用户名: 密码: 验证码:
金属支撑固体氧化物燃料电池阻抗谱建模与诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在车辆和舰艇等移动应用领域,金属支撑固体氧化物燃料电池SOFC具有很高的应用潜力。然而,为实现大规模商业化应用,金属支撑SOFC技术在高成本和低可靠性上必须取得实质性突破。在面对上述挑战的持续努力中,电池性能优化测试和失败模式诊断发挥着重要作用。在燃料电池诊断工具中,交流阻抗谱,也称为电化学阻抗谱,被广泛用来作为电池性能评价和退化诊断分析。本文主要采用交流阻抗谱及其模型诊断方法,并结合电压-电流-功率密度极化曲线、扫描电子显微镜技术、能量分散X射线技术、X射线衍射技术以及热循环分析方法,研究金属支撑SOFC极化特性,诊断电池退化机理,以及评价电池动态特性。
     由脉冲激光沉积和悬浮等离子喷涂工艺制作的试验样品SS430/NiO-SDC/ScSz/SDC/SSCo-SDC和Hastelloy X/NiO-SDC/SDC/SSCo-SDC是本文研究对象,讨论主要集中在电池结构、关键材料、制造流程以及在本工作中所采用的表征方法。本文也对燃料电池的交流阻抗谱诊断的本质进行了讨论,并首次从模式识别和系统诊断的视角给出阻抗谱诊断的理论架构,该架构主要由六个状态和五个动作构成。另外,本文还系统全面地比较分析了不同阻抗谱模型在SOFC领域中诊断特点。
     基于SOFC交流阻抗谱等价电路模型,本文深入研究了两金属支撑SOFC单体电池的极化特性。在400~600℃温度范围,从电化学角度比较和分析SDC单电解质层和双电解质层SSCo/SDC结构金属支撑SOFC,它们分别为脉冲激光沉积和悬浮等离子喷涂工艺制作,在比较和分析时,重点关注阴极交换电流密度、极化损失以及最大功率密度。试验和仿真结果说明,运行温度和制造工艺在金属支撑SOFC线性极化特性中扮演重要角色。因此,为了降低电池极化损失,必须优化沉积工艺对界面形貌的影响。
     为了诊断Hastelloy X/NiO-SDC/SDC/SSCo-SDC金属支撑SOFC退化机理,本文提出一个混合电子离子导体等价电路模型。在金属支撑SOFC领域,本文提出的等价电路模型首次将退化诊断分析所必须的参数有效关联,而且,该模型具有良好的数学可解析性。该等价电路模型的诊断结果表明,在450~600℃温度范围,高接触电阻是阻碍金属支撑SOFC性能的关键因素。试验观测到的金属支撑体/阳极界面氧化物薄膜以及电解质/阴极界面弱的结合力可能对高的接触电阻负责,此观测结果也验证了本文提出等价电路模型的有效性。另外,借助提出的等价电路模型,定量评价了金属支撑SOFC内部电子传导。
     同时,为了评价金属支撑SOFC动态性能,本文进行了热循环测试实验。在15次热循环测试期间,电池开路电压维持相对恒定,然而,交流阻抗谱结果显示,电池性能退化相当明显。相对恒定的开路电压显示,电解质层经受住了热冲击,此受益于金属支撑体良好的导热性和延展性。实验观测到的电池性能退化现象很可能归咎于电解质材料与阴极材料热膨胀系数不匹配以及金属支撑体的氧化,此结论同由等价电路模型推导出的电池退化机理相吻合,也再次验证了本文提出等价电路模型诊断结果的有效性。
     综上所述,本文为SOFC阻抗谱诊断提供了完整的理论架构和切实可行的诊断方法,而且,本文的诊断结果,可为金属支撑SOFC性能优化和稳定性改进提供先决条件和理论基础,从而加速金属支撑SOFC商业化进程。
Metal-supported solid oxide fuel cells (SOFCs) are recognized to have a high potential for use in mobile application, such as vehicle and naval vessel. However, in order to make a breakthrough in metal-supported SOFC technologies, two major challenges, high cost and low reliability, have to be overcome in the path towards commercialization. In the continuing effort to address these challenges, fuel cell testing for performance optimization and failure mode diagnosis is the necessary step. Among the major fuel cell diagnostic tools, AC impedance, also called electrochmical impedance spectroscopy (EIS), has been widely used for performance evaluation and degradation diagnosis. At present work, AC impedance and its model-based diagnosis method, combined with current-voltage-power curve, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), X-ray Diffractometer (XRD), and fast thermal cycle techniques, was applied to investigate polarization characteristics, to diagonize the degradation mechanism, and to evaluate the dynamic properties of metal-supported SOFCs with SDC as electrolyte. These research contents are summarized as follows:
     The studying objects SS430/ NiO-SDC/ScSz/SDC/SSCo-SDC and Hastelloy X/NiO-SDC/SDC/SSCo-SDC, fabricated by pluse laser deposition and suspension plasm spray respectively, were detailedly stated firstly. The discussions concentrate on cell structure, key materials, fabrication procedures, and characterization methods adopted at present work. The nature of AC impedance diagnosis was addressed as well. In fuel cell field, the complete theoretical framework for AC impedance diagnosis was firstly presented from the viewpoint of pattern recognition and system diagnosis, and the framework mainly consists of six states and five actions. In addition, SOFC impedance models were analyzed and compared completely and systematically in terms of the application properties.
     Based on AC impedance equivalent circuit model for SOFC, polarization characteristics of metal-supported SOFCs were investigated in deep. The two metal-supported SOFC cells with single-layer electrolyte of SDC and double-layer electrolyte of SDC-ScSz, fabricated by suspension plasma spray and pulse laser deposition respectively, were compared and analyzed from the viewpoint of electrochemistry, focusing on cathode exchange current density, polarization loss, and maximum power density over the temperature range of 400~600℃. Results from experiments and simulation indicate that fabrication processes and operation temperatures play an important role in the electrochemical mechanism for the linear polarization characteristics of metal-supported SOFCs. Consequently, it is necessary to optimize the deposition processes related to interfacial morphology in order to reduce the cell polarization loss.
