用户名: 密码: 验证码:
非线性光学材料和生物酶体系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料化学和生物化学是近年来化学领域中最具应用前景的两个研究方向,也是计算化学探讨的热点方向。在材料化学中,非线性光学材料是近四十年才发展起来的一种新型材料。从技术领域到研究领域,它的应用都十分广泛,如制成电光开关、实现激光频率的调谐、进行光学信息处理等。本论文前四章即是针对无机和有机非线性光学材料进行计算,并讨论了非线性极化率和体系电子结构之间的关系。在生命活动中,生物酶起着至关重要的作用,和我们的生活也密切相关。但对它们酶催化反应机理的研究,无论在实验测定还是理论计算领域,仍存在着诸多挑战。本论文后四章即是采用分子动力学模拟结合QM/MM组合方法,计算了磷酸三酯水解酶和酵母菌胞嘧啶脱氨酶的反应机理,并对这两个体系的定点突变实验研究提出了有用的建议。总体来说,本论文主要的工作以及得出的结论包括:
     (1)在TDDFT/an12DZ+6-31G~*水平下对(ZnS)_(6~12)半导体团簇的三阶非线性光学性质进行了计算,并用态求和(SOS)方法求得了静态三阶宏观极化率x~(3)和0~2.5 eV范围内输入光子能量对三阶微观极化率γ的动态行为。结果表明,(ZnS)_(6~12)的x~(3)值与其它半导体团簇相比略好。且(ZnS)_7和(ZnS)_(11)分别在1.6eV和2.0 eV处出现了很大的γ值,为-2.38~*10~(-33)esu和1.26~*10~(-33)esu。在此输入光子能量处激发,它们将会产生很强的三阶非线性光学效应。
     (2)在TDDFT-SOS/Lan12DZ+3-21G~*水平下对白屈菜氨酸配合物Mm(C_7H_3O_5N)_n(M=Cu,Ag)的非线性光学性质进行了计算,并探讨了分子轨道与非线性光学性质的内在联系。结果表明,对二阶极化率有影响的电子转移为π-π~*和3d_M-π~*,且Ag_2Cu_2(C_7H_3O_5N)_4在0.74 eV处出现了很大的β值,为3.84×10~(-25)cm~5esu~(-1)。电子转移π-π~*对三阶极化率的增强有非常重要的作用,最大的γ值为Ag_2Cu_2(C_7H_3O_5N)_4出现在0.50 eV处的-4.46×10~(-29)esu。Cu离子作为电子桥,不仅增大了配体的电子离域范围,还导致了螺旋共轭现象的产生。
     (3)在QM(PM3-SPR)/MM水平下对磷酸三酯酶催化水解paiaoxon的反应机理进行分子动力学模拟,并在QM(DFT)/MM水平下计算了一些关键态的能量与动力学的结果比较。模拟开始前,我们根据DFT的计算结果重新优化了PM3中磷原子的参数,并依照文献报道更新了Zn原子的参数。结果表明,paraoxon在接近羟基过程中的扭曲是整个反应的速率决定步骤。任何可以缩短NE1@Trp131和磷酸酯上O原子之间的氢键距离的突变,都有可能增强磷酸三酯酶分解有机磷的反应活性,例如把Trp131突变为精氨酸、谷氨酰胺、甚至是酪氨酸。对Phe132进行类似的突变也会有好的效果。
     (4)通过QM(PM3)/MM结合MD的方法模拟了酵母菌胞嘧啶脱氨酶把胞嘧啶脱氨形成尿嘧啶的反应过程。计算结果表明,Glu264在整个反应过程中扮演了十分重要的中转站角色。由被Zn离子束缚的尿嘧啶到自由态尿嘧啶的过程为整个反应的速率决定步骤。高的能量消耗主要是由Zn离子从四配位变成五配位模式需要克服的空间位阻所造成的。所以,我们认为将Glu264突变为体积较小的残基,或是移走Ile233和His262使尿嘧啶更容易从它们的夹层中逃离,可以降低速率决定步骤的反应能垒,从而提高酵母菌胞嘧啶脱氨酶的脱氨活性。
Materials chemistry and biochemistry have drawn lots of attention in recent yearsbecause of their great potential in applications.In materials chemistry field,nonlinearoptical material is a new type of material which developed during the last two decades.Now,it has been widely used in electro-optical switch,tunable laser,opticalinformation processing and other fields.In first four chapters of this dissertation,wediscussed the organic and inorganic nonlinear optical materials,and explored therelationships between the hyperpolarizabilities and the electronic structures of thesystems.In biochemistry field,biological enzymes play a key role in life activities.But the investigation on their reaction mechanisms is still a challenging in bothexperimental and theoretical fields.The work of another four chapters was thesimulations of phosphotriesterase (PTE) and yeast cytosine deaminase (yCD) inQM/MM MD level,and the results can give some useful suggestions to site-directedmutagenesis studies.The main work of this dissertation can be summarized asfollows:
     (1) The third-order nonlinear optical (NLO) properties of (ZnS)_(6~12) are investigatedunder the time dependent density functional theory (TDDFT) at the B3LYP/Lanl2DZ+6-31G~* level.The static third-order susceptibilities X~((3)) and dynamicbehavior of third-order polarizabilitiesγin 0~2.5 eV are calculated under the sumover states (SOS) method.The results show that the X~((3)) of (ZnS)_(6~12) clusters are betterthan the other semiconducting clusters.(ZnS)_7 and (ZnS)_(11) have a remarkableγvalueof -2.38~*10~(-33) esu and 1.26~*10~(-33)esu at 1.6eV and 2.0eV respectively.(ZnS)_(6~12)clusters will produce an obvious phenomenon of the third-order polarizabilities whenthey are excited at the largeγvalue area.
     (2) The frequency-dependent hyperpolarizabilities of chelidamic acid complexesM_m(C_7H_3O_5N)_n (M=Cu,Ag) were investigated under the TDDFT combined with SOSmethod.The relationship between molecular orbitals and nonlinear optical properties has been explored.The results show that the charge transitions ofπ-π~* and 3d_M-π~*are very important to the second-order polarizabilities,and the largest component ofdynamicβis 3.84×10~(-25) cm~5 esu~(-1) at 0.74 eV for Ag_2Cu_2(C_7H_3O_5N)_4.The chargetransition betweenπ-π~* is also highly crucial to the third-order polarizabilities,andthe largest component of dynamicγis-4.46×10~(-29) esu at 0.50 eV forAg_2Cu_2(C_7H_3O_5N)_4.The central Cu ion,as electron bridge,extends the range ofdelocalization and leads to an interesting phenomenon of spiroconjugation.
