用户名: 密码: 验证码:
浅层储气砂土的工程效应演化特征与灾变机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正在兴建的杭州地铁1号线在勘查过程中遭遇到含有压力较高的可燃性气体土层,这种分布广、埋深浅的含气地质条件势必会给正在修建的地铁工程带来不利影响。然而,目前国内外在此类地层中修建地铁的工程经验和相关研究成果甚少;如何认清它的工程性状和灾变机理,采取何种针对性措施才能有效确保地铁工程安全施工和顺利运营,已成为当前地铁建设中亟待解决的难题。
     本文以杭州地铁典型区段浅层气藏中的储气砂土作为研究对象,基于非饱和土力学理论,采用室内试验、模型试验和数值模拟的方法,对储气砂土的土层特性、工程性状演化规律和成灾机理展开较为系统的研究,并就浅层储气地层在地铁工程中的灾变模式和防治进行了初步探讨,主要研究内容和结论如下:
     第一,分析总结了地铁工程所遇含浅层气地层的成因机理、气藏类型、气体组分和气压力分布特征及基本赋存规律,对气体的成藏过程和赋存分带性做出推断。杭州地区广泛存在的超浅层气藏是由其特殊的地理位置和气候条件所决定的,气藏属常压气藏,埋深较浅、气体成分以甲烷为主,富含有机质的淤泥层系主要的气源层和封盖层,未胶结砂层和贝壳层系气体的主要储集层;气藏中砂体沿深度由干变湿,由非饱和至饱和,气体赋存具有明显的分带性。
     第二,针对不同饱和度的砂土,系统开展了持水特性、渗水、渗气、剪切、固结等基本物理力学特性的研究,分析了上述特性随基质吸力或饱和度的变化规律。试验结果表明:储气砂土系粉细砂,含少量粘粒,孔隙率较高,气藏中砂土的基质吸力变化范围约在0~100kPa之间;VG模型能较好的描述储气砂土的持水特性,借助其土水特征曲线可以在工程缺乏试验条件下,预测得到储气砂土的气藏压力、抗剪强度、渗水系数等工程指标。利用自行设计的试验装置测定了储气砂土的气渗透特性,发现饱和度相对密度变化对储气砂的渗气性影响更为显著,VGM模型和Parker模型可分别用来描述储气砂土中水相和气相的渗透特性;储气砂土的表观凝聚力符合幂指函数形式,压缩和回弹性随吸力的增大而减小。
     第三,针对地铁建设中的常见应力路径,通过室内应力路径试验,研究了不同工程路径、不同气压水平的储气砂土的强度变化规律,并给出了气体释放后砂土强度的预测方法。结果表明:不同应力路径下,储气砂土的应力-应变特性具有显著差异,其强度受应力路径影响显著;不同应力路径下的储气砂土抗剪强度可用统一公式来描述;储气砂土中气体释放后强度将会提高,给出了气体释放后预测砂土强度的方法;实际工程中若采用饱和砂土强度指标时应考虑折减。
     第四,气体释放是储气砂土在地铁工程中最常经历的一条卸荷路径,通过室内试验研究了放气路径下储气砂土的变形特性。试验结果表明:原始地层压力越高,因气体释放导致的土层变形越大,有控分级放气可以有效减小含气土层的变形;干湿历史对砂土的变形特性影响显著,脱湿后再吸湿过程中土体变形小于脱湿过程中的变形,随净平均应力的增大,吸力对砂土变形的影响逐渐减弱,砂土逐步趋于更加稳定的结构;放气路径中,储气砂土变形受基质吸力和净平均应力的耦合影响,但在原始气藏条件下,气体释放中因吸力或含水量变化引起的砂土变形量很小,变形主要源于气压减小引起净平均应力增大而导致的土体变形;气体重新回聚引起的砂土回弹量很小,对实际工程影响不大。
     第五,基于室内试验,建立了工程放气路径下描述储气砂土固相宏观变形行为的应力应变本构模型,模型参数均可由室内试验确定;在VGM和Parker模型基础上,给出了不同含水饱和度下砂土中的水、气相对渗透曲线,并由此建立了描述水、气运移规律的两相流分析模型;与放气路径储气砂本构模型耦合,实现了对工程当中、气体释放条件下储气砂土变形的数值描述,揭示了变形过程中固、液、气三相耦合效应机理。
     第六,为了解气体释放对地铁隧道的影响,自行设计了一套模型试验系统,进行了隧道穿越储气层和隧道穿越封盖层两种工况下,储气砂层中气体释放对地铁隧道受力和稳定性影响的室内模型试验。研究结果表明:气体释放将引起隧道产生附加变形和管片附加应力,浅层气体释放对地铁隧道结构应力和结构相对变形影响较小,而对隧道整体位移影响较大,易引起不均匀沉降,导致隧道裂缝或断裂,进而引发危险;气体重新回聚时,隧道产生的附加应力和回弹位移量较小,工程中可不予考虑;地铁隧道施工前,宜对浅层气体进行预先排放。
     最后,分析了浅层储气地层在不同工程阶段的灾变模式,针对性的提出了地铁工程在施工期和运营期的防治对策。储气地层在地铁工程不同阶段的危害表现形式和灾变特征有所差异,防治需针对勘探阶段、设计阶段、施工前准备阶段、施工阶段和地铁运营期等不同时期,制定有效措施,来确保地铁建设安全顺利进行。
Currently, a type of soil layer stored with high pressure and flammable gas was encountered during the exploration of Hangzhou metro line 1 project under construction. Such the wide distribution and shallow buried gassy ground condition is bound to bring adverse effects on the construction of this subway engineering. However, experiences and related research achievements about building subway under such condition are lacking both at home and abroad. What engineering properties and hazard mechanisms of the layer and which control measures should be adopted to ensure the construction safety and the operation of subway smoothly have become the problems solved urgently in the current metro design and construction.