     In order to diagnosize the degradation mechanism of the metal-supported SOFC, consisted of Hastelloy X/NiO-SDC/SDC/SSCo-SDC, an equivalent circuit model considering mixed ionic-electronic conducters was presented in present work. In metal-supported SOFC field, the presented equivalent circuit model firstly correlates the necessary parameters for the degradation diagnosis; moreover the model exhibits mathematical tractability. The diagnosis results based on the presented equivalent circuit model indicate that the high contact resistance is a prominent factor impeding the performance of metal-supported SOFCs at 450~600℃. The observed oxide scale at the interface between metallic substrate and anode, and, the weak bonding between the electrolyte and the cathode may be responsible for the high contact resistances. These observations also validate the presented equivalent circuit model. In addition, based on the improved equivalent circuit model, internal shorting current of metal-supported SOFCs due to electronic conduction was evaluated quantitatively.
     Furthermore, in order to evalue the dynamic properties of metal-supported SOFC aiming at mobile application, thermal cycle test was conducted as well. Throughout the thermal cycles, the open circuit voltage values retained relatively constant; however, impedance measurement indicated the cell performance deteriorated obviously. The relatively constant values of open circuit voltage suggest the electrolyte layer withstands thermal shock due to high thermal conductivity and excellent ductibility of the metal substrate. The observed degradation phenomina are most likely due to the thermal expansion coefficience mismatch and metal oxidation. These conclusions are consistent with the degradation mechanism discussed above by means of equivalent circuit model. This consistence also verifies the validation of the presented equivalent circuit model.
     To sum up, at present work the complete theoretical framework and feasiable diagnosis method were built for SOFC impedance diagnosis. Furthermore, the diagnosis results at present work offer precondition and theory foundation for performance optimization and reliability improvement of metal-supported SOFCs, which subsequently speeds up the commercialization process of metal-supported SOFCs.
引文
[1] 郑积源,跨世纪科技与社会可持续发展,北京:人民出版社,1998.
    [2] Damberger TA, Fuel cells for hospital, J. Power Sources, 1998, 71(1-2): 45-50.
    [3] Dufour AU, Fuel cells-a new contributor to stationary power, J. Power Sources, 1998, 71: 19-25.
    [4] 韩敏芳,彭苏萍著,固体氧化物燃料电池材料及制备,科学出版社,2004.
    [5] Larminie J, Dicks A, Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons, West Sussex, England, 2003.
    [6] Singhal SC, Kendal K, High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Applications, Elsevier Ltd., Oxford, England, 2003.
    [7] 韩敏芳,蒋先锋译,高温固体氧化物燃料电池-原理、设计和应用,科学出版社,2007.
    [8] 衣宝廉著,原料电池-原理 技术 应用,化学工业出版社,2003.
    [9] 衣宝廉,燃料电池现状与未来,电源技术,1998,22(5):2-6.
    [10] Edwards PP, Kuznetsov VL, David WIF et al., Hydrogen and fuel cells: towards a sustainable energy future, Energy Policy (2008), doi: 10.1016/j.enpol.2008.09.036.
    [11] Hui SQ, Evaluation of Yttrium-doped SrTiO3 as a solid oxide fuel cell anode, [PhD thesis], McMaster University, 2000.
    [12] 查全性,电极过程动力学(第三版),科学出版社,2002.
    [13] Gellings PJ, Bouwmeester HJM, The CRC handbook of solid state electrochemistry, CRC Press, Boca Raton, USA, 1997.
    [14] Westinghouse Electric Corporation. Solid oxide fuel cell power generation system. The status of the cell technology-A topical Report, Report No. DOEET/17089-15, U.S. Department of Energy, Washington, DC, 1998.
    [15] 汤根土,平板状阳极支撑固体氧化物燃料电池的实验与数值模拟,[博士论文],保存地点:浙江大学,2005.
    [16] Singhal SC, Advances in solid oxide fuel cell technology, Solid State Ionics, 2000, 135(1- 4): 305-313.
    [17] Haile SM, Fuel cell materials and components, Acta Mater. 2003, 51 (9) 5981-6000.
    [18] Skinner SJ, Recent advances in perovskite-type materials for SOFC cathodes, Fuel Cells Bullet, 2001, 4(33): 6-12.
    [19] Badwal SPS, Foger K, Solid oxide electrolyte fuel cell review, Ceram. Int., 1996, 22(3): 257-265.
    [20] Iwahara H, Esaka T, Uehidaand H et al., Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ioies, 1981,3-4: 359-363.
    [21] Steele BCH, Kinetic parameters influencing the performance of IT-SOFC composite electrodes, Solid State Ionics, 2000, 135(1-4): 445-450.
    [22] Jiang SP, Callus PJ, Badwal SPS, Fabrication and performance of Ni/3 mol% Y_2O_3-ZrO_2 cermet anodes for solid oxide fuel cells, Solid State Ionics, 2000, 132(1-2): 1-14.
    [23] Sun C, Stimming U, Recent anode advances in solid oxide fuel cells, J. Power Sources, 2007, 17: 247-260.
    [24] Zhu WZ, Deevi SC, Development of interconnect materials for solid oxide fuel cells, Mater. Sci. Eng., A, 2003, A348: 227-243.
    [25] Li J, Pu J, Xiao JZ et al. Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments, J. Power Sources, 2005, 139: 182-187.
    [26] 朱庆山,彭练,黄文来等,固体氧化物燃料电池密封材料的研究现状与发展趋势,无机材料学报,2006,21(2):285-290.
    [27] Stambouli AB, Traversa E, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews, 2002, 6: 433-455.
    [28] 李箭,固体氧化物燃料电池的现状与发展,中国科学基金,2004,3:145-149.