     (3) Extensive combined QM/MM molecular dynamics simulations have beenperformed to elucidate the enzymatic catalysis mechanism on the detoxification ofparaoxon by PTE.The parameters for the phosphorous atom in PM3 method wasre-optimized and the recent updated ZnB (Zinc,Biological) parameter for Zn ions wasused throughout this work.The rate-limiting step of this process is the distortion ofthe bound paraoxon in order to approach the bridging hydroxide.Conformationalanalyses indicate that Trp131 is the closest residue to the phosphoryl oxygen,andmutations to Arg,Gln,even Lys which can shorten the hydrogen bond distance withthe phosphoryl oxygen could potentially lead to a mutant with enhanced activity forthe detoxification of organophosphates.
     (4) The deaminasion process of cytosine to uracil by yCD is simulated by usingcombined QM(PM3)/MM molecular dynamics method.Calculated results show that,Glu264 plays the most important role in the atom transitions.The conformationalcharge from zinc-coordinate uracil to free uracil is the rate-limiting step of the wholereaction process.High energy consumption mainly because of the coordinationnumber changing of zinc ion needs to overcome the steric hindrance.So weconsidered to mutate Glu264 for some small residues,or to move Ile233 and His262away to make uracil easier escape from their interlayer,which could reduce theenergy barrier and increase the reactivity of yCD.
引文
Materials Chemistry 2006,16(16),1573-1578.
    [42]Bonifassi,P.;Ray,P.C.;Leszczynski,J.,Effect of central metal ions on first hyperpolarizability of unsymmetrical metal porphyrins.Chemical Physics Letters 2006,431(4-6),321-325.
    [43]Liu,C.G.;Qiu,Y.Q.;Sun,S.L.;Chen,H.;Li,N.;Su,Z.M.,DFT study on second-order nonlinear optical properties of a series ofmono Schiff-base M(Ⅱ)(M = Ni,Pd,Pt)complexes.Chemical Physics Letters 2006,429,(4-6),570-574.
    [44]Bella,S.D.,Second-order nonlinear optical properties of transition metal complexes.Chemical Society Reviews 2001,30,355-366.
    [45]Zhou,G.W.;Lan,Y.Z.;Zheng,F.K.;Zhang,X.;Lin,M.H.;Guo,G.C.;Huang,J.S.,[Zn(C_7H_3O_5N)]_n.nH_2O: A third-order NLO Zn coordination polymer with spiroconjugated structure.Chemical Physics Letters 2006,426(4-6),341-344.
    [46]Qin,J.G.;Liu,D.Y.;Dai,C.Y.;Chen,C.T.;Wu,B.C.;Yang,C.L.;Zhan,C.M.,Influence of the molecular configuration on second-order nonlinear optical properties of coordination compounds.Coordination Chemistry Reviews 1999,188,23-34.
    [47]Cheng L.T.;Tam W.;Stevenson,S.H.,Experimental investigations of organic molecular nonlinear optical polarizabilities.1.Methods and results on benzene and stilbene derivatives Journal of Physical Chemistry 1991,95(26),10631-10643.
    [48]de Lucas,A.I.;Martin,N.;Sanchez,L.;Seoane,C.;Andreu,R.;Garin,J.;Orduna,J.;Alcala,R.;Villacampa,B.,The first tetrathiafulvalene derivatives exhibiting second-order NLO properties.Tetrahedron 1998,54(18),4655-4662.
    [49]封继康,付伟,崔勐,苏忠民,任爱民.给体-桥-受体型系列C60吡咯/二茂铁的电子结构及二阶非线性光学性质的理论研究.化学学报2000,58(9),1112-1119.
    [50]Zhou,G.W.;Guo,G.C.;Liu,B.;Wang,M.S.;Cai,L.Z.;Huang,J.S.,3-D hydrogen-bonded frameworks of two metal complexes with chelidamic acid: Syntheses,structures and magnetism.Bulletin of the Korean Chemical Society 2004,25(5),676-680.
    [51]Zhou,G.W.;Guo,G.C.;Cai,L.Z.;Liu,B.;Huang,J.S.,One-dimensional hydrogen-bonded double chain composed of a copper(Ⅱ)complex with chelidamic acid.Chinese Journal of Structural Chemistry 2006,25(1),59-62.
    [52]Zhou,G.W.;Wu,A.Q.;Wang,M.S.;Guo,G.C.;Huang,J.S.,Diaquachlorido(4-hydroxypyridine-2,6-carboxylato-kappa N-3,O,O')iron(Ⅲ)18-crown-6 dihydrate.Acta Crystallographica Section E-Structure Reports Online 2007,63,M2463-U269.
    [53]Levine,B.F.,Donor-Acceptor Charge Transfer Contributions to the Second Order Hyperpolarizability.Chemical Physics Letters 1976,37,516-521.
    [54]Clays,K.;Persons,A.,Hyper-Rayleigh Scattering in Solution.Physical Review Letters 1991,66,2980-2983.
    [55]Paley,M.S.;Harris,J.M.;Looser,H.,A solvatochromicmethodfor determining second-order polarizabilities of organic molecules.Journal ofOrganic Chemistry 1989,54(16),3774-3778.
    [56]Kurtz,S.K.;Perry,T.T.,A power Technique for the Evaluation of Nonlinear Optical Matericals.Journal of Applied Physics 1968,39,3798-3813.
    [57]Maker,P.D.;Terhune,R.W.;Nisenoff,M.,Effects of Dispersion and Focusing on the Production of Optical Harmonics.Physical Review Letters 1962,8,21-22.
    [58]Lemoff,B.E.;Barty,C.P.J.;Harris,S.E.,Second-Harmonic Generation and Absorption Studies of Polymer-dye Films Oriented by Corona-onset Poling at Elevated Temperatures.Journal of the Optical Society of America B-optical physics 1989,6,733-735.
    [59]Weber,M.J.;Milam,D.;Smith,W.L.,Nonlinear refractive index of glasses and crystals.Optical Engineering 1978,17(5),463-469.
    [60]Friberg,S.R.;Smith,P W.,Nonlinear Optical-Glasses for Ultrafast Optical Switches.Ieee Journal of Quantum Electronics 1987,23(12),2089-2094.
    [61]Yeh P,ExactSolution of a Nonlinear Model of 2-Wave Mixing in Kerr Media.Journal of the Optical Society of America B-Optical Physics 1986,3(5),747-750.
    [62]Zyss,J.;Ledoux,I.;Nicoud,J.F Molecular Nonlinear Optics;Academic Press: Boston,1994.
    [63]Williams,W.E.;Soileau,M.J.;Vanstryland,E.W.,Optical Switching and N2 Measurements In Cs2.Optics Communications 1984,50(4),256-260.
    [64]Sheikbahae,M.;Said,A.A.;Vanstryland,E.W.,High-Sensitivity,Single-Beam N2 Measurements.Optics Letters 1989,14(17),955-957.