     Taking the gassy sand in shallow gas reservoirs of the typical section in Hangzhou metro as an object, based on the theory of unsaturated soil mechanics, and with the laboratory test, model experiment and numerical simulation analysis, the evolution law of its engineering properties and hazard mechanism are studied systematically. Intrinsic mechanisms, models of gassy sand causing disasters and measures taken for controlling disasters in the subway construction are discussed in this thesis. The main contents and the conclusions are as follows:
     Firstly, geologic origin, type of gas reservoir, gas component, feature of gas pressure distribution and law of basic occurrence of the shallow gas stratum are summarized; the formation mechanism of such shallow gas, the history of gas migration and accumulation and the zone theory of its occurrence are deduced. The shallow gas reservoir existing widely in Hangzhou area is determined by its special geographical position and climate condition. It is buried shallowly and belongs to that of normal pressure reservoirs. The gas composition is main methane. Silt layer with rich organic matter is the main source and sealing layer; and uncemented sand shell bed is the main gas reservoir. The state of its occurrence in gas reservoirs is from dry to wet, and saturation degree of it is from low to high until the sand is saturated along the depth; the gas occurrence has an obvious feature of zonation.
     Secondly, on account of the different saturation degree of sand, basic mechanical properties such as moisture holding capacity, water permeability, gas permeability, shearing and consolidation features are studied, and their variations with the suction or saturation degree are analyzed. Results show that the gassy sand with high porosity is silty fine sand with a small quantity of clay fraction, and the matric suction of the sand in gas reservoirs varies from 0 to100kPa. Van Genuchten equation can favorably describe the soil water characteristic curves of gassy sand (SWCC), and other engineering indexes of the gassy sand such as gas pressure in reservoirs, shearing strength and coefficient of permeability can be predicted by the curve of SWCC under lacking test conditions. Gas permeability of the gassy sand is studied by using a self-designed experimental device, and results show that influences on gas permeability from the variation of saturation degree is more significant than that of density. VGM and Parker models can be used to describe the water and gas permeability of the gassy sand satisfiedly. The apparent cohesion of gassy sand can be described with the power exponent function and its compressibility and rebound resilience decrease with the increasing of suction.
     Thirdly, on account of the common stress path in metro construction, strength properties of gassy sand under different stress paths and with different gas pressure levels are studied through lab stress path experiments, and a method to forecast the strength of gassy sand after being released of gas is proposed. Results show that the stress-strain relationships of gassy sand are distinct under the different stress paths, which dramatically affects its features of strength. The shear strength of gassy sand under different stress paths can be described by a unified formula. The strength of gassy sand will be enhanced, and a method is proposed to forecast it after the release of gas in it. It tends to be unsafe if the strength indexes of saturated sand are adopted and it should be considered to be reduced in practical engineering.
     Fourthly, gas release is one of the most common unloading paths of gassy sand in subway engineering construction. Deformation behaviors of gassy sand under the path of release of gas are studied through the lab tests. Results show that the higher the original reservoir pressure is, the larger the soil deformation caused by gas release is. The way to release of gas under controlling can effectively reduce the deformation of gassy layers. The wetting and drying history of gassy sand has a significant influence on its deformation behaviors. Deformations of gassy sand in the re-wetting process are less than those in drying process. With the increasing of net stress, influences on deformation of gassy sand due to the variation of suction weaken gradually, and the structure of sand gradually becomes more stable. In the path of gas release, both the matric suction and the net stress affect deformation behaviors of gassy sand. But in the original gas reservoirs, the deformation of gassy sand caused by the variation of suction or saturation degree is very small, and the dominating deformation arises from the increasing of net stress because of the decreasing of gas pressure. Re-accumulating of the gas only leads to a small swelling deformation, and has little influence on the deformation of gassy sand in practical engineering.