    [29] 李箭,固体氧化物燃料电池:发展现状与关键技术,功能材料与器件学报,2007,13(6):683-690.
    [30] Singhal SC, Solid oxide fuel cells for stationary, mobile, and military applications, Solid State Ionics, 2002, 152-153: 405-410.
    [31] Hart D, H(o|¨)rmandinger G, Environmental benefits of transport and stationary fuel cells, J. Power Sources, 1998, 71(1-2): 348-353.
    [32] 彭苏萍,韩敏芳,杨翠柏等,固体氧化物燃料电池,2004,33(2):90-94.
    [33] 毛宗强,黄建兵,王诚等,低温固体氧化物燃料电池研究进展,电源技术,2008,32(2):75-70
    [34] Yamamoto O, Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta, 2000, 45(15-16) 2423-2435.
    [35] Singh P, Minh NQ, Solid oxide fuel cells: technology status, International Journal of Applied Ceramic Technology, 2004, 1(1):5-15.
    [36] Minh NQ, Ceramic fuel cells, J. Am. Ceram. Soc. 1993, 76(3): 563-588.
    [37] Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 2004, 104(10): 4791-4843.
    [38] Linderoth S, Smith A, Worldwide SOFC overview from a Scandinavian and Europeaperspective, Advances in Solid Oxide Fuel Cells Ⅲ: Ceramic Engineering and Science Proceedings, 2007, 28 (4): 3-13.
    [39] Tucker MC, Lau GY, Jacobson CP et al, Performance of metal-supported SOFCs with infiltrated electrodes, J. Power Sources, 2007, 171: 477-482.
    [40] Steel BCH, Materials for IT-SOFC stacks - 35 years R&D: the inevitability of gradualness? Solid State Ionics, 2000, 134: 3-20.
    [41] Williams KR, Smith JG: Great Britain patent GB 1049428 (1966).
    [42] Schiller G, Henne R, Lang M, et al., Development of metallic substrate supported thinfilm SOFC by applying plasma spay techniques, Proe. SOFC Ⅵ, S.C. Singhal and M. Dokiya, ed., Electrochemical Society, Pennington, NJ, 1999, pp. 893-903.
    [43] Lee CB, Bae J, Fabrication and characterization of metal-supported solid oxide fuel cells, J. Power Sources, 2008, 176: 62-69.
    [44] Cho HJ, Choi GM, Fabrication and characterization of Ni-supported solid oxide fuel cell, Solid State Ion. (2009), doi:10.1016/j.ssi.2008.12.041.
    [45] Matusa YB, Jonghe De LC, Jacobsonb CP, et al., Metal-supported solid oxide fuel cell membranes for rapid thermal cycling, Solid State Ionics 2005, 176: 443-449.
    [46] Tucker MC, Lau GY, Jacobson CP et al., Stability and robustness of metal-supported SOFCs, J. Power Sources, 2008, 175:447-451.
    [47] Wang ZW, Berghaus JO, Yick S et al, Dynamic evaluation of low-temperature metalsupported solid oxide fuel cells oriented to auxiliary power units, J. Power Sources, 2008, 176: 90-95.
    [48] Antepara I, Vidlarreal I, Rodr(?) guez-Mart(?) nez LM et al., Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs, J. Power Sources 2005, 151: 103-107.
    [49] Yang ZG, Xia GG, Maupin GD et al., Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications, Surf. Coat. Technol., 2006, 201: 4476-4483.
    [50] Yang ZG, Xia GG, Walker MS et al., High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient, Int. J. Hydrogen Energy, 2007, 32: 3770- 3777.
    [51] Brandner M, Bram M, Froitzheim J et al., Electrically conductive diffusion barrier.layers for metal-supported SOFC, Solid State Ionics, 2008, 179: 1501-1504.
    [52] Molin S, Kusz B, Gazda M et al., Protective coatings for stainless steel for SOFC applications, J. Solid State Electmchem. (2008), DOI 10.1007/s10008-008-0635-y.
    [53] England DM, Virkar AV, Oxidation kinetics of some nickel-based superalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed: part Ⅱ, J. Electrochem. Soc. 2001, 148: A330-A338.
    [54] Huczkowski P, Christiansen N, Shemet V et al., Oxidation limited life times of chromia forming ferritic steel, Mater. Corros. 2004, 55: 825-830.
    [55] Brylewski T, Dabek J, Przybylski K, Oxidation kinetics study of the iron-based steel for solid oxide fuel cell application, J. Therm. Anal. Calorim. 2004, 77: 207-216.
    [56] Brandon NP, Corcoran D, Cummins D et al. Development of metal supported solid oxide fuel cells for operation at 500-600℃, J. Mater. Eng. Perform. 2004, 13: 253-256.
    [57] Hui R, Yang D, Wang ZW et al. Metal-supported solid oxide fuel cell operated at 400-600℃, J. Power Sources, 2007, 167: 336-339.
    [58] 曹楚南,张鉴清编著,电化学阻抗谱导论,科学出版社,2002.
    [59] 史美伦,交流阻抗谱原理及应用,国防工业出版社,2001.
    [60] Bard AJ, Faulkner LR, Electrochemical methods- fundamentals and applications, John Wiley & Sons. New York, 2001.
    [61] Huang QA, Zhang JJ, Hui R et al. A review of ac impedance modeling and validation in SOFC diagnosis, Electmchim. Acta, 2007, 52(28): 8144-8164.
    [62] Macdonald JR, Impedance Spectroscopy-Theory Experiment and Application, John Wiley & Sons, New York, 2005.
    [63] Gabrielli C, Identification of Electrochemical Processes by Frequency Response Analysis, Technical Report No004/83, Solartron, Famborough, Hampshire, England, 1998.
    [64] Gabrielli C, Use and Application of Electrochemical Impedance Techniques, Technical Report Number 24, Solartmn, Famborough, Hampshire, England, 1997.
    [65] Stoynov Z, Grafov B, Savova-Stoynova B, Elkin V, Electrochemical Impedance, Publishing House "Nauka", Moscow, Russia, 1991.