    [65]Br(?)das,J.L.;Adant,C.;Tackx,P.;Persoons,A.;Pierce,B.M.,Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects.Chemical Reviews 1994,94(1),243-278.
    [66]Cohen,H.D.;Roothaan,C.C.J.,Electric dipole polarizabilityof atoms by the Hartree-Fock method.I.Theory for closed-shell systems.Journal of Chemical Physics 1965,43(10),S34-S38.
    [67]Dykstra,C.E.;Jasien,P.G.,Derivative Hartree-Fock theoryto all orders.Chemical Physics Letters 1984,109(4),388-393.
    [68]Dehu,C.;Meyers,F.;Br(?)das,J.L.,Donor-Acceptor Diphenylacetylenes: Geometric Structure,Electronic Structure,and Second-OrderNonlinear Optical Properties.Journal of the American Chemical Society 1993,115(14),6198-6206.
    [69]Karna,S.P.;Laskowski,Z.;Talapatra,G.B.;Prasad,P.N.,Comparative study of the nonlinear optical properties of extended.n.-electron structures obtained by ab initio and INDO methods: hexapentaene,hexadiyne and divinylacetylene.Journal of Physical Chemistry 1991,95,6508.
    [70]Orr,B.J.;Ward,J.F.,Perturbation theory of the non-linear optical polarization of an isolated system.Molecular Physics 1971,20,513.
    [71]Shen Y.R.The Principles of Nonlinear optics,Wiley: New York,1984.
    [72]Oudar,J.L.;Chemla,D.S.,Hyperpolarizabilities of Nitroanilines and Their Relations to Excited-State Dipole-Moment.Journal of Chemical Physics 1977,66(6),2664-2668.
    [73]Albota,M.;Beljonne,D.;Bredas,J.L.,Design of organic molecules with large two-photon absorption cross sections.Science 1998,281,1653-1656.
    [74]Oudar,J.L.;Leperson,H.,2nd-Order Polarizabilities of Some Aromatic-Molecules.Optics Communications 1975,15(2),258-262.
    [75]Lu D.Q.;Chen G.H.;Perry,J.W.,Valence-Bond Charge-Transfer Model for Nonlinear Optical Properties of Charge-Transfer Organic Molecules.Journal of the American Chemical Society 1994,116,10679-10685.
    [76]Pawel,N.;Morel,Y.;Olivier.S.P.,Two-photon absorption spectrum of poly(fluorene).Chemical Physics Letters 2001,343,44-48.
    [1]Parr,R.G.;Yang,W.Density-Functional Theory of Atoms and Molecules;Oxford Science Publication: New York,1989.
    [2]Dreizler,R.M.;Gross,E.K.U,Density functional theory;Springer-Verlag: Heidelberg,Germany,1995.
    [3]Kohanoff,J.Density Functional Theory: Basics,New Trends and Applications;Oxfordshire: UK,2002.
    [4]Thomas,L.H.,The calculation of atomic fields.Proceedings of the Cambridge Philosophical Society 1927,23,542-548.
    [5]Fermi,E.,Eine statistiche Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elements.Zeitschrift f(u|¨)r Physik 1928,48,73-79.
    [6]Hohenberg,P;Kohn,W.,Inhomogeneous Electron Gas.Physical Review B 1964,136,864-869.
    [7]Kohn,W.;Sham,L.J.,Self-consistent equations including exchange and correlation effects.Physical Review A 1965,140,1133.
    [8]Jones,R.O.;Gunnarsson,O.,The density functional formalism,its applications and prospects.Reviews of Modern Physics 1989,61,689-746.
    [9]Perdew,J.P;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.;Pederson,M.R.;Singh,D.J.;Fiolhais,C.,Atoms,molecules,solids,and surfaces: Applications of the generalized gradient approximation for exchange and correlation.Physical Review B 1993,48,4978.
    [10]Perdew,J.P.;Burke,K.;Wang,Y.,Generalized gradient approximation for the exchange-correlation hole of a many-electron system.Physical Review B 1996,54(23),16533-16539.
    [11]Langreth,D.C.;Mehl,M.J.,Easily Implementable Nonlocal Exchange-Correlation Energy Functional.Physical Review Letters 1981,47,446-450.
    [12]Langreth,D.C.;Mehl,M.J.,Beyond the local-density approximation in calculations of ground-state electronic properties.Physical Review B 1983,28,1809-1834.
    [13]Perdew,J.P;Wang,Y.,Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation.Physical Review B 1986,33,8800-8802.
    [14]Perdew,J.P,Density-functional approximation for the correlation energy of the inhomogeneous electron gas.Physical Review B 1986,33,8822-8824.
    [15]Perdew,J.P.;Wang,Y.,Accurate and simple analytic representation of the electron-gas correlation energy.Physical Review B 1991,45,13244-13249.
    [16]Becke,A.D.,Density-functional exchange-energy approximation with correct asymptotic behavior.Physical Review A 1988,38,3098-3100.
    [17]Lee,C.;Yang,W.;Parr,R.C.,Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Physical Review B 1988,3 7,785-789.
    [18]Xu,X.;Zhang,Q.S.;Muller,R.P.;Goddard,W.A.,An extended hybrid density functional(X3LYP)with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems.Journal of Chemical Physics 2005,122(1).
    [19]Schreckenbach G.;Ziegler T.,Calculation of NMR shielding tensors using gauge-including atomic orbitals and modem density functional theory.Journal of Physical Chemistry 1995, 99,606-611.
    [20]Schreckenbach G.;Ziegler T.,The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation.International Journal of Quantum Chemistry 1996,60,753-766.
    [21]Runge,E.;Gross,E.K.U.,Density-functional theory for time-dependent systems.Physical Review Letters 1984,52,997-1000.
    [22]Gross.E.K.U.;Kohn.W.,Local density functional theory of frequency-dependent linear response.Physical Review Letters 1985,55,2850-2852.
    [23]Gross,E.K.U.;Kohn,W.,Time-dependent density functional theory.Advances in Quantum Chemistry 1990,21,255-288.
    [24]Casida,M.E.In Recent Advances in Density Functional Methods,Part 1,Chong,D.P.,Ed.;World Scientific: Singapore,1995,pp.155.
    [25]Van Leeuwen,R.,Key concepts in time-dependent density-functional theory.International Journal of Modern Physics B 2001,15(14),1969-2023.
    [26]Marques,M.A.L.;Gross,E.K.U.,Time-dependent density functional theory.Annual Review of Physical Chemistry 2004,55,427-455.
    [27]任彦亮.几种生物光合色素分子体系电子激发光谱的理论研究.华东师范大学博士学位论文.2007.
    [28]Yabana,K.;Bertsch,G.F.,Time-dependent local-density approximation in real time.Physical Review B 1996,54(7),4484-4487.