     Fifthly, a stress and strain constitutive model describing the solid-phase macro deformation behavior of gassy sand in the path of gas release under controlling is established based on the lab experiments and parameters of the model can be determined through the experiments. A relative permeability curve between the water and gas under different saturation degrees are given, by which a two-phase flow model describing the migration law of water and gas in gassy sand is established. Coupling with the constitutive model, behaviors of deformation influenced by the effects coupling with the three phases such as solid, liquid and gas can be calculated with the numerical analysis for gassy sand in the path of gas release.
     Sixthly, in order to investigate influences on subway tunnels in the path of gas release, two working conditions which are that the tunnel passes through the gas reservoir bed and that the tunnel passes through the cap bed are carried out respectively with the self-designed experimental device system for model tests. Results show that gas release in gassy sand will cause the additive deformation of tunnel and additive stress of the shield segment, and make important impacts on the global displacement of tunnel but little influences on the stress of shield segments and the relative displacement of tunnel. It is inclined to arouse the differential settlement and cracks on the tunnel so as to cause hazardousness. Re-accumulating of the gas can also produce additional stress and the additive resilience, but it can be ignored in practical engineering because the influence degree is small. The shallow gas in reservoirs is appropriate to be discharged before construction of the subway tunnel.
     Finally, the disaster mode of the gassy ground at different stages of the subway engineering is analyzed, and some counter measures during construction and operation period of the metro project are proposed. According to the analysis, the gassy ground has different disaster mechanisms and manifestations at the different stage of construction, and the corresponding measures for prevention should be taken with distinguishing different periods such as exploration, design, construction preparation, construction and metro operation. Only thus can it ensure the safety of metro engineering and operation smoothly.
引文
[1]唐益群,叶为民,张庆贺.长江口软土层中沼气与隧道安全施工技术研究[J].同济大学学报,1996,24(4):465-470.
    [2]唐益群,叶为民.上海地铁盾构施工隧道中几个问题研究[J].地下空间,1993,13(2):94-99.
    [3]唐益群,叶为民.上海地铁盾构施工隧道中几个问题研究(二)[J].地下空间,1993,13(3):171-177.
    [4]谢成玉.安徽省沿江软土浅层天然气及其对水工建筑物的影响[J].水利水电快报,2000,21(5):11-16.
    [5]孔令伟等.浅层天然气对杭州湾大桥桩基性能的影响与防治对策研究报告[R].中国科学院武汉岩土力学研究所,2002.12.
    [6]Sobkowikz J.C.The mechanics of gassy sediments.[D Ph.D.dissertation].University of Alberta.1982.
    [7]Wheeler S.J.A conceptual model for soils containing large gas bubbles[J].Geotechnique,1988(38):389-397.
    [8]Grozic J.L.H.The behavior of loose gassy sand and its susceptibility to liquefaction[D Ph.D.dissertation].University of Alberta,1999.
    [9]Sill G.C.,Wheeler S.J.The significance of gas for offshore operations.[J].Geotechnique,1992,51(7):629-639.
    [10]Rad N.S.,Vianna A.J.D.,Berre T.Gas in soils.Ⅱ:Effect of gas on undrained static and cyclic strength of sand.[J].Journal of geotechnical engineering,ASCE,1994,120(4):716-737.
    [11]Whelan S.J.,Coleman J.M.,Suhayda J.N.,Roberts N.H.Acoustical penetration and shength in gas charged sediments.[J].Marine Geotechnology,1977(2):147-159.
    [12]Wheeler S.J.An alternative framework for unsaturated soil behavior.[J].Geotechnique,1991(41):257-261.
    [13]Chillarige A.V.Liquefaction and seadbed instability in the Fraser River delta[D Ph.D.dissertation].University of Alberta.1995.
    [14]Christian H.A.,Cranston R.E.A methodology for deteching free gas in marine sediments.[J].Canadian Geotechnical Journal,1996,34(2):293-304.
    [15]Brandes H.G.Predicted and measured geotechnical properties of gas-charged sediments[R].Report,University of Hawaii,1998.
    [16]Wheeler S.J.The undrained shear strength of soils containing large gas bubbles[J].Geotechnique,1998(38):399-413.
    [17]Sills G.C.Drained triaxial testing of gassy soils[R].Final report on SERC grant No.GR/D/67064,1991.
    [18]Gardner T.N.An acoustic study of soils that model seabed sediments containing gas bubbles[J].Journal of Acoustic Society of America,1999,107(1):163-176.
    [19]Sills G.C.,Gonzalez R.Consolidation of naturally gassy soft soil.[J].Geotechnique,2001,51(7):629-639.
    [20]Harris M.C.,Sobkowicz J.C.Engineering behaviour of oil sand.In the oil sands of Canada -Venezuela.Special Vol.17.[M].Edited by D.A.Redford and A.G.Winestock.Canadian Institute of Mining,1977.
    [21]Duessault M.B.Undrained volume and stress change behaviour of unsaturated very dense sands[J].Canadian Geotechnical Journal,1979,16(4):627-640.
