,张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639
    [27]陈渠,西田和范,岩本健等.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报,2003,22(6):905-912
    [28]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究[J].岩石力学与工程学报,2005,24(15):2659-2664
    [29]徐卫亚.边坡及滑坡环境岩石力学工程研究[M].北京:中国环境科学出版社,2000
    [30]陈宗基,石泽金,于智海等.用8000KN多功能三轴仪测量脆性岩石的扩容、蠕变及松弛[J].岩石力学与工程学报,1989,8(2):97-118
    [31]陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):209-312
    [32]Fukui.Katsunori,Okubo.Seisuke et al.Creep behavior of rock under uniaxial compression[J].Shigen to sozai,105(7),37:521-526
    [33]Ma.L,Daemem.J.J.K.An experimental study on creep of welded tuff[J].International Journal of Rock Mechanics and Mining Sciences.2006,43(2): 282-291
    [34]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745-3749
    [35]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报,2005,27(11):1273-1276
    [36]徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537
    [37]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(2):1791-1796
    [38]荣耀,徐锡宾,靖洪文等.不同含水岩石蠕变试验电磁辐射频谱分析[J].岩石力学与工程学报,2005,24(A01):5090-5095
    [39]刘建,李鹏,乔丽苹等.砂岩蠕变特性的水物理化学作用效应试验研究[J].岩石力学与工程学报,2008,27(12):2540-2550
    [40]熊良宵,杨林德,张尧等.锦屏二级水电站绿片岩双轴压缩蠕变特性试验研究[J].岩石力学与工程学报,2008,27(A02):3928-3934
    [41]张宁,陈国文,刘静波等.鲁灰花岗岩蠕变特征转变温度门槛值的实验研究[J].太原理工大学学报,2009,(1):78-81
    [42]赵法锁,张伯友,卢全中等.某工程边坡软岩三轴试验研究[[J].辽宁工程技术大学学报,2001,20(4):478-480
    [43]赵法锁,张伯友,彭建兵等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527-1532
    [44]汪为巍,曹平.金川软岩蠕变破坏机理电镜实验研究[J].岩土工程技术,2007,21(2): 60.-63
    [45]Haupt M.A Constitutive Law for Rock Salt Based on Creep and Relaxation Tests[J].Rock Mechanics and Rock Engineering,1991,24:179-206
    [46]Liu .Jiang,Yang Chunhe,Wu.Wen.Study on creep characteristics and constitutive relation of rock salt[J].Rock and Soil Mechanics.2006,27(8): 1267-1271
    [47]Chen Feng,Li.Yinping,Yang Chunhe.Experimental study on creep behaviors of rock salt in Yunying salt mine[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(A01): 3022-3027
    [48]梁卫国,徐素国,赵阳升等.盐岩蠕变特性的试验研究[J].岩石力学与工程学报,2006,25(7):1386-1390
    [49]高小平,杨春和,吴文.岩盐时效特性实验研究[J].岩土工程学报,2005,27(5):558-561
    [50]何学秋,林柏泉.突出危险煤的流变性质及突出过程的能量耗散[A].见:中国煤炭学会首届青年科技工作者学术讨论会[C].1 992:1-7
    [51]岳世权,李振华,张光耀.煤岩蠕变特性试验研究[J].河南理工大学学报:自然 科学版,2005,24(4):271-274
    [52]曹树刚,鲜学福.煤岩蠕变损伤特性的实验研究[[J].岩石力学与工程学报,2001,20(6): 817-821
    [53]刘建忠,杨春和,李晓红等.万开高速公路穿越煤系地层的隧道围岩蠕变特性的试验研究[[J].岩石力学与工程学报,2004,23(22):3794-3798
    [54]Amadei.B,Curran J.H.Creep behavior of rock joints,Canadian Rock Mechanics Symposium (Proceedings),1980,pp: 146-150
    [55]Wong.R.H.C,Lin.P,Tang.C.A et al.Creeping damage around an opening in rock-like material containing non-persistent joints[J].Engineering Fracture Mechanics,2002,69(17),2015-2017
    [56]沈明荣,张清照.规则岩体结构面的蠕变特性研究[J].岩石力学与工程学报,2008,27(A02):3973-3979
    [57]曹运江,黄润秋,唐辉明.某水电站高边坡煤系软弱结构面流变特性试验研究[J].岩石力学与工程学报,2008,27(A02):3732-3739