    [29]Marques,M.A.L.;Castro,A.;Bertsch,G.F.;Rubio,A.,Octopus: a first-principles tool for excited electron-ion dynamics.Computer Physics Communications 2003,151(1),60-78.
    [30]Dreuw,A.;Head-Gordon,M.,Single-reference ab initio methods for the calculation of excited states of large molecules.ChemicalReviews 2005,105(11),4009-4037.
    [31]许雪飞.芳环共轭体系光诱导分子内电荷转移机理的理论研究.厦门大学博士学位论文.2006.
    [32]Savin,A.;Umrigar,C.J.;Gonze,X.,Relationship of Kohn-Sham eigenvalues to excitation energies.Chemical Physics Letters 1998,288(2-4),391-395.
    [33]Gritsenko,O.;Baerends,E.J.,Asymptotic correction of the exchange-correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations.Journal of Chemical Physics 2004,121(2),655-660.
    [34]Cai,Z.L.;Sendt,K.;Reimers,J.R.,Failure of density-functional theory and time-dependent density-functional theory for large extended pi systems.Journal of Chemical Physics 2002,117(12),5543-5549.
    [35]Grimme,S.;Parac,M.,Substantial e.rrors from time-dependent density functional theory for the calculation of excited states of large pi systems.Chemphyschem 2003,4(3),292.
    [36]Br(?)das,J.L.;Adant,C.;Tackx,P.;Persoons,A.;Pierce,B.M.,Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimenfal Aspects.Chemical Reviews 1994,94(1),243-278.
    [37]Orr,B.J.;Ward,J.F.,Perturbation theory of the non-linear optical polarization of an isolated system.Molecular Physics 1971,20,513.
    [38]Boyd R.W.Nonlinear Optics,;Academic Press: San Diego,2003,pp.149.
    [39]Adant,C.;Beljonne,D.;Br(?)das,J.L.,Theoretical investigation of the nonlinear optical properties of oligomers of polythienylenemethylidene,a low band gap material.Journal of Chemical Physics 1994,101, 8048.
    [40] Meyers, F.; Marder, S. R.; Pierce, B. M.; Bredas, J. L., Electric field modulated nonlinear optical properties of donor acceptor polyenes: Sum Over States investigation of the relationship between molecular polarizabilities (α,βand γ) and bond length alternation.Journal of the American Chemical Society 1994,116, 10703.
    [41] Pierce, B. M., A theoretical analysis of third order nonlinear optical properties of linear polyenes and benzene. Journal of Chemical Physics 1989, 91, 791.
    [1] Cheng W. D.; Wu D. S.; Zhang H., Ab-Inition Geometrical Optimization and Spectrum Third-Order Polarizabilities of C60 Fullerene. Chemical Journal of Chinese Universities 2002, 23(Supplement), 309-312.
    [2] Ying X.; Zhang X. W.; Liao S. J., Investigation on Second-order Nonlinear Optical Property of Amino Acid Bridged Chiral Porphyrin Dimmer. Chemical Journal of Chinese Universities 2006, 27, 2381-2385.
    [3] Huang M. Z.; Ching W. Y., Calculation of optical excitations in cubic semiconductors. Ⅱ. Second-harmonic generation. Physical Review B 1993, 47, 9464-9478.
    [4] Vasiliev, I.; Ogut, S.; Chelikowsky, J. R., Ab initio calculations for the polarizabilities of small semiconductor clusters. Physical Review Letters 1997, 78 (25), 4805-4808.
    [5] Lan, Y. Z.; Cheng, W. D.; Wu, D. S.; Shen, J.; Huang, S. P.; Zhang, H.; Gong, Y. J.; Li, F. F., A theoretical investigation of hyperpolarizability for small GanAsm (n+m=4-10) clusters.Journal of Chemical Physics 2006,124 (9).
    [6] Lan, Y. Z.; Cheng, W. D.; Wu, D. S.; Li, X. D.; Zhang, H.; Gong, Y. J., TDHF-SOS treatments on linear and nonlinear optical properties of Ⅲ-Ⅴ semiconductor clusters (Ga_3As_3, Ga_3Sb_3, In_3P_3, In_3As_3, In_3Sb_3). Chemical Physics Letters 2003, 372(5-6), 645-649.
    [7] Pineda, A. C; Kama, S. P., (Hyper) polarizabilities of isolated GaN nanoclusters. Chemical Physics Letters 2006,429( 1 -3), 169-173.
    [8] Wang, J. L.; Yang, M. L.; Wang, G. H.; Zhao, J. J., Dipole polarizabilities of germanium clusters. Chemical Physics Letters 2003, 5(57(3-4), 448-454.
    [9] Raptis, S. G.; Papadopoulos, M. G.; Sadlej, A. J., The correlation, relativistic, and vibrational contributions to the dipole moments, polarizabilities, and first and second hyperpolarizabilities of ZnS, CdS, and HgS. Journal of Chemical Physics 1999, 77/(17),7904-7915.
    [10] Spano, E.; Hamad, S.; Catlow, C. R. A., Computational evidence of bubble ZnS clusters.Journal of Physical Chemistry B 2003, 707(38), 10337-10340.
    [11] Spano, E.; Hamad, S.; Catlow, C. R. A., ZnS bubble clusters with onion-like structures.Chemical Communications 2004, 7, 864-865.
    [12] Hamad, S.; Catlow, C. R. A. In Computational study of the relative stabilities of ZnS clusters, for sizes between 1 and 4 nm, Summer School on New Advances in Crystal Growth and Nucleation of Complex Materials, Barga, ITALY, Aug 27-Sep 03; Barga,ITALY, 2005; pp 2-8.
    [13] Hamad, S.; Catlow, C. R. A.; Spano, E.; Matxain, J. M.; Ugalde, J. M, Structure and properties of ZnS nanoclusters. Journal of Physical Chemistry B 2005,109(7), 2703-2709.
    [14] Hamad, S.; Cristol, S.; Catlow, C. R. A., Simulation of the embryonic stage of ZnS formation from aqueous solution. Journal of the American Chemical Society 2005, 727(8),2580-2590.
    [15] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;Zakrzewski, V. G; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C; Dapprich, S.;Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C; Farkas, O.; Tomasi, J.; Barone, V;Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C; Adamo, C; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G;Liashenko, A.; Piskorz, P.; Komaromi,L; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.;Al-Laham, M. A.; Peng, C. Y.; Nanavakkara, A.; Gonzalez, C; Challacombe, M.; Gill, P. M.W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C; Head-Gordon, M.;Replogle, E. S.; Pople, J. A. Gaussian 03, Revision B.04. Gaussian, Inc.; Pittsburgh, PA,2003.
    [16] Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 1988, 38, 3098.
    [17] Lee, C; Yang, W.; Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37, 785.
    [18] Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J., An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. Journal of Chemical Physics 1998, 109(19), 8218-8224.
    [19] Bauernschmitt, R.; Ahlrichs, R., Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters 1996,256, 454.