    [22]Byrne P.M.,Ganzen W.F.,Mittal H.K.Finite element analysis of excavation in oil sands[A].The 33rd Annual Technical Meeting[C],1982,93-98.
    [23]Rowe R.K.,Lo.K.Y.,Than.L.G.The analysis of tunnels and shafts in dense sand[A].Proceedings of the Fourth International Conference on Numerical Methods in Geomechanics[C],1982,587-596.
    [24]Mathiroban S.The undrained response of loose gassy sand.[D Master dissertation].University of Calgary,2004.
    [25]Grozic J.L.H.,Robertson P.K.,Morgestern N.R.The behavior of loose gassy sand.[J].Canadian Geotechnical Journal,1999(36):482-492.
    [26]Grozic J.L.H.,Robertson P.K.,Morgenstern N.R.Cyclic liquefaction of loose gassy sand[J].Canadian Geotechnical Journal,2000,37(4):843-856.
    [27]Grozic J.L.H.,Nadim F.,Kvalstad T.J.On the undrained shear strength of gassy clays[J].Computers and Geotechnics,2005,32(7):483-490.
    [28]Hardy R.M.,Hemstock R.A.Shearing strength characteristics of Athabassca oil sands[A].K.A.Clark Volume,Research Counicil of Alberta,Information Series No.45,pp.109[C].1963.
    [29]Fourie A.B.,Hoffman B.A.,Lord E.R.F.,Robertson P.K.Partially saturated tailings sand and below the phreatic surface[J].Geotechnique,2001,51(7):577-585.
    [30]D'appolonia.ENEL Ⅵ and Ⅷ Nuclear Power Plant,Alto Lazio,Italy.[R].Report on Site Performance,July 1978 through December 1980.Unpublished Report:1981,Project,77-500.
    [31]Ditrich J.P.Slope behaviour during excavations of the Sarnia approach to the St.Clair tunnel.[D 博士学位论文].University of Weatern Ontario.2000
    [32]唐益群,吕少伟,叶为民,黄雨.浅气层高孔压非饱和土固结规律研究[J].土木工程学报,2001,34(6):100-104.
    [33]Yi-Qun Tang,Wei-Min Ye,Yu Huang.Marsh gas in shallow soils and safety measures for tunnel construction[J].Engineering Geology,2003(67):373-378.
    [34]孔令伟,郭爱国,陈守义,黄燕庆.浅层天然气井喷对地层的损伤影响与桩基工程危害分析[J].防灾减灾工程学报,2004,24(4):375-381.
    [35]钟方杰.浅层储气砂土的气藏压力状态与应力路径力学效应研究[D 硕士学位论文].中科院武汉岩土力学研究所.2007.
    [36]沈珠江.非饱和土力学的回顾与展望[J].水利水电科技进展,1996,16(1):1-20.
    [37]Bishop A.W.et al.Fractors controlling the strength of partly saturated cohesive soils[A].Research Conf.of Shear of Cohesive Soils[C],1960.
    [38]弗雷德隆德,拉哈尔佐等,陈仲颐等译.非饱和土力学[M].北京:中国建筑工业出版社,1997.
    [39]Alonoso E.E.等.非饱和土弹塑性应力应变特性模拟[J].岩土工程学报,1995,17(6):42-51.
    [40]杨代泉.非饱和土广义固结理论及其数值模拟与试验研究[D 博士学位论文].南京水利科学研究院.1990.
    [41]陈正汉.非饱和土固结的混合物理论-数学模拟、试验研究、边值问题[D 博士学位论文],陕西机械学院,1991.
    [42]卢肇钧等.非饱和上的抗剪强度与膨胀压力[J].岩土工程学报,1992(3):1-8.
    [43]徐永福等.非饱和膨胀土强度的分形特征.[J].工程力学,1996(2):14-18.
    [44]沈珠江.广义吸力和非饱和土的统一变形理论[J].岩土工程学报,1996,18(2):1-9.
    [45]缪林昌等.膨胀土的强度与含水率的关系[J].岩土力学,1999,20(2):71-75.
    [46]Orencio,Monjie Vilar.A simplified procedure to estimate the shear strength envelope of unsaturated soils[J].Canadian Geotechnical Journal,2006(43):1088-1095.
    [47]杨和平,张锐.非饱和膨胀土总应力强度的确定方法及其应用[J].长沙理工大学学报(自然科学版),2004,1(2):1-6.
    [48]韩华强,陈生水.膨胀土的强度和变形特性研究[J].岩土工程学报,2004,26(3):422-424.
    [49]缪林昌,刘松玉.南阳膨胀土的水分特征和强度特性研究[J].水利学报,2002(7):87-92.
    [50]李雄威.膨胀土湿热耦合性状与路堑边坡防护机理研究[D 博士学位论文].中科院武汉岩土力学研究所.2008.