    [58]丁秀丽,刘建.三峡船闸区硬性结构面蠕变特性试验研究[J].长江科学院院报,2000,17(4):30-33
    [59]李鹏,刘建,朱杰兵等.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学,2008,29(7):1865-1871
    [60]Drescher K.,Handley M.F..Aspects oftime-dependent deformation in hard rock at great depth[J].Journal of The South African Institute of Mining and Metallurgy,2003,103(5): 325-335
    [61]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报,2001,20(增):1882-1885
    [62]徐平,丁秀丽,全海等.溪洛渡水电站坝址区岩体蠕变特性试验研究[J].岩土力学,2003,24(增1):220-222
    [63]徐平,杨挺青,徐春敏等.三峡船闸高边坡岩体时效特性及长期稳定性分析[J].岩石力学与工程学报,2002,21(2):163-168
    [64]Xu P,Yang T.Q.,Zhou H.M..International Journal of Rock Mechanics and MiningSciences[J].2004,41(S1): 1B 11 1-6
    [65]杨松林.不连续岩体弹黏性力学研究[博士后研究报告][R].南京:河海大学,2003,6
    [66]Hoxha.Dashnor,Giraud.Albert,Homand.Francoise.Modelling long-term behaviour of a natural gypsum rock[J].Mechanics of Materials,2005,37(12),1223-1241,
    [67]焦俊虎,张永波.岩石力学本构模型的研究现状及其进展[J].太原理工大学学报,2002,33(6):653-656
    [68]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004
    [69]章根德,何鲜,朱维耀.岩石介质流变学[M].北京:科学出版社,1999
    [70]龚晓南,袁静,益德清.岩土流变模型研究的现状与展望——第九届全国结构工程学术会议特邀报告[A].工程力学,2000,(增):145-155
    [71]曹树刚.关于岩石材料的流变力学模型[J].矿山压力与顶板管理,2001,(3):75-77
    [72]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [73]宋飞,赵法锁,李亚兰.石膏角砾岩蠕变特性试验研究[J].水文地质工程地质,2005,32(3):94-96
    [74]D.M.Cruden.A technique for estimating the complete creep curve of a sub-bituminous coal under uniaxial compression[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.,1987,24(4): 265-2690
    [75]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1991
    [76]邓雨天.岩石力学的弹塑黏性理论基础[M].北京:煤炭工业出版社,1988
    [77]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001
    [78]马明军.一个软弱岩石的黏弹塑性流变力学模型[J].中南矿冶学院学报,1990,21(3):236-241
    [79]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996,21(5):498-503
    [80]周家文,徐卫亚,杨圣奇.改进的广义Bingham岩石蠕变模型[J].水利学报,2006,37(7):827-830,837
    [81]杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学,2007,28(5):895-902
    [82]丁志坤,吕爱钟.岩石黏弹性非定常蠕变方程的参数辨识[J].岩土力学,2004,25(增):37-40
    [83]王来贵,何峰,刘向峰.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640-1642
    [84]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002,21(5):632-634
    [85]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008,27(4):832-839
    [86]邓荣贵,周德培,张倬元等.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784
    [87]徐卫亚,杨圣奇,谢守益等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693-698
    [88]韦立德,邵建富等.岩石黏弹塑性模型的研究[J].岩土力学,2002,23(5):583-586
    [89]汪华安,杨庆刚,陈记.弹黏塑本构模型辩识的半经验法及三阀值流变模型[J].西部探矿工程.2003,15(8):44-46
    [90]强晟,陈胜宏.不连续岩体的三维弹黏塑性复合单元模型研究[J].岩石力学与工程学报,2004,23(20):3393-3396
    [91]张玉军,刘谊平.正交各向异性岩体中地下洞室稳定的黏弹-黏塑性三维有限元分析[J].岩土力学,2002,23(3):279-283
    [92]赖远明,吴紫汪,朱元林等.寒区隧道地震响应的弹黏塑性分析[J].铁道学报,2000,22(6):84-89
    [93]陈胜宏,熊文林.加锚节理岩体流变模型及三维弹黏塑性有限元分析[J].水利学报,1998,(9):41-47
    [94]张玉军,刘谊平.锚固正交各向异性岩体的三维黏弹-黏塑性有限元分析[J].岩石力学与工程学报,2002,21(12):1770-1775
    [95]陈尚法,佘成学,陈胜宏.大岩淌滑坡的弹黏塑性自适应有限元分析[J].岩石力学与工程学报,2002,21(2):169-175