    [66] Stoynov Z, Vladikova D, Differential Impedance Analysis, Matin Dfinov Academic Publishing House, Sofia, Bulgaria, 2005.
    [67] Lasia A in B.E. Conway, Bockris J, White R (Eds.), Electrochemical Impedance Spectroscopy and its Application-Modern Aspects of Electrochemistry, Vol. 32, Kluwer Academic/Plenum Publishers, New York, 1999.
    [68] Yokokawa H, Sakai N, Horita T et al., Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes, J. Alloys Compd. 2008, 452: 41-47.
    [69] Butz B, Kntse P, St(o|¨)rmer P et al., Correlation between microstructure and degradation in conductivity for cubic Y_2O_3-doped ZrO_2, Solid State Ionics, 2006,177: 3275-3284.
    [70] Larrain D, Van herle J, Favrat D, Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk, J. Power Sources, 2006, 161: 392-403.
    [71] Hellman HL, Hoed R van den, Characterising fuel cell technology: Challenges of the commercialisation process, Int. J. Hydrogen Energy, 2007, 32:305-315.
    [72] Darowicki K, lepski P, Instantaneous electrochemical impedance spectroscopy of electrode reactions, Electmchim. Acta, 2004, 49(5): 763-772.
    [73] Wilson JR, Schwartz DT, Adler SB, Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials, Electrochim. Acta, 2006, 51:1389-1402.
    [74] Darowicki K, Corrsion rate measurement by nonlinear electrochemical impedance spectroscopy, Corros. Sci. 1995, 37: 913-925.
    [75] Darowicki K, The amplitude analysis of impedance spectra, Electrochim. Acta, 1995, 40(4):439-445.
    [76] Adler, SB, Reference electrode placement in thin solid electrolytes, J. Electrochem. Soc. 2002, 149 (5): E166-E172.
    [77] Rutman J, Riess I, Placement of reference electrode in solid state electrolyte cells, Solid State Ionics, 2008, 179 (21-26): 913-918.
    [78] Hsieh G., Ford SJ, Mason TO, et al. Experimental limitations in impedance spectroscopy: Part Ⅰ-simulation of reference electrode artifacts in three-point measurements, Solid State Ionics, 1996, 91:191-201.
    [79] Hsieh G, Mason TO, Pederson LR, Experimental limitations in impedance spectroscopy: Part Ⅱ-electrode artifacts in three-point measurements on Pt/YSZ Solid State Ionics, 1996, 91:203-212.
    [80] Hsieh G, Mason TO, Garboczi EJ et al. Experimental limitations in impedance spectroscopy: Part Ⅲ. Effect of reference electrode geometry/position, Solid State Iortics, 1997, 96: 153-172.
    [81] Hsieh G. Ford SJ, Mason TO et al. Experimental limitations in impedance spectroscopy: Part Ⅵ. Four-point measurements of solid materials systems, Solid State Ionics, 1997, 100:297-311.
    [82] Van Berkel FPF,. Van Heuneln FH, Huijamans JPP, Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and Ⅰ-Ⅴ characteristics, Solid State Ionics, 1994, 72: 240-247.
    [83] 胡寿松,自动控制原理(第四版),科学出版社,2001.
    [84] Macdonald JR, Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes, J. Electroanal. Chem. 1987, 223 (1-2) 25-50.
    [85] Macdonald JR, Linear relaxation: distributions, thermal activation, structure, and ambiguity, J. Appl. Phys. 1987, 62(11): R51.
    [86] Hurt RL, Macdonald JR, Distributed circuit elements in impedance spectroscopy: a unified treatment of conductive and dielectric systems, Solid State Ionics, 1986, 20 (2): 111-124.
    [87] Walter GW, Application of impedance measurements to study performance of painted metals in aggressive solutions, J. Electroanal. Chem. 1981, 118: 259-273.
    [88] Walter GW, A review of impedance plot methods used for corrosion performance analysis of painted metals, Corros. Sci. 1986, 26 (9): 681-703.
    [89] Gamry Instruments, Electrochemical Impedance Spectroscopy Theory: A Primer, http://www.gamry.com/App_Notes/EIS_Primer/EIS_Primer.htm, Warminster, United States of America, 1997-2005.
    [90] Dunyushkina Liliya A, Lu YX, Adlera SB, Microelectrode array for isolation of electrode polarization on planar solid electrolytes, J. Electrochem. Soc. 2005, 152:A1668-A1675.
    [91] Kuboyama H, Shoho T, Matsunaga M, Solid oxide fuel cell, Electrochemical Proceedings, 1997, 97: 404-410.
    [92] Kato T, Nozaki K, Negishi A et al. Impedance analysis of a disk-type SOFC using doped lanthanum gallate under power generation, J. Power Sources, 2004, 133: (2) 169-174.
    [93] Xia CR, Liu ML, Novel cathodes for low-temperature solid oxide fuel cells, Adv. Mater. 2002, 14 (7): 521-523.
    [94] Boukamp BA, Electrochemical impedance spectroscopy in solid state ionics: recent advances, Solid State Ionics, 2004, 169 (1-4): 65-73.
    [95] Van Hassel BA, Boukamp BA, Burggraaf AJ, Electrode polarization at the Au, O2(g)/yttria stabilized zirconia interface. Part Ⅰ: Theoretical considerations of reaction model, Solid State Ionics, 1991, 48 (1-2) 139-154.
    [96] Van Hassel BA, Boukamp BA, Burggraaf AJ, Electrode polarization at the Au, O2 (g) / yttria stabilized zirconia interface. Part Ⅱ: electrochemical measurements and analysisSolid State Ionics, 1991, 48 (1-2) 155-171.
    [97] Raikova G, Vladikova D, Stoynov Z, European Internet Centre for Impedance Spectroscopy, Impedance Contribution Online, 3(2005) P7-1-P7-11.