    [51]Terzaghi K.Theoretical soil mechanics.[M].New York:Wiley and Sons Ltd.,Co,1943.
    [52]Coleman J.D.Stress strain relation for partly saturated soils[J].Geotechnique,1962,12(4):348-350.
    [53]Matyas E.L.,Radhaknstuia H S.Volume change characteristics of partially saturated soils[J].Geotechnique,1968,18(4):432-448.
    [54]Fredlund D.G,Morgenstern N.R.Stress state variables for unsaturated soils[J].Journal of the Geotechnical Engineering Division,ASCE,1977,103(GT5):447-466.
    [55]Fredlund D.G.,Rahadjo E.E.Soil mechanics for unsaturated soils[M].New York:John Wiley and Sons,1993.
    [56]Lloret A.,Alonso E.E.State surace for partially saturated soils[A].Proceedings of the 11st International Conference on Soil[C].Mechanics and Foundation Engineering,San Francisco,1985(2):557-562.
    [57]Alonso E.E.,Gens A.,Josa A.Constitutive model for partially saturated soils[J].Geotechnique,1990,40(3):405-430.
    [58]Josa A.,Balmaceda A.,Gens A.,Alonso E.E.An elasto-plastic model for partially saturated soils exhibiting a maximum of collapse[A].Proc.3rd Int.Conf.Computational Plasticity[C],1992,815-826.
    [59]Pandian N.S.,Nagaraj T.S.,Siva Kumar Babu G.L.Genneralised state parameter for partly saturated soils[J].Journal of Geotechnical Engeering,ASCE,1992,118(4):622-627.
    [60]Georgiadis K.,Potts D.M.,Zdravkovic L.The infuence of parital soil saturation on pile behaviour[J].Geotechnique,2003,53(1):11-25.
    [61]Chiu C.F.,Ng C.W.W.A state-dependent elasto-plastic model for saturated and unsaturated soils[J].Geotechnique,2003,53(9):809-829.
    [62]黄海,陈正汉,李刚.非饱和土在p-s平面上的屈服轨迹及土-水特征曲线的探讨[J].岩土力学,2000,21(4):316-321.
    [63]陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特性[J].岩土工程学报,1999,21(1):82-90.
    [64]殷宗泽,周建,赵仲辉等.非饱和土本构关系及变形计算[A].第二届全国非饱和土学术研讨会论文集[C],2005,33-46.
    [65]沈珠江.非饱和土固结理论实用化之路探索[A].第二届全国非饱和土学术研讨会论文集[C],2005.137-143.
    [66]李广信.土的清华弹塑性模型及其发展[J].岩土工程学报,2006,28(1):1-10.
    [67]詹良通.包承纲 非饱和土性状及其与工程问题的联系[C].第二届全国非饱和土学术研讨会论文集,2005,47-76.
    [68]Scott R.F.Principles of soil mechanics[M].Addison-Wesly Pub Company,Inc.,1963.
    [69]Barden L.Consolidation of compacted and unsaturated clays[J].Geotechnique,1965,15(3):257-286.
    [70]Fredlund D.G.,Hasan J.U.One dimensional consolidation theory,Unsaturated soils[J].Canadian Geotechnical Journal,1979,16(3):521-531.
    [71]Dakshansmurthy V.,Frendlund D.G.,Rahardjo H.Coupled three-dimensional consolidation theory of unsaturated porous media[A].Preprint of papers:5th Int.Conf.Expansive soil[C],1984,99-104.
    [72]沈珠江.Advances in numerical modeling of deformation behavior of unsaturated soils[A].2th Int.Conf.Unsatuated Soils[C],1998,Beijing,Ⅱ:180-193.
    [73]陈正汉.非饱和土固结理论[A].岩土力学新分析方法研讨会[C],同济大学,1989.
    [74]杨代泉,沈珠江.非饱和土孔隙压力系数研究[J].水利水运工程研究,1992(9):265-274.
    [75]Shen Z.J.Reduced sunction and simplified consolidation theory for expansive soils[A].In:Int.Conf.Unsaturated Soils[C].Paris,Ⅱ:1533-1540:1995.
    [76]卢廷浩.非饱和土三维固结问题探讨[J].成都科技大学学报,1996(89):21-28.
    [77]殷宗泽,凌华.非饱和土一维固结简化计算[J].岩土工程学报,2007,29(5):633-637.
    [78]凌华,殷宗泽.非饱和土二、三维固结方程简化计算方法[J].水利水电科技进展,2007,27(2):18-21.
    [79]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [80]詹良通.包承纲.非饱和土性状及其与工程问题的联系[A].第二届全国非饱和土学术研讨会以论文集[C].杭州,2005.
    [81]Richard L.A.Capilary conduction of liquids through prorous medium[J].Physics,1931(1):318-333.