    [96]朱苦竹,李青麒,朱合华.某水电站引水隧道三维黏弹塑性有限元分析[J].地下空间与工程学报,2005, 1(5):717-720,724
    [97]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999
    [98]秦跃平,王林等.岩石损伤流变理论模型研究[J].岩石力学与工程学报,2002,21(A02):2291-2295
    [99]韦立德.岩石力学损伤和流变本构模型研究[J].岩石力学与工程学报,2004,23(24):4265-4265
    [100]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604
    [101]Wang Guijun.A new constitutive creep-damage model for salt rock and its characteristics[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(S1): 1-7
    [102]Challamel Noel,Lanos Christophe,Casandjian Charles.Creep damage modelling for quasi-brittle materials[J].European Journal of Mechanics,2005,24(4): 593-613
    [103]杨松林,徐卫亚.裂隙蠕变的稳定性准则[[J].岩土力学,2003,24(3):423-427
    [104]徐卫亚,杨松林.裂隙岩体松弛模量分析[[J].河海大学学报(自然科学版),2003,31(3):295-298
    [105]陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报:自然科学版,1996,24(5):504-508
    [106]范庆忠,高廷法,崔希海.软岩非线性蠕变模型研究[[J].岩土工程学报,2007, 29(4): 505-509
    [107]Wang.Guijun.A new constitutive creep-damage model for salt rock and its characteristics[J].International Journal of Rock Mechanics and Mining Sciences,41(SUPPL.1),1A 11 1-7,May 2004
    [108]Borchert.Kurt-M,Hebener.Hans et al.Creep calculation on salt by using an endochronic material law compared to other creep formulation.Trans Tech Publications,p 573-587,1984
    [109]Aubertin.M,Gill.D.E,Landayi.B.Internal variable model for the creep of rocksalt[J].Rock mechanics and rock engineering,1991,24(2),81-97
    [110]Adachi T,Oka F,Koike M.An elasto-viscoplastic constitutive model with strain-softening for soft sedimentary rocks[J].Soils and Foundations .2005,45 (2): 125-133
    [111]陶波,伍法权,郭改梅等.西原模型对岩石流变特性的适用性及其参数确定[J].岩石力学与工程学报,2005,24(17):3165-3171
    [112]陈炳瑞,冯夏庭,丁秀丽等.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报,2005,24(2):207-211
    [113]张强勇,张建国,杨文东等.软弱岩体蠕变模型辨识与参数反演[J].水利学报,2008,39(1):66-72
    [114]张玉军.围岩流变参数反分析方法[J].岩土工程学报,1990,12(6):84-90
    [115]许宝田,阎长虹,许宏发等.基于模糊理论的软岩黏弹性模型识别及参数反分析[J].岩石力学与工程学报,2006,25(11):2280.-2286
    [116]刘保国.岩石黏弹性,黏塑性本构模型辨识及工程应用[J].岩石力学与工程学报,1998,17(4):473
    [117]吕爱钟,丁志坤,焦春茂等.岩石非定常蠕变模型辨识[J].岩石力学与工程学报,2008,27(1):16-21
    [118]刘世君,徐卫亚,邵建富.岩石黏弹性模型辨识及参数反演[J].水利学报,2002,(6): 101-105
    [119]李云鹏,王芝银,丁秀丽.岩体原位流变荷载试验的力学参数与模型反演[[J].实验力学,2005,20(2):297-303
    [120]徐日庆,龚晓南,王明洋.黏弹性本构模型的识别与变形预报[J].水利学报,1998,(4): 75-80
    [121]刘保国,孙钧.岩体黏弹性本构模型辨识的一种方法[J].工程力学,1999,16(5):18-25
    [122]Chen Bing-Rui,Feng Xia-Ting et al.Back analysis on rheological parameters basedon pattern-genetic-neural network[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(4): 553-558
    [123]Feng Xia-Ting,Chen Bing-Rui et al.Intelligent analysis of rheological characteristic of rock materials.Proceedings of the International Symposium of the International Society for Rock Mechanics,Eurock 2006-Eurock 2006 Multiphysics Coupling and Long Term Behaviour in Rock Mechanics,p 275-280,2006,