    [98] Jiang SP, Resistance measurement in solid oxide fuel cells, J. Electrochem. Soc. 2001, 148 (8): A887-A897.
    [99] 边肇祺,张学工,模式识别(第二版),清华大学出版社,2007.
    [100] 黄秋安,姜波,汪秉文,基于有限状态机的汉语数字语音端点检测,湖北大学学报,2004,26(1):35-38.
    [101] Boukamp BA, A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems, Solid State Ionics, 1986 20 (1): 31-44.
    [102] Macdonald JR, Potter LD, A flexible procedure for analyzing impedance spectroscopy results: description and illustrations, Solid State Ionics, 1987, 24(1):61-79.
    [103] Marquardt DW, An algorithm for least squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 1963, 11:431-441.
    [104] Levenberg K, A method for the solution of certain nonlinear problems in least squares, Q.J. Appl. Math 1944, 2: 164-168.
    [105] Equivalent Circuit Analysis Technology, Sirotech Ltd., Ness-Ziona, Israel, 1994.
    [106] ZView for Windows, Impedance/Gain Phase Graphing and Analysis Software, Version 1.4b, Scribner Associates Inc. Charlottesville, Virginia, 1996.
    [107] Vladikova D, Zoltowski P, Makowska E et al. Selectivity study of the differential impedance., analysiz-comparison with the complex non-linear least-squares method, Electrochim. Acta, 2002, 47:2943-2951.
    [108] Jorgensen MJ, Mogensen M, Impedance of solid oxide fuel cell LSM/YSZ composite cathodes, J. Electrochem. Soc. 2001, 148(5): A433-A442.
    [109] Diard JP, Le Gorrec B, Montella C, Calculation, simulation and interpretation of electrochemical impedances: part Ⅰ. presentation of the CASIDIE computer program, J. Electroanal. Chem. 1986, 205 (1-2): 77-90.
    [110] Diard JP, Landaud P, Le Gorrec B et al. Calculation, simulation and interpretation of electrochemical impedance: Part Ⅱ. Interpretation of Volmer-Heyrovsky impedance diagrams, J. Electroanal. Chem. 1988, 255 (1-2): 1-20.
    [111] Diard JP, Le Gorrec B, Montella C, Calculation, simulation and interpretation of electrochemical impedances : Part 3. Conditions for observation of low frequency inductive diagrams for a two-step electron transfer reaction with an adsorbed intermediate species, J. Electroanal. Chem. 1992, 326 (1-2): 13-36.
    [112] Diard JP, Le Gorrec B, Montella C et al. Calculation, simulation and interpretation of electrochemical impedance diagrams: Part Ⅳ. Second-order electrochemical impedances, J. Electroanal. Chem. 1993, 352(1-2): 1-15.
    [113] 胡广书,数字信号处理:理论、算法与实现(第二版),清华大学出版社,2003.
    [114] Macdonald JR, Impedance Spectroscopy-Emphasizing Solid Materials and Systems, John Wiley & Sons, New York, 1987.
    [115] Boukamp BA, Electrochemical impedance spectroscopy in solid state ionics: recent advances, Solid State Ionics, 2004,169 (1-4): 65-73.
    [116] Kuboyama H, Shoho T, Matsunaga M, Impedance spectra of solid oxide fuel cell, Electrochemical Proceedings 97, 1997, 404-410.
    [117] Kim JD, Kim GD, Moon JW et al., Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics, 2001, 143 (3-4): 379-389.
    [118] Takano K, Nagata S, Nozaki K et al., Numerical simulation of a disk-type SOFC for impedance analysis under power generation, J. Power Sources, 2004, 132 (1-2): 42-51.
    [119] Jamnik J, Maier J, Pejovnik S, A powerful electrical network model for the impedance of mixed conductors, Electrochim. Acta, 1999, 44:4139-4145.
    [120] Jamnik J, Maier J, Generalised equivalent circuits for mass and charge transport chemical capacitance and its implications, Phys. Chem. Chem. Phys. 2001 (3): 1668-1678.
    [121] Maier J, Impedance spectroscopy of mixed conductors with semi-blocking boundaries, Solid State Ionics, 2003, 157: 19-28.
    [122] Schneider LCR., Martin CL, Bultel Y, Bouvard D, Siebert E, Discrete modelling of the electrochemical performance of SOFC electrodes, Electrochim Acta, 2006, 52:314-324.
    [123] Barfod R, Mogensen M, KlemensΦ T et al., Detailed characterization of anode supported SOFCs by impedance spectroscopy, J. Electrochem. Soc. 2007, 154(4):B371-B378.
    [124] Kakac S, Pramuanjaroenkij A, Zhou XY, A review of numerical modeling of solid oxide fuel cells, Int. J. Hydrogen Energy, 2006, 32 (7): 761-786.
    [125] Zhao F, Virkar AV, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, J. Power Sources, 2005, 141 (1): 79-95.
    [126] Van Hassel BA, Boukamp BA, Burggraaf AJ, Electrode polarization at the Au, O2(g)/yttria stabilized zirconia interface. Part Ⅰ: Theoretical considerations of reaction model, Solid State Ionics, 1991, 48 (1-2): 139-154.
    [127] Van Hassel BA, Boukamp BA, Burggraaf AJ, Electrode polarization at the Au, O2 (g) / yttria stabilized zirconia interface. Part Ⅱ: electrochemical measurements and analysis, Solid State Ionics, 1991, 48 (1-2): 155-171.
    [128] Adler SB, Lane JA, Steele BCH, Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes, J. Electrochem. Soc. 1996, 143 (11): 3554-3564.
    [129] Tanner CW, Fung KZ, Virkar AV, The effect of porous composite electrode structure on solid oxide fuel cell performance, J. Electrochem. Soc. 1997, 144 (1): 21-30.
    [130] Kim JW, Virkar AV, Fung KZ et al. Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells, J. Electrochem. Soc. 1999, 146 (1): 69-78.