    [20] Casida, M. E.; Jamorski, C; Casida, K. C; Salahub, D. R., Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold. Journal of Chemical Physics 1998,108(11), 4439-4449.
    [21] Boyd R. W. Nonlinear Optics; Academic Press: San Diego, 2003, pp. 149.
    [22] Orr, B. J.; Ward, J. F., Perturbation theory of the non-linear optical polarization of an isolated system. Molecular Physics 1971, 20, 513.
    [23] Pierce, B.M., A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene. Journal of Chemical Physics 1989, 91, 791.
    [24] Burmin, A.; Sanville, E.; BelBruno, J. J., Experimental and computational study of the ZnnSn and ZnnSn+ clusters. Journal of Physical Chemistry A 2005,109(23), 5026-5034.
    [25] Huang, T. T.; Tan, K.; Lin, M. H., A theoretical exploration of the interaction of adsorptive molecules with the ZnS clusters. Journal of Molecular Structure-Theochem 2007, 527(1-3),101-105.
    [1]Br(?)das,J.L.;Adant,C.;Tackx,P.;Persoons,A.;Pierce,B.M.,Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects.Chemical Reviews 1994,94(1),243-278.
    [2]Kanis,D.R.;Ratner,M.A.;Marks,T.J.,Design and construction of molecular assemblies with large second-order optical nonlinearities.Quantum chemical aspects.Chemical Reviews 1994,94(1),195-242.
    [3]Kong,F.;Huang,S.P.;Sun,Z.M.;Mao,J.G.;Cheng,W.D.,Se-2(B_2O_7): A new type of second-order NLO material.Journal of the American.Chemical Society 2006,128(24),7750-7751.
    [4]Bonifassi,P.;Ray,P.C.;Leszczynski,J.,Effect of central metal ions on first hyperpolarizability of unsymmetrical metal porphyrins.Chemical Physics Letters 2006,431(4-6),321-325.
    [5]Humphrey,J.L.;Kuciauskas,D.,Charge transfer enhances two-photon absorption in transition metal porphyrins.Journal of the American Chemical Society 2006,128(12),3902-3903.
    [6]Botek,E.;Champagne,B.;Turki,M.;Andre,J.M.,Theoretical study of the second-order nonlinear optical properties of[N]helicenes and[N]phenylenes.Journal of Chemical Physics 2004,120(4),2042-2048.
    [7]Jacquemin,D.;Perpete,E.A.;Andre,J.M.,Theoretical study of the longitudinal first hyperpolarizability of polysilaacetylene.Journal of Chemical Physics 2004,120(21),10317-10327.
    [8]Kang,H.;Facchetti,A.;Jiang,H.;Cariati,E.;Righetto,S.;Ugo,R.;Zuccaccia,C.;Macchioni,A.;Stem,C.L.;Liu,Z.F.;Ho,S.T.;Brown,E.C.;Ratner,M.A.;Marks,T.J.,Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: Synthesis,solid-state and solution-phase structural characteristics,electronic structures,linear and nonlinear optical properties,and computational studies.Journal of the American Chemical Society 2007,129(11),3267-3286.
    [9]Senechal-David,K.;Hemeryck,A.;Tancrez,N.;Toupet,L.;Williams,J.A.G.;Ledoux,I.;Zyss,J.;Boucekkine,A.;Guegan,J.P.;Le Bozec,H.;Maury,O.,Synthesis,structural studies,theoretical calculations,and linear and nonlinear optical properties of terpyridyl lanthanide complexes: New evidence for the contribution of f electrons to the NLO activity.Journal of the American Chemical Society 2006,128(37),12243-12255.
    [10]Cheng,W.D.;Wu,D.S.;Shen,J.;Huang,S.P.;Xie,Z.;Zhang,H.;Gong,Y.J.,From molecule to bulk material: Optical properties of hydrogen-bonded dimers[Cl_2H_(12)N_4O_2AgPF_6]_2 and[C_(28)H_(28)N_6O_3AgPF_6]_2 depend on the arrangement of the oxime moieties.Chemistry-a European Journal 2007,13(18),5151-5159.
    [11]Jiang,H.L.;Huang,S.P.;Fan,Y.;Mao,J.G.;Cheng,W.D.,Explorations of new types of second-order nonlinear optical materials in Cd(Zn)-V-v-Te-Ⅳ-O systems.Chemistry-a European Journal 2008,14(6),1972-1981.
    [12]Cheng,W.D.;Wu,D.S.;Zhang,H.;Chen,J.T.,Electronic structure and spectrum third-order nonlinear optics of the metal phthalocyanines PcM(M = Zn,Ni,TiO).Physical Review B 2001,6412(12).
    [13]Liu,Y.C.;Kan,Y.H.;Wu,S.X.;Yang,G.C.;Zhao,L.;Zhang,M.;Guan,W.;Su,Z.M.,Theoretical study on a novel series of fullerene-containing organometallics Fe(eta(5)-C55X5)(2)(X = CH,N,B)and their large third-order Nonlinear optical properties.Journal of Physical Chemistry A 2008,112(35),8086-8092.
    [14]Gradinaru,J.;Forni,A.;Druta,V.;Tessore,F.;Zecchin,S.;Quici,S.;Garbalau,N.,Structural,spectral,electric-field-induced second harmonic,and theoretical study of Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),and VO(Ⅱ)complexes with[N2O2]unsymmetrical schiff bases of S-methylisothiosemicarbazide derivatives.Inorganic Chemistry 2007,46(3),884-895.
    [15]Yang,G.C.;Su,Z.M.;Qin,C.S.,Theoretical study on the second-order nonlinear optical properties of asymmetric spirosilabifluorene derivatives.Journal of Physical Chemistry A 2006,110(14),4817-4821.
    [16]Pan,Y.;Liu,C.P.;Zeng,B.S.;Li,Q.H.;Wu,K.C.,TDDFT study on electronic absorption spectra and second-order NLO properties of penta-nuclear planar “open” transition metal cluster complexes.Acta Chimica Sinica 2006,64(20),2039-2045.
    [17]Liu,C.G.;Qiu,Y.Q.;Sun,S.L.;Chen,H.;Li,N.;Su,Z.M.,DFT study on second-order nonlinear optical properties of a series ofmono Schiff-base M(Ⅱ)(M = Ni,Pd,Pt)complexes.Chemical Physics Letters 2006,429(4-6),570-574.
    [18]Bella,S.D.,Second-order nonlinear optical properties of transition metal complexes.Chemical Society Reviews 2001,30,355-366.
    [19]Hoffmann,R.;Imamura,A.;Zeiss,G.D.,The Spirarenes.Journal of the American Chemical Society 1967,89(20),5215-5220.
    [20]Simmons,H.E.;Fukunaga,T.,Spiroconjugation.Journal of the American Chemical Society 1967,89(20),5208-5215.