    [124]Song Fei,Zao Fa-Suo.Neural network model for rheology of rock and soil under step loading[J].Rock and Soil Mechanics,2006,27,(7),1187-1190,
    [125]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析[J].岩土工程学报,2001,23(1):120-122
    [126]胡斌,冯夏庭,王国峰等.龙滩水电站左岸高边坡泥板岩体蠕变参数的智能反演[J].岩石力学与工程学报,2005,24(17):3064-3070
    [127]刘杰,王媛.岩体流变参数反演的加速遗传算法[J].大坝观测与土工测试,2001,25(6):24-27
    [128]陈炳瑞.岩石工程长期稳定性智能反馈分析方法及应用研究[J].岩石力学与工程学报,2008,27(11):2376
    [129]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2000
    [130]吴德伦,黄质宏,赵明阶.岩石力学[M].重庆:重庆大学出版社,2002
    [131]陈文玲,赵法锁.云母石英片岩的三轴蠕变试验研究[J].工程地质学报,2007,15(04):545~548
    [132]于德海.软弱变质岩力学性质及其边坡失稳机制的研究[博士论文D].西安:长安大学,2007,4
    [133]刘爱平,崔春龙.岩土体显微组构与力学性能关系研究现状与展望[J].西南科技大学学报,2003,18(2):75-78
    [134]梁军,刘汉龙,高玉峰.堆石蠕变机理分析和颗粒破碎特性研究[J].岩土力学,2003,24(3):479-483
    [135]梁军,刘汉龙.面板坝堆石料的蠕变试验研究[J].岩土工程学报,2002,24(2):257-259
    [136]周伟,胡颖,杨启贵.高混凝土面板堆石坝流变机理及长期变形预测[J].水利学报,2007,10:100-105
    [137]王勇.堆石流变的机理及研究方法初探[J].岩石力学与工程学报,2000,19(4):526-530
    [138]周伟,胡颖,阎生存.高堆石坝流变机理的组构理论分析方法[J].岩土工程学报,2007,29(8):1274-1278
    [139]汪明元,何晓民,程展林.粗粒料流变研究的现状与展望[J].岩土力学,2003,24(增刊):451-454
    [140]汤士杰,陈沅江,潘长良等.岩石蠕变破坏过程的自组织特征分析[J].勘察科学 技术,2004,4:15-20
    [141]翟淳.岩石学简明教程[M].北京:地质出版社,1987
    [142]刘瑞.显微构造地质学[M].北京:北京大学出版社,1988
    [143]许江,李贺,鲜学福等.对单轴应力状态下砂岩微观断裂发展全过程的实验研究[J].力学与实践,1986,8(4)
    [144]卢应发,张梅英,葛修润.大理岩静态和循环荷载试件的扫描分析[J].岩土力学,1990,11(4):75-80.
    [145]ZHAO Yong-hong.Fractal variation of fracturing incompressed rock specimen[J].Chinese Science Bulletin,1995,40: 1277-1281.
    [146]赵永红,黄杰藩,王仁.岩石微破裂发育的扫描电镜及实时观测研究[J].岩石力学与工程学报,1992,11(3):284-294
    [147]朱珍德,张勇,徐卫亚等.高围压高水压条件下大理岩断口微观机理分析与试验研究[J].岩石力学与工程学报,2005,24(1):44-51
    [148]柴肇云,康天合,李义宝.物化型软岩微结构单元特征及其胀缩性研究[J].岩石力学与工程学报,2006,25(6):1266-1269
    [149]杨春和,冒海军,王学潮等.板岩遇水软化的微观结构及力学特性研究[J].岩土力学,2006,27(12):2090-2098
    [150]曹文贵,李翔,刘峰.裂隙化岩体应变软化损伤本构模型探讨[J].岩石力学与工程学报,2007,26(12):2488-2494
    [151]杨松林,张建民,黄启平.裂隙岩体蠕变柔量分析[J].岩石力学与工程学报,2004,23(9):1419-1423
    [152]韩建增,施太和,何开平等.一种盐岩蠕变参数的现场评价方法[J].西南石油学院学报,2001,23(3):26-29
    [153]赵法锁等.坡体平面旋转机理及稳定性研究[M].西安:西安地图出版社,1999
    [154]韦立德,徐卫亚,杨春和.饱和、非饱和岩石损伤统计本构模型探讨[J].岩石力学与工程学报,2004,23(增1):4285-4291
    [155]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993
    [156]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    [157]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633
    [158]Krajcinovic D,Silva M A G Statistical aspects of the continuous damage theory[J].Int.J.Solids Structure,1982,18(7): 551-562
    [159]陈忠辉,傅宇方,唐春安.岩石破裂声发射过程中的围压效应[J].岩石力学与工程学报,1997,16(1):65-70谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    [160]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与 工程学报,1996,15(1):55-61
    [161]陈忠辉,傅宇方,唐春安.岩石破裂声发射过程的围压效应[J].岩石力学与工程学报,1997,16(1):65-70
    [162]杨圣奇,徐卫亚,韦立德等.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报(自然科学版),2004,32(2):200-203
    [163]石平五,高召宁.顶煤损伤统计力学模型[J].长安大学学报(自然科学版),2003,23(1): 58-60
    [164]罗晓辉,白世伟.结构性土体强度的统计损伤模型分析[J].岩土工程学报,2004,26(5): 712-714