    [131] Virkar AV, Chen J, Tanner CW, Kim JW, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells, Solid State Ionics, 2000, 131 (1-2): 189-198.
    [132] Ni M, Leung MKH, Leung DYC, Parametric study of solid oxide fuel cell performance, Energy Convers. Manage. 2007, 48 (5): 1525-1535.
    [133] Qi YT, Huang B, Chuang KT, Dynamic modeling of solid oxide fuel cell: The effect of diffusion and inherent impedance, J. Power Sources, 2005, 150: 32-47.
    [134] Bessler WG, A new computational approach for SOFC impedance from detailed electrochemical reaction-diffusion models, Solid State Ionics, 2005, 176 (11-12): 997-1011.
    [135] Bessler WG, Gas concentration impedance of solid oxide Fuel Cell Anodes, Journal of the Electrochemical Society, 2006, 153 (8): A1492-1504.
    [136] Mitterdorfer A, Gauckler IJ, Identification of the reaction mechanism of the Pt, o_2 (g)| yttria-stabilized zirconia system -Part Ⅰ: General framework, modeling, and structural investigation, Solid State Ionics, 1999, 117: 187-202.
    [137] Mitterdorfer A, Gauekler LJ, Identification of the reaction mechanism of the Pt, O_2 (g)| yttria-stabilized zirconia system - Part Ⅱ: Model implementation, parameter estimation, and validation, Solid State Ionics, 1999, 117: 203-217.
    [138] Mitterdorfer A, Gauckler IJ, Reaction kinetics of the Pt, 02 (g)|c-ZrO_2 system: precursor-mediated adsorption, Solid State Ionics, 1999, 120:211-225.
    [139] Mitterdorfer A, Identification of the oxygen reduction at cathodes of solid oxide fuel cells, [PhD Thesois], Swiss Federal Institute of Technology Zurich, Switzerland, 1997.
    [140] Bieberle A, Gauckler LJ, Reaction mechanism of Ni pattern anodes for solid oxide fuel cells, Solid State Ionics, 2000, 135: 337-345.
    [141] A. Bieberle, L.J. Gauckler, State-space modeling of the anodic SOFC system Ni, H_2-H_2O| YSZ, Solid State Ionics, 2002, 146: 23-41.
    [142] A. Bieberle, The electrochemistry of solid oxide fuel cell anodes-experiments, modeling, and simulations, [PhD Thesis], Swiss Federal Institute of Technology Zurich, Switzerland, 2000.
    [143] Stoynov Z, Impedance modeling and data processing: structural and paramenterial estimadon, Electrochim. Acta, 1990, 35(10):1493-1499.
    [144] Stoynov Z, Differential impedance analysis-an insight into the experimental data, Pol. J. Chem., 1997, 71: 1204-1210.
    [145] Vladikova D, Stoynov Z, Secondary differential impedance analysis-a tool for recognition of CPE behavior, J. Electroanal. Chem. 2004, 572: 377-387.
    [146] Barbucci A, Viviani M, Carpanese P et al. Impedance analysis of oxygen reduction in SOFC composite electrodes, Electrochim. Acta, 2006, 51:1641-1650.
    [147] Vladikova D, Kilner JA, Skinner SJ et al. Differential impedance analysis of single crystal and polycrystalline yttria stabilized zirconia, Electrochim. Acta, 2006, 51: 1611-1621.
    [148] Adler SB, Mechanism and kinetics of oxygen reduction on porous La_(1-x)Sr_xCoO_(3-δ) electrodes, Solid State Ionics, 1998, 111: 125-134.
    [149] Adler SB, Limitations of charge-transfer models for mixed-conducting oxygen electrodes, Solid State Ionics, 2000, 135: 603-612.
    [150] Stoynov Z, Nonstationary impedance spectroscopy, Electrochim. Acta, 1993, 38 (14): 1919-1922.
    [151] Darowicki K, Theoretical description of the measuring method of instantaneous impedance spectra, J. Electroanal. Chem. 2000, 486: 101-105.
    [152] Darowicki K, Instantaneous electrochemical impedance spectroscopy of electrode reactions, Electrochim. Act,a, 2004, 49: 763-772.
    [153] Wilson JR, Schwartz DT, Adler SB, Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials, Electrochim. Acta, 2006, 51: 1389-1402.
    [154] Gazzarri JI, Kesler O, Electrochemical AC impedance model of a solid oxide fuel cell and its application to diagnosis of multiple degradation modes, J. Power Sources, 2007, 167: 100-110.
    [155] Gazzarri JI, Kesler O, Non-destructive delaminafion detection in solid oxide fuel cells, J. Power Sources, 20007, 167: 430-441.
    [156] Mogensen M, Primdahl S, Rheinlander JT et al. Relation between performance and structure of Ni-YSZ-cermet SOFC anodes, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells SOFC-Ⅳ, Yokohama, Japan, 1995, 657-661.
    [157] Kim JD, Kim GD, Moon JW et al. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics, 2001, 143(3-4): 379-389.
    [158] Marco De R, Jiang ZT, Martizano J et al,. In situ electrochemical impedance spectroscopy/synchrotron radiation grazing incidence X-ray diffraction-A powerful new technique for the characterization of electrochemical surfaces and interfaces, Electrochim. Acta, 2006, 51(6): 5920-5925.
    [159] Jiang SP, Ramprakash Y, H2 oxidation on Ni/Y-TZP cermet electrodes-a comparison of electrode behaviour by GCI and EIS techniques, Solid State Ionics, 1999, 122:211-222.
    [160] Vel(?)squez P, Leinen D, Pascual J et al. SEM, EDX and EIS study of an electrochemically modified electrode surface of natural enargite (Cu3AsS4), J. Electroanal. Chem. 2000, 494: 87-95.
    [161] Wilson JR, Kobsiriphat W, Mendoza R et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode, Nat. Mater. 2006, 5: 541-544.
    [162] 陈传忠,包全合,姚书山等,脉冲激光沉积技术及其应用,激光技术,2003, 27(5):443-446.