    [21]Boger,D.L.;Dong,J.Y.;Hikota,M.;Ishida,M.,Total synthesis of phomazarin.Journal of the American Chemical Society 1999,121(11),2471-2477.
    [22]Devereux,M.;McCann,M.;Leon,V.;McKee,V.;Ball,R.J.,Synthesis and catalytic activity of manganese(Ⅱ)complexes of heterocyclic carboxylic acids: X-ray crystal structures of[Mn(pyr)_2]_n,[Mn(dipic)(bipy)_2].4.5H_2O and[Mn(chedam)(bipy)].H_2O(pyr = 2-pyrazinecar-boxylic acid;dipic = pyridine-2,6-dicarboxylic acid;chedam = chelidamic acid(4-hydroxypyridine-2,6-dicarboxylic acid);bipy = 2,2-bipyridine).Polyhedron 2002,21(1 1),1063-1071.,
    [23]Hall,A.K.;Harrowfield,J.M.;Skelton,B.W.;White,A.H.,Chelidamic acid monohydrate: the proton complex of a multidentate ligand.Acta Crystallographica Section C-Crystal Structure Communications 2000,56,448-450.
    [24]Searcey,M.;McClean,S.;Madden,B.;McGown,A.T.;Wakelin,L.P.G.,Synthesis,DNA-cleaving properties and cytotoxicity of intercalating chelidamic acid derivatives.Anti-CancerDrug Design 1998,13(8),837-855.
    [25]Zhou,G.W.;Guo,G.C.;Liu,B.;Wang,M.S.;Cai,L.Z.;Huang,J.S.,3-D hydrogen-bonded frameworks of two metal complexes with chelidamic acid: Syntheses,structures and magnetism.Bulletin of the Korean Chemical Society 2004,25(5),676-680.
    [26]Zhou,G.W.;Guo,G.C.;Cai,L.Z.;Liu,B.;Huang,J.S.,One-dimensional hydrogen-bonded double chain composed of a copper(Ⅱ)complex with chelidamic acid.Chinese Journal of Structural Chemistry 2006,25(1),59-62.
    [27]Zhou,G.W.;Wu,A.Q.;Wang,M.S.;Guo,G.C.;Huang,J.S.,Diaquachlorido (4-hydroxypyridine-2,6-carboxylato-kappa N-3,O,O')iron(Ⅲ)18-crown-6 dihydrate.Acta Crystallographica Section E-Structure Reports Online 2007,63,M2463-U269.
    [28]Zhou,G.W.;Lan,Y.Z.;Zheng,F.K.;Zhang,X.;Lin,M.H.;Guo,G.C.;Huang,J.S.,[Zn(C_7H_3O_5N)]n.nH_2O: A third-order NLO Zn coordination polymer with spiroconjugated structure.Chemical Physics Letters 2006,426(4-6),341-344.
    [29]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Zakrzewski,V.G.;Montgomery,J.A.,Jr.;Stratmann,R.E.;Burant,J.C.;Dapprich,S.;Millam,J.M.;Daniels,A.D,;Kudin,K.N.;Strain,M.C.;Farkas,O.;Tomasi,J.;Barone,V.;Cossi,M.;Cammi,R.;Mennucci,B.;Pomelli,C.;Adamo,C.;Clifford,S.;Ochterski,J.;Petersson,G A.;Ayala,P Y.;Cui,Q.;Morokuma,K.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Cioslowski,J.;Ortiz,J.V.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P;Komaromi,I.;Gomperts,R.;Martin,R.L.;Fox,D.J.;Keith,T.;A1-Laham,M.A.;Peng,C.Y.;Nanavakkara,A.;Gonzalez,C.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.;Andres,J.L.;Gonzalez,C.;Head-Gordon,M.;Replogle,E.S.;Pople,J.A.Gaussian 03,Revision B.04.Gaussian,Inc.;Pittsburgh,PA,2003.
    [30]Stratmann,R.E.;Scuseria,G.E.;Frisch,M.J.,An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules.Journal of Chemical Physics 1998,109(1 9),8218-8224.
    [31]Bauemschmitt,R.;Ahlrichs,R.,Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory.Chemical Physics Letters 1996,256,454-464.
    [32]Casida,M.E.;Jamorski,C.;Casida,K.C.;Salahub,D.R.,Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold.Journal of Chemical Physics 1998,108(11),4439-4449.
    [33]Becke,A.D.,Density-functional exchange-energy approximation with correct asymptotic behavior.Physical Review A 1988,38,3098.
    [34]Lee,C.;Yang,W.;Parr,R.G.,Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Physical Review B 1988,37,785.
    [35]Orr,B.J.;Ward,J.F.,Perturbation theory of the non-linear optical polarization of an isolated system.Molecular Physics 1971,20,513.
    [36]Pierce,B.M.,A theoretical analysis of third-order nonlinear optical properties of linear polyenes and benzene.Journal of Chemical Physics 1989,91,791.
    [37]Lan,Y.Z.;Cheng,W.D.;Wu,D.S.;Shen,J.;Huang,S.P.;Zhang,H.;Gong,Y.J.;Li,F.F.,A theoretical investigation of hyperpolarizability for small GanAsm(n+m=4-10)clusters.Journal of Chemical Physics 2006,124(9).
    [38]Boyd R.W.Nonlinear Optics;Academic Press: San Diego,2003,pp.149.
    [1]Krmer,S.;Green,D.M.,Acid and alkaline phosphatase dynamics and their relationship to soilmicroclimate in a semiaridwoodland.Soil Biology & Biochemistry 2000,32,179-188.
    [2]Hopkins,E.H.;Hippe,D.J.;Frick,E.A.;Buell,G.R.U.S.Geological Survey Open-File Report 00-187.Available at http://http.://ga.water.usgs.gov/publications/ofr00-187.pdf;2000.
    [3]Cremlyn,R.J.,In Agrochemicals: Preparation and Mode of Action,John Willey & Sons Ltd: Chichester,1991;pp 105-157.
    [4]Munro,N.B.;Ambrose,K.R.;Watson,A.P.,Toxicity of the organophosphate chemical warfare agents GA,GB,and VX: Implication for public protection.Environmental Health Perspectives 1994,102,18-38.
    [5]Raushel,F M.,Bacterial detoxification of organophosphate nerve agents.Current Opinion in Microbiology 2002,5(3),288-295.
    [6]Faustman,E.M.;Silbernagel,S.M.;Fenske,R.A.;Burbacher,T.M.;Ponce,R.A.,Mechanisms underlying children's susceptibility to environmental toxicants.Environ Health Perspect 2000,10S(Suppl.1),13-21.
    [7]Munnecke,D.M.,Enzymic hydrolysis of organophosphate insecticides,a possible pesticide disposal method.Applied and Environmental Microbiology 1976,32(1),7-13.