    [82]E.C.Childs,N.Collis-George.The permeability of porous materials[A].Proceedings of the Royal Society of London.Series A[C],Mathemaical and Physical Sciences,1995,392-405.
    [83]Childs D.,Collis-George.The permeability of porous materials[C].Proceedings of Royal Society of London,1950,series A,201:392-405.
    [84]Gardner.Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J].Soil Science,1958,85(4):228-232.
    [85]Brooks R.J.,A.T.Corey.Hydraulic properties of porous media[A].Hydrology paper 3[C].Fort Collins,1964.
    [86]Van Genuchten.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America,1980(44):892-898.
    [87]Fredlund D.G.,Anqing Xing,Shanyan Huang.Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J].Canadian Geotechnical Journal,1994(31):533-546.
    [88]Weir G.J.,Kissing W.M.The influence of airflow on the vertical infiltration of water into soil[J].Water Resource Research,1992(28):2765-2772.
    [89](澳)A.E.薛定谔著,王鸿勋,张朝琛译.多孔介质中的渗流物理[M].北京:石油工业出版社,1982.
    [90]Lewis R.W.,Schrefler,B.A.The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media[M].New York,USA,John Wiley and Sons.,1998.
    [91]Li.X.K.Finite element analysis for immiscible two-phase fluid flow in deforming porous media and an unconditionally stable staggered solution[J].Communications in Applied Numerical Methods,1990,6(2):125-135.
    [92]Li X.K.,Zienkiewicz O.C.Multiphase flow in deforming porous media and finite element solutions[J].Comput.Struct.,1992,45(2):211-227.
    [93]Schrefler X.,Zhan B.A.A fully coupled model for water flow and airflow in deformable porous media.[J].Water Resources Res.,1993(29):155-167.
    [94]Li X.K.,Thomas H.R.,Yiqun Fan.Finite element method and constitutive modelling and computation for unsaturated soils[J].Computer Methods in Applied mechanics and engineering,1999(169):135-159.
    [95]Sun Y.,Sakajo S.,Nishimura M.Application research on a numerical model of two-phase flow in deformation porous medium.[A].Int.Conf.Computer Methods and Advances in Geomechanics.[C]1997,Ⅱ,1171-1176.
    [96]Sun Y.,Nishigaki M.,Kohno I.A study on stability analysis of shallow layer slope due to raining permeation.[A].Proceedings of the 1st Int.Conf.on unsaturated soils]C],1995,1135-1141.
    [97]Gawin P.,Baggio D.,Schrefler B.A.Coupled heat,water and gas flow in deformable porous media [J].Int.J.Num.Meth.Fluids,1995(20):969-987.
    [98]Thomas Y.,He H.R.,Modeling the behavior of unsaturated soil using an elasto-plastic constitutive model.[J].Geotechnique.,1998,48(5):589-603.
    [99]沈珠江,米占宽.膨胀土渠道边坡降雨入渗和变形耦合分析[J].水利水运工程学报,2004,9(3):7-11.
    [100]Wei C.F.,Muraleetharan K.K.A continuum theory of porous mdia saturated by multiple immiscible fluids:Ⅱ.Lagrangian description and variational structure.[J].Journal of Engineering Science,2002(40):1835-1854.
    [101]武文华,李锡夔.热-水力-力学-传质耦合过程模型及工程土障数值模拟[J].岩土工程学报,2003,25(2):188-192.
    [102]刘泽佳,李锡夔.非饱和土化学-水力-力学耦合行为数值模拟[J].岩土力学,2008,29(11):2977-2982.
    [103]徐炎兵.非饱和土两相流模型及其应用研究[D 博士学位论文].中科院武汉岩土力学研究所.2008.
    [104]林春明,李广月,卓弘春等.杭洲湾地区晚第四纪下切河谷充填物沉积与浅层生物气勘探[J].古地理学报,2005,7(1):12-24.
    [105]勇振明,金柏范,王旭东等.杭州湾地区第四系超浅层气的开发及营销[J].天然气工业,1997,17(3):36-38.
    [106]陈少平,孙家振,沈传波.杭州湾入海口处浅层气成因与类型[J].重庆石油高等专科学校学报,2003(5):30-31.
    [107]张亚士.鄂尔多斯气源其及勘探方向[J].天然气工业,1994,14(3):1-4
    [108]陈少平,孙家振,沈传波.杭州湾地区浅层气成藏条件分析[J].华东地质学院学报,2003,26(4):352-356.
    [109]严经芳,孙国中,茹桂荣等.浙江沿海平原第四系浅层天然气成藏条件及勘探前景[J].1998,18(3):16-19.
    [110]黄燕庆,朱瑶宏,曾洪贤,孔令伟.杭州湾大桥南岸工程地质特征与浅层气分布[J].岩土力学(增),2002(23):215-219.
    [111]浙江省地矿勘察院.杭州地铁1号线过江隧道地下有害气体特性研究报告[R].2008.