    [163] 敖育红,胡少六,龙华等,脉冲激光沉积薄膜技术研究新进展,2003, 27(5):453-459.
    [164] 马建军,中温固体氧化物燃料电池的制备与表征,[博士论文],保存地点:中国科学技术大学,2007.
    [165] 王志成,基于纳米结构的中低温固体氧化物燃料电池电极的制备和性能研究,[博士论文],保存地点:浙江大学,2008.
    [166] 闰瑞强,中温固体氧化物燃料电池固体电解质的制备研究,[博士论文],保存地点:中国科学技术大学,2006.
    [167] Yang D, Zhang X, Nikrumb S, et al. Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte, J. Power Sources, 2007, 164:182-188.
    [168] Fergus JW, Hui R, Li XG et al. Solid oxide fuel cell materials properties and performance, CRC Press, NewYork, USA, 2008.
    [169] Huijsmans JPP, Van Berkel FPF, Christie GM, Intermediate temperature SOFC - a promise for the 21 st century, J. Power Sources, 1998, 71: 107-110.
    [170] F. Nishiwaki, T. Inagaki, J. Kano et al., Development of disc-type intermediate-temperature solid oxide fuel cell, J. Power Sources 157 (2006) 809-815.
    [171] Patil PS, Versatility of chemical spray pyrolysis technique, Mater. Chem. Phys. 1999, 59(3): 185-198.
    [172] Perednis D, Gauckler LJ, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis, Solid State Ionics, 2004, 166 (3-4):229-239.
    [173] Will J, Mitterdorfer A, Kleinlogel C et al., Fabrication of thin electrolytes for second-generation solid oxide fuel cells,. Solid State Ionics, 2000, 131 (1-2): 79-96.
    [174] Yang D, Zhang X, Nikumb S et al., Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte, J. Power Sources, 2007, 164 (1): 182-188.
    [175] Hui R, Yang D, Wang Z, Metal-supported solid oxide fuel cell operated at 400-600℃, J. Power Sources, 2007, 167 (2): 336-339.
    [176] Hui R, Wang Z, Kesler O et al., Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges, J. Power Sources, 2007, 170 (2): 308-323.
    [177] Wang ZW, Berghaus JO, Yick S et al., Dynamic evaluation of low-temperature metal-supported solid oxide fuel cell oriented to auxiliary power units, J. Power Sources, 2007,176 (1): 90-95.
    [178] Suzuki T, Kosacki I, Anderson HU, Microstructure-electrical conductivity relationships in nanocrystalline ceria thin films, Solid State Ionics, 2002, 151 (1-4):111-121.
    [179] H.U. Anderson, M.M. Nasrallah, C.C. Chen, U.S. Patent, 5494700, 1996.
    [180] Hui R, Wang ZW, Yick S et al., Fabrication of ceramic films for solid oxide fuel cells via slurry spin coating technique, J. Power Sources, 2007, 172 (2): 840-844.
    [181] Christie GM, Van Berkel FPF, Mierostrueture-ionic conductivity relationships in ceria-gadolinia electrolytes, Solid State Ionics, 1996, 83 (1-2): 17-27.
    [182] Bai W, Choy KL, Rudkin RA et al., The process, structure and performance of pen cells for the intermediate temperature SOFCs, Solid State Ionics, 1998, 113-115: 259-263.
    [183] Suzuki T, Kosacki I, Anderson HU et al., Electrical Conductivity and Lattice Defects in Nanocrystalline Cerium Oxide Thin Films, J. Am. Ceram. Soc. 2001, 84 (7): 2007-2014.
    [184] Rupp JLM, Gauckler LJ, Microstructures and electrical conductivity of nanocrystalline ceria-based thin films, Solid State Ionics, 2006, 177 (26-32): 2513-2518.
    [185] Tsch(o|¨)pe A, Birringer R, Grain size dependence of electrical conductivity in Polycrystalline Cerium Oxide, J. Electroceram. 2001, 7: 167-177.
    [186] Hui R, Roller J, Yick S et al., A brief review of the ionic conductivity enhancement for selected oxide electrolytes, J. Power Sources, 2007, 172 (2007): 493-502.
    [187] 王振卫,ScSZ电解质及其在IT-SOFCs中的应用,[博士论文],保存地点:中国科学院大连化学物理研究所,2005.
    [188] Fleig J, Solid oxide fuel cell cathode: polarization mechanism and modeling of the electrochemical performance, Annu. Rev. Mater. Res. 2003.33:361-82.
    [189] Fleig J, On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes, J. Power Sources, 2002, 105(2): 228-238.
    [190] Fleig J, The polarization of mixed conducting SOFC cathodes: Effects of surface reaction coefficient, ionic conductivity and geometry, J. Eur. Ceram. Soc. 2004, 24(6): 1343-1347.
    [191] Wang ZW, Cheng MJ, Dong YL et al., Anode-supported SOFC with 1Ce10SeZr modified cathode/electrolyte interface, J. Power Sources, 2006, 156 (2): 306-310.
    [192] Aloui TA, Halouani K, Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel, Appl. Therm. Eng. 2007, 27 (4): 731-737.
    [193] Chan SH, Khor KA, Xia ZT, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, J. Power Sources, 2001, 93 (1-2): 130-140.
    [194] Zhang JL, Tang YH, Song CJ et al., PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 ℃ to 120 ℃, J. Power Sources, 2006, 163 (1): 532-537.
    [195] Song CJ, Tang YH, Zhang JL et al., PEM fuel cell reaction kinetics in the temperature range of 23-120 ℃, Electrochim Acta, 2007, 52 (7): 2552-2561.
    [196] Noren DA, Hoffman MA, Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, J. Power Sources, 2005, 152: 175-181.
    [197] Huang QA, Berghaus J, Yang DF et al. Polarization analysis for metal-supported SOFCs from different fabrication processes, J. Power Sources, 2008, 177: 339-347.