    [8]Serdar,C.M.;Gibson,D.T.;Munnecke,D.M.;Lancaster,J.H.,Plasmid involvement in parathion hydrolysis by Pseudomonas-Diminuta.Applied and Environmental Microbiology 1982,44(1),246-249.
    [9]Mulbry,W.W.;Karns,J.S.;Kearney,P.C.;Nelson,J.O.;McDaniel,C.S.;Wild,J.R.,Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp.by southern hybridization with opd from Pseudomanas diminuta.Applied and Environmental Microbiology 1986,51(5),926-930.
    [10]Serdar,C.M.;Murdock,D.;Rohde,M.,Parathion hydrolase gene from Pseudomonas diminuta MG: Subcloning,complete nucleotide sequence,and expression of the mature portion of the enzyme in E.coli.Biotechnology 1989,7(11),1151-1155.
    [11]Donarski,W.J.;Dumas,D.P.;Heitmeyer,D.P.;Lewis,V.E.;Raushel,F.M.,Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta.Biochemistry 1989,28(11),4650-4655.
    [12]Raushel,F.M.;Holden,H.M.,Phosphotriesterase: an enzyme in search of its natural substrate.Advances in Enzymology & Related Areas of Molecular Biology 2000,74,51-93.
    [13]Chen-Goodspeed,M.;Sogorb,M.A.;Wu,F.Y.;Raushel,F.M.,Enhancement,relaxation,and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues.Biochemistry 2001,40(5),1332-1339.
    [14]Raushel,F.M.,Kinetic evolution to the catalytic core of the bacterial phosphotriesterase.Enzyme Functionality 2004,247-259.
    [15]Grimsley,J.K.;Calamini,B.;Wild,J.R.;Mesecar,A.D.,Structural and mutational studies of organophosphorus hydrolase reveal a cryptic and functional allosteric-binding site.Archives of Biochemistry and Biophysics 2005,442(2),169-179.
    [16]Grimsley,J.K.;Scholtz,J.M.;Pace,C.N.;Wild,J.R.,Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric intermediate.Biochemistry 1997,36(47),14366-14374.
    [17] Rochu, D.; Viguie, N.; Renault, R; Crouzier, D.; Froment, M. T.; Masson, P., Contribution of the active-site metal cation to the catalytic activity and to the conformational stability of phosphotriesterase: temperature- and pH-dependence. Biochemical Journal 2004, 380,627-633.
    [18] Chen-Goodspeed, M.; Sogorb, M. A.; Wu, F. Y.; Raushel, F. M, Enhancement, relaxation,and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues. Biochemistry 2001, 40, 1332-1339.
    [19] Hong, S. B.; Raushel, F. M, Stereochemical constraints on the substrate specificity of phosphotriesterase. Biochemistry 1999, 38(4), 1159-1165.
    [20] Dumas, D. P.; Caldwell, S. R.; Wild, J. R.; Raushel, F. M., Purification and Properties of the Phosphotriesterase from Pseudomonas diminuta. Journal of Biological Chemistry 1989,264(33), 19659-19665.
    [21] Lai, K. H.; Dave, K. I.; Wild, J. R., Bimetallic binding motifs in organophosphorus hydrolase are important for catalysis and structural organization. Journal of Biological Chemistry 1994,269, 16579-16584.
    [22] Lai, K. H.; Grimsley, J. K.; Kuhlmann, B. D.; Scapozza, L.; Harvey, S. P.; DeFrank, J. J.;Kolakowski, J. E.; Wild, J. R., Rational enzyme design: Computer modeling and site-directed mutagenesis for the modification of catalytic specificity in organophosphorus hydrolase.Chimia 1996, 50(9), 430-431.
    [23] Watkins, L. M.; Mahoney, H. J.; McCulloch, J. K.; Raushel, F. M., Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. Journal of Biological Chemistry 1997, 272(41), 25596-25601.
    [24] Kuo, J. M.; Chae, M. Y.; Raushel, F. M., Perturbations to the active site of phosphotriesterase.Biochemistry 1997, 36(8), 1982-1988.
    [25] Roodveldt, C; Tawfik, D. S., Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Protein Engineering, Design and Selection 2005,18(1), 51-58.
    [26] Cho, C. M.-H.; Mulchandani, A.; Chen, W., Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Applied and Environmental Microbiology 2002, 68(4),2026-2030.
    [27] Griffiths, A. D.; Tawfik, D. S., Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. The EMBO Journal 2003,22(1), 24-35.
    [28] Hill, C. M.; Li, W.-S.; Thoden, J. B.; Holden, H. M.; Raushel, F. M., Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site.Journal of the American Chemical Society 2003,125(30), 8990-8991.
    [29] Gopal, S.; Rastogi, V.; Ashman, W.; Mulbry, W., Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX. Biochemical and Biophysical Research Communications 2000, 279(2), 516-519.
    [30] diSioudi, B.; Grimsley, J. K.; Lai, K. H.; Wild, J. R., Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity.Biochemistry 1999, 38(10), 2866-2872.
    [31] diSioudi, B. D.; Miller, C. E.; Lai, K. H.; Grimsley, J. K.; Wild, J. R., Rational design of organophosphorus hydrolase for altered substrate specificities. Chemico-Biological Interactions 1999,120, 211-223.
    [32] Cho, C. M.-H.; Mulchandani, A.; Chen, W., Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides.Protein Engineering, Design and Selection 2006,19(3), 99-105.
    [33] Soares, T. A.; Osman, M. A. S., T. P., Molecular dynamics of organophosphorous hydrolases bound to the nerve agent soman. Journal of Chemical Theory and Computation 2007, 3(4),1569-1579.
    [34] Benning, M. M.; Kuo, J. M.; Raushel, F. M.; Holden, H. M., 3-Dimensional structure of phosphotriesterase - an enzyme capable of detoxifying organophosphate nerve agents.Biochemistry 1994, 33(50), 15001-15007.
    [35] Benning, M. M.; Kuo, J. M.; Raushel, F. M.; Holden, H. M., 3-Dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry 1995, 34(25), 7973-7978.
    [36] Elias, M.; Dupuy, J.; Merone, L.; Lecomte, C; Rossi, M.; Masson, P.; Manco, G; Chabriere,E., Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase. Acta Crystallographica Section F 2007, 63,553-555.
    [37] Vanhooke, J. L.; Benning, M. M.; Raushel, F. M.; Holden, H. M, Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemistry 1996, 35(19), 6020-6025.
    [38] Benning, M. M.; Shim, H.; Raushel, F. M.; Holden, H. M., High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta.Biochemistry 2001, 40(9), 2712-2722.
    [39] Omburo, G. A.; Kuo, J. M.; Mullins, L. S.; Raushel, F. M., Characterization of the zinc binding site of bacterial phosphotriesterase. Journal of Biological Chemistry 1992, 267(19),13278-13283.