    [112]浙江省地矿勘察院.杭州地铁1号线滨康路站地下有害气体特性研究报告[R].2007.
    [113]林春明,蒋维三,李从先.杭州湾地区全新世典型生物气藏特征分析[J].石油学报,1997,18(3):44-50.
    [114]张英,李剑,胡朝元.中国生物气-低熟气藏形成条件与潜力分析[J].石油勘探与开发,2005,32(4):37-41.
    [115]陈英,戴金星,戚厚发.关于生物气研究中几个理论及方法问题的研究[J].石油试验地质,1994,16(3):190-219.
    [116]关德师.控制生物气富集成藏的基本地质因素[J].天然气工业,1997,17(5):8-12.
    [117]浙江华东建设工程有限公司.杭州地铁1号线滨江站~富春路站区间岩土工程勘察报告[R].2007.
    [118]林春明,李从先,蒋维三.钱塘江口地区全新世沉积环境与生物气分布[J].天然气工业,1997,17(1):11-15.
    [119]林春明,李从先.钱塘江口地区冰后期沉积特征与生物气聚集[J].石油与天然气工业,1997,18(4):335-342.
    [120]陈荣书著.石油与天然气地质学[M].武汉:中国地质大学出版社,1994.
    [121]任光明.我国浅层生物气气藏的压力特征及成因探讨[J].石油勘探与开发,1999,26(3):18-21.
    [122]Tissot B.P.,Welte D.H.Petroleum formation and occurrence[M].Springer Verlag,1978.
    [123]李明宅,张洪年.生物气成藏规律研究[J].天然气工业,1997,17(2):6-10.
    [124]Mualem Y.A new model for predicting the hydraulic conductivity of unsaturated porous media[J].Water Resource Reseach,1976,12(3):513-522.
    [125]Vanapalli,Fredlund,Clifton.Model for predicition of shear with respect to matric suction[J].Canadian Geotechnical Journal,1996(33):379-392.
    [126]Leong E.C.,Rahardjo H.Review of soil-water characteristic curve equations[J].Journal of geotechnical and geoenvironmental engeering,1997,1106-1117.
    [127]Campbell G.S.A simple method for determining unsaturated conductivity from moisture retention data[J].Soil Science,1974(117):311-314.
    [128]Williams,Prebble,Hignett.The influence of texture and clay mineralogy on the soil moisture characteristics[J].Australian J.of Soil Res,1983(21):15-32.
    [129]Mckee,Bumb.The importance of unsaturated flow parameters in designing a monitoring system for hazardous wastes and environmental emergencies[A].Proc.Haz.Mat.Control Reseach.lnst.Nat.Conf[C].1984,50-58.
    [130]Fredlund D.G.,Xing.A.Equation for soil-water characteristic curve[J].Canadian Geotechnical Journal,1994(31):533-546.
    [131]包承纲.非饱和土的特性及其抗剪强度问题[A].中国土木工程学会第八届土力学及岩土工程学术会议文集[C].1999,
    [132]董平.徐永福.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):400-405.
    [133]戚国庆,黄润秋.土水特征曲线的通用数学模型研究[J].工程地质学报,2004,12(2):182-186.
    [134]刘翠然,李红帅,贺鹏程.非饱和的土-水特征曲线的试验研究与应用[J].云南水力发电,2004,21(1):11-15.
    [135]Fredlund D.G.,Morgenstern.The shear strength of unsaturated soils[J].Canadian Geotechnical Journal,1978,15(3):313-321.
    [136]Khalili N.,Khabbaz M.H.A unique relationship for the determination of the shear strength of unsaturated soils[J].Geotechnique,1999,48(5):681-687.
    [137]Vanapalli S.K.,Fredlund D.G.,Pufahl D.E.et al.Model for the prediction of shear strength with respect to soil sunction[J].Candian Geotechnique of Journal,1993(33):379-392.
    [138]包承纲,龚壁卫,詹良通.非饱和土的特性和膨胀土边坡的稳定问题(主题报告)[A].第二届国际非饱和土学术会议论文集[C].武汉:1998,1-31.
    [139]Mualem.Hydraulic conductivity of unsaturated soils:Prediction and formulas.[J].American Society of Agronomy.Wisc.USA.,1986.
    [140]Marshall.A relation between permeability and size distribution of pore[J].Journal of Soil Science,1958(9):1-8.
    [141]陈正汉,谢定义,王永胜.非饱和土的水气运动规律及其工程性质研究[J].岩土工程学报,1993,15(3):9-20.
    [142]王永胜,谢定义,郭庆国.非饱和土中气体的运动特性与渗气系数的测定[J].西北水电,1993(1):48-51.
    [143]Ning Lu,William J.Likos.Unsaturated soil mechanics[M].America:John Wiley & Sons,INC,2004.
    [144]冯光乐.油气渗流力学基础[M].北京:科学出版社,2007.