    [198] Macdonald JR, Theory of space-charge polarization and electrode-discharge effects, J. Chem. Phys,1973, 58: 4982-5003.
    [199] Macdonald JR, Impedance/admittance response of a binary electrolyte, Electrochim. Acta, 1992, 37(6):1007-1014.
    [200] Franceschetti DR, Macdonald JR, Buck RP, Interpretation of finite-length-Warburg-type impedances in supported and unsupported electrochemical cells with kinetically reversible electrodes, J. Electrochem. Soc. 1991, 138 (5): 1368-1371.
    [201] Franceschetti DR, Electrical network models for coupled charge transport, Solid State Ionics, 1994 70-71: 542-547.
    [202] Riess I, Theoretical treatment of the transport equations for electrons and ions in a mixed conductor, J. Electrochem. Soc. 1981, 128 (10): 2077-2081.
    [203] Riess I, J. Phys. Chem Solids, Current-voltage relation and charge distribution in mixed ionic electronic solid conductors,1986, 47 (2): 129-138.
    [204] Yuan S, Pal U, Analytic solution for charge transport and chemical-potential variation in single layer and multilayer devices of different mixed conducting oxides, J. Electrochem. Soc. 1996, 143 (10): 3214-3222.
    [205] H. N(a|¨)fe, Current-Voltage relation and charge distribution in mixed ionic-electronic solid conductors, J. Electrochem. Soc. 1997, 144 (11): 3922-3929.
    [206] Jamnik J, Maier J, Treatment of the impedance of mixed conductors equivalent circuit model and explicit approximate solutions, J. Electrochem. Soc. 1999, 146 (11): 4183-4188.
    [207] Lai W, Hailew SM, Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria, J. Am. Ceram. Soc., 2005, 88 (11):2979-2997.
    [208] Lai W, Hailew SM, Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria, Phys. Chem. Chem. Phys., 2008, 10:865-883.
    [209] Liu M, Hu H, Effect of interfacial resistance on determination of transport properties of mixed conducting electrolytes, J. Electrochem. Soc. 1996, 143 (6): L109-L112.
    [210] Hu H, Liu M, Interfacial polarization characteristics of Pt|BaCe0.8Gd0.203|Pt, J. Electrochem. Soc. 1997, 144 (10): 3561-3567.
    [211] Hu H, Liu M, Interfacial studies of solid-state cells based on electrolytes of mixed ionic-electronic conductors, Solid State Ionics, 1998, 109: 259-272.
    [212] Virkar AV, Theoretical analysis of solid oxide fuel cells, J. Electrochem. Soc. 1991, 138 (5): 1481-1487.
    [213] Virkar AV, Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes, J. Power Sources, 2005, 147:8-31.
    [214] Virkar AV, A model for solid oxide fuel cell (SOFC) stack degradation, J. Power Sources, 2007, 172:713-724.
    [215] Kharton VV, Marques FMB, Interfacial effects in electrochemical cells for oxygen ionic conduction measurements-Ⅰ. The e.m.f, method, Solid State Ionics, 2001, 140: 381-394.
    [216] 姜彩荣,固体氧化物燃料电池的性能优化,[博士论文],保存地点:中国科学技术大学,2007.
    [217] Leah RT, Brandon NP, Aguiar P, Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500-600 ℃, J. Power Sources, 2005, 145: 336-352.
    [218] Huang QA, Wang BW, Shorting current analysis for solid oxide fuel cell, IEEE 2009 Asia-Pacific Power and Energy Engineering Conference (IEEE APPEEC 2009), Wuhan, China, In Press.
    [219] 郑群,Fe-Cr基耐热合金的氧化基电导特性研究,[博士论文],保存地点:四川大学,2006.
    [220] Joo JH, Choi GM, Open-circuit voltage of ceria-based thin film SOFC supported on nano-porous alumina, Solid State Ionics, 2007, 178 (29-30): 1602-1607.
    [221] Zhao SW, Xia CR, Meng GY, Effect of Gd (Sm) doping on properties ofceda electrolyte for solid oxide fuel cells, J. Power Sources, 2003, 115(1): 44-48.
    [222] Steele BCH, Heinzel A, Materials for fuel-cell technologies, Nature (London), 2001, 414: 345-352.
    [223] Zhang XG, Robertson M, Dec(?)s-Petit C et al., Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte, J. Power Sources, 2007, 164:668-677.
    [224] Stelter M, Reinert A, Mai BE et al., Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units, J. Power Sources, 2006, 154 (2): 448-455.
    [225] Lawrence J, Boltze M, Auxiliary power unit based on a solid oxide fuel cell and fuelled with diesel, J. Power Sources, 2006, 154 (2): 479-488.
    [226] Aicher T, Lenz B, Gschnell F et al., Fuel processors for fuel cell APU applications, J. Power Sources, 2006, 154 (2): 503-508.
    [227] Jain S, Chen HY, Schwank J, Techno-economic analysis of fuel cell auxiliary power units as alternative to idling, J. Power Sources, 2006, 160 (1): 474-484.
    [228] Lu N, Li Q., Sun X, et al., The modeling of a standalone solid-oxide fuel cell auxiliary power unit, J. Power Sources, 2006, 161 (2): 938-948.
    [229] England DM, Virkar AV, Oxidation kinetics of some nickel-based superalloy foils and electronic resistance of the oxide scale formed in air Part Ⅰ, J. Electrochem. Soc. 1999,146 (9): 3196-3202.
    [230] England DM, Virkar AV, Oxidation kinetics of some nickel-based superalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed, J. Electrochem. Soc. 2001, 148(4):A330-A338.
    [231] Bujalski W, Paragreen J, Reade G et al., Cycling studies of solid oxide fuel cells, J. Power Sources, 2006, 157 (2): 745-749.
    [232] Molinelli M, Larrain D, Autissier N, et al., Dynamic behaviour of SOFC short stacks, J. Power Sources, 2006, 154 (2): 394-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700