    [165]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791
    [166]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究[J].湖南大学学报(自然科学版),2005,32(1):43-47
    [167]韦立德,徐卫亚,杨春和等.具有统计损伤的岩石弹塑性本构模型研究[J].岩石力学与工程学报,2004,23(12):1971-1975
    [168]张毅,廖华林,李根生.岩石连续损伤统计本构模型[J].石油大学学报(自然科学版),2004,28(3):37-39
    [169]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003,25(2):184-187
    [170]杨明辉,赵明华,曹文贵.岩石损伤软化统计本构模型参数的确定方法[J].水利学报,2005,36(3):345-349
    [171]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231
    [172]曹文贵,赵明华,刘成学.基于统计损伤理论的德鲁克—普拉格岩石强度准则的修正[J].水利学报,2004,(9):18-23
    [173]曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修正方法之研究[J].岩石力学与工程学报,2005,24(14):2403-2408
    [174]郑雨天.岩石力学的弹塑黏性理论基础[M].北京:煤炭工业出版社,1988
    [175]郭增玉,刘守慧,张朝鹏.高湿度Q_2黄土的非线性流变本构模型及参数[J].地下空间,2001,21(2):94-99
    [176]张敏江,张丽萍,张树标等.结构性软土非线性流变本构关系模型的研究[J].吉林大学学报(地球科学版),2004,34(2):242-246
    [177]张敏江,姚敏,邱欣等.辽南海积软土流变本构模型的研究[J].沈阳建筑工程学院院报(地球科学版),2003,19(4):260-263
    [178]张丽萍,关超,阎婧.营口地区软土流变模型参数及流变特性研究[J].沈阳建筑工程学院院报(自然科学版),2004,20(4):261-264
    [179]孙钧,汪炳铿.地下结构有限元解析[M].上海:同济大学出版社,1988
    [180]梁军,刘汉龙,高玉峰.堆石料流变参数综合辩识法[J].岩土工程界,2003,6(12):59-61
    [181]何学秋,薛二龙,聂百胜等.含瓦斯煤岩流变特性研究[J].《辽宁工程技术大学学报:自然科学版》,2007,26(2):201-203
    [182]冒海军,杨春和,刘江等.板岩蠕变特性试验研究与模拟分析[J].岩石力学与工程学报,2006,25(6):1204-1209
    [183]袁海平,曹平,万文等.分级加载条件下软弱复杂矿岩蠕变规律研究[J].岩石力学与工程学报,2006,25(8):1573-1581
    [184]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586
    [185]李云鹏,王芝银,丁秀丽.流变荷载试验曲线的模型识别及其应用[J].石油大学学报(自然科学版),2005,29(2):73-77
    [186]丁志坤,吕爱钟.岩石黏弹性非定常蠕变方程的参数辨识[J].岩土力学,2004,25(s1):37-40
    [187]宋飞.石膏角砾岩非线性流变模型研究及有限元分析[博士论文D].西安:长安大学,2006,4
    [188]何青峰.延安Q_2黄土的力学及流变特性研究[博士论文D].西安:长安大学,2008,4
    [189]郑颖人,沈珠江等.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002
    [190]龚晓南.土塑性力学(第二版)[M].杭州:浙江大学出版社,1999
    [191]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001
    [192]陈宝林.最优化理论与方法[M].北京:清华大学出版社,1989
    [193]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993
    [194]徐卫亚,周家文,杨圣奇等.绿片岩蠕变损伤本构关系研究[J].岩石力学与工程学报,2006,25(增1):3093-3097
    [195]任中俊,彭向和,万玲等.三轴加载下盐岩蠕变损伤特性的研究[J].应用力学学报,2008,25(2):212-217
    [196]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [197]林斌.考虑损伤效应的黄土流变模型研究[博士论文D].西安:长安大学,2005,5
    [198]陈卫忠,王者超,伍国军等.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2007,26(3):467-472
    [199]朱昌星,阮怀宁,朱珍德等.岩石非线性蠕变损伤模型的研究[J].岩土工程学报,2008,30(10):1510-1513
    [200]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].岩石 力学与工程学报,2005,24(23):4253-4258
    [201]Li Ning,Chen Wenling,Zhang Ping.Strength properties of the jointed rock mass medium under dynamic cyclic loading[J].Progress in Nature Science,2001,11(3):197-201
    [202]陈文玲,李宁.非贯通裂隙岩体介质的损伤模型[J].岩土工程学报,2000,22(4):430-434
    [203]N.Li,W.Chen,PZhang,G Swoboda.The mechanical propertities and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(7): 1071-1079

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700