    [145]高永宝.微机控制非饱和土水-气运动联测仪的研制及浸水试验研究[D 硕士学位论文].西安理工大学,2006.
    [146]Parker J.C.,Lenhard J.C.,Kuppusamy T.A parametric model for constitutive properties governing multiphase flow in porous media[J].Water Resource Reseach,1987,23(4):618-624.
    [147]Ba-Te.Flow of air-phase in soils and its application in emergent stabilization of soil slopes[D Master dissertation].Hong Kong University of Science and Technology.2004.
    [148]Samingan A.S.,Leong E.C.,Rahardjo H.A flexible wall permeameter for measurements of water and sir coefficient of permeability of residual soils[J].Canadian Geotechnical Journal,2003(40):559-574.
    [149]Moldrup.P,Yoshihawa S.,Olesen T.,Komatsu T.,Rolston D.E.Gas diffusivity in undisturbed volcanic ash soils:Test of soil-water characteristic based prediction models[J].Soil Science society of America Journal,2003(67):41-51.
    [150]Escario V.,Juca.Shear strength and deformation of partly saturated soils.[A].Proceedings of the 12th International Coference on Soil Mechnics & Foundation Engineering[C],1989,2:43-46.
    [151]Gan J.K.M.,Fredlund D.G.Multiistage direct shear testing of unsaturated soils[J].American Society for Testing Materials,Geotechnical Testing Journal,1988,11(2):132-138.
    [152]Kong L.W.,Guo A.G,Chen J.B.,Liu G.S.On strength property of gassy fine sand and model tests of pilefoundation[A].Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering[C].Osaka,Japan,2005,2009-2012.
    [153]陈伟,孔令伟,郭爱国,陈建斌.吸力对弱膨胀土强度贡献的试验研究与预测分析[J].岩土力学,2008,29(7):1783-1787.
    [154]Vanapalli S.K.,Fredlund D.G.Comparison of empirical procedures to predict the shear strength of unsaturated soils using the soil-water characteristic curve[C].Advances in Unsaturated Geotechnics,2000,GSP No.99,ASCE,pp.195-209.
    [155]#12
    [156]Delage P.,Graham J.Mechanical behaviour of unsaturated soils:Understanding the behaviour of unsaturated soils requires reliable conceptual models[A].Proceedings of the rirst international conference on unsaturated soils[C],1995,1223-1256.
    [157]汪东林.非饱和土体变试验研究及其在地面沉降中的应用[D 博士学位论文].大连理工大学.2007.
    [158]Escario V.,Seaz J.Measurement of the properties of sweeling and collapsing soils under controlled sunction[C].The 3rd International Conference Expansive Soils,195-200.
    [159]Alonso E.E.,Gens A.,Hight D.W.Special problems of soils[A].General Report.Proceeding.9th Europe Conference.Soil Mechanics and Foundation Engineering[C].Dublin,Ireland,:1987,1087-1146.
    [160]Wheeler S.J.,Sivahumar V.An elasto-plastic cristical state framework for unsaturated soil[J].Geotechnique,1995,45(1):35-53.
    [161]Alonso E.E.,Gens A.,Josa A.,et al.非饱和土弹塑性应力应变特性模拟[J].岩土工程学报,1995,17(16):42-51.
    [162]陈正汉,周海清,Fredlund D.G非饱和土的非线性模型及其应用[J].岩土工程学报,1999,21(5):603-608.
    [163]李广信主编.高等土力学[M].北京:清华大学出版社,2004.
    [164]Mitchell J.K.,Hooper D.R.,Campanella R.G.Permeabilty of compacted clay.[J].Soil Mechanics and Foundations Division,1965,ASCE.91:Sm4,1965:41-65.
    [165]Lloret A.,Alonoso E.E.Consolidation of unsaturated soil including swelling and collapse behavior[J].Geotechnique,1980,30(4):449-477.
    [166]Huang S.Y.Evaluation and laboratory measurement of the coefficient of permeability in deformable unsaturated soils.[D Ph.D.dissertation].Univ.of Saskatchewan,1994.
    [167]孙雄,罗元华.不同应力状态下地层渗透系数的变化及其对流体运移影响的数值模拟研究[J]. 地球学报,1998,19(2):144-149.
    [168]李钟.土工模型试验研究状况概述[J].军工勘察,1994(4):41-43.
    [169]陈陆望.物理模型试验技术研究及其在岩土工程中的应用[D 博士学位论文].中国科学院武汉岩土力学研究所.2006.
    [170]左启东等编著.物理试验的理论和方法[M].北京:水利电力出版社,1984.
    [171]李永盛,夏才初.地下工程测试理论与监测技术[M].上海:同济大学出版社,1999.
    [172]邱绪光.实用相似理论[M].北京:北京航空航天大学出版社,1988.
    [173]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.
    [174]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.
    [175]刘冰冰.含高压沼气砂质粉土的工程性质研究[D 硕士学位论文].同济大学.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700