    [40] Hong, S. B.; Raushel, F. M., Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Biochemistry 1996, 35(33), 10904-10912.
    [41] Kafafi, S. A.; Krauss, M., Ab initio determination of the structure of the active site of a metalloenzyme: Metal substitution in phosphotriesterase using density functional methods.International Journal of Quantum Chemistry 1999, 75(3), 289-299.
    [42] Krauss, M., Ab initio structure of the active site of phosphotriesterase. Journal of Chemical Information and Computer Sciences 2001, 41(1), 8-17.
    [43] Krauss, M.; Olsen, L.; Antony, J.; Hemmingsen, L., Coordination geometries of Zn(Ⅱ) and Cd(Ⅱ) in phosphotriesterase: Influence of water molecules in the active site. Journal of Physical Chemistry B 2002,106(36), 9446-9453.
    [44] Li, G.; Cui, Q., Mechanochemical coupling in myosin: A theoretical analysis with molecular dynamics and combined QM/MM reaction path calculations. Journal of Physical Chemistry B 2004,108(10), 3342-3357.
    [45] Wladkowski, B. D.; Ostazeski, P.; Chenoweth, S.; Broadwater, S. J.; Krauss, M., Hydrolysis of cyclic phosphates by ribonuclease A: A computational study using a simplified ab initio quantum model. Journal of Computational Chemistry 2003, 24(14), 1803-1811.
    [46] Zheng, F.; Zhan, C. G; Ornstein, R. L., Theoretical determination of two structural forms of the active site in cadmium-containing phosphotriesterases. Journal of Physical Chemistry B 2002, 106(3), 717-722.
    [47] Zheng, F.; Zhan, C. G; Omstein, R. L., Theoretical studies of reaction pathways and energy barriers for alkaline hydrolysis of phosphotriesterase substrates paraoxon and related toxic phosphofluoridate nerve agents. Journal of the Chemical Society - Perkin Transaction 2001,2(12), 2355-2363.
    [48] Chen, S. L.; Fang, W. H.; Himo, F., Theoretical study of the phosphotriesterase reaction mechanism. Journal of Physical Chemistry B 2007,111(6), 1253-1255.
    [49] Wong, K. Y.; Gao, J., The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM Simulations. Biochemistry 2007, 46(46), 13352-69.
    [50] Aubert, S. D.; Li, Y.; Raushel, F. M., Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 2004, 43(19), 5707-5715.
    [51] Zhan, C. G; de Souza, O. N.; Rittenhouse, R. C; Ornstein, R. L., Determination of two structural forms of catalytic bridging ligand in zinc-phosphotriesterase by molecular dynamics simulation and quantum chemical calculation. Journal of the American Chemical Society 1999,121(32), 7279-7282.
    [52] Ko(?)a, J.; Zhan, C. G; Rittenhouse, R. C; Ornstein, R. L., Mobility of the active site bound paraoxon and sarin in zinc-phosphotriesterase by molecular dynamics simulation and quantum chemical calculation. Journal of the American Chemical Society 2001, 123(5),817-826.
    [53] Ko(?)a, J.; Zhan, C.-G; Rittenhouse, R. C; Ornstein, R. L., Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics. Journal of Computational Chemistry 2003, 24(3), 368-378.
    [54] Benning, M. M.; Hong, S. B.; Raushel, F. M.; Holden, H. M., The binding of substrate analogs to phosphotriesterase. Journal of Biological Chemistry 2000, 275, 30556-30560.
    [55] Su(?)rez, D.; Brothers, E. N.; Merz, K. M., Jr., Insights into the structure and dynamics of the dinuclear zinc -lactamase site from bacteroides fragilis. Biochemistry 2002, 41(21),6615-6630.
    [56] Lewis, V. E.; Donarski, W. J.; Wild, J. R.; Raushel, F. M., Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase.Biochemistry 1988, 27(5), 1591-1597.
    [57] Jackson, C. J.; Kim, H. K.; Carr, P. D.; Liu, J. W.; Ollis, D. L., The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Biochimica et Biophysica Acta 2005,1752, 56-64.
    [58] Samples, C. R.; Raushel, F. M.; DeRose, V. J., Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes. Biochemistry 2007, 46(11),3435.3442.
    [59] Jackson, C. J.; Foo, J. L.; Kim, H. K.; Carr, P. D.; Liu, J. W.; Salem, G; Ollis, D. L., In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. Journal of Molecular Biology 2008, 375(5), 1189-1196.
    [60] Chen-Goodspeed, M.; Sogorb, M. A.; Wu, F. Y; Hong, S. B.; Raushel, F. M., Structural determinants of the substrate and stereochemical specificity of phosphotriesterase.Biochemistry 2001, 40(5), 1325-1331.
    [61] Li, S. Y.; Tokuyama, T.; Yamamoto, J.; Koide, M.; Yokota, N.; Namba, H., Potent bystander effect in suicide gene therapy using neural stem cells transduced with herpes simplex virus thymidine kinase gene. Oncology 2005, 69(6), 503-508.
    [62]Yi,C.;Huang,Y.;Guo,Z.Y.;Wang,S.R.,Antitumor effect of cytosine deaminase/ 5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma.Acta Pharrnacologica Sinica 2005,26(5),629-634.
    [63]谭万龙.胞嘧啶脱氨酶和胸苷激酶融合双自杀基因治疗膀胱癌实验研究.第一军医大学博士学位论文.2006.
    [64]Fouladi,B.;Sabatier,L.;Miller,D.;Pottier,G.;Murnane,J.P.,The relationship between spontaneous telomere loss and chromosome instability in a human turner cell line.Neoplasia 2000,2(6),540-554.
    [65]Sutton,M.A.;Freund,C.T.M.;Berkman,S.A.;Dang,T.D.;Kattan,M.W.;Wheeler,T.M.;Rowley,D.R.;Lerner,S.P.,In vivo adenovirus-mediated suicide gene therapy of orthotopic bladder cancer.Molecular Therapy 2000,2(3),211-217.
    [66]Wang,D.F.;Ruan,H.J.;Hu,L.;Lamborn,K.R.;Kong,E.L.;Rehemtulla,A.;Deen,D.F.,Development of a hypoxia-inducible cytosine deaminase expression vector for gene-directed prodrug cancer therapy.Cancer Gene Therapy 2005,12(3),276-283.
    [67]Ramnaraine,M.;Pan,W.H.;Goblirsch,M.;Lynch,C.;Lewis,V.;Orchard,P.;Mantyh,P.;Clohisy,D.R.,Direct and bystander killing of sarcomas by novel cytosine deaminase fusion gene.Cancer Research 2003,63(20),6847-6854.
    [68]Mahan,S.D.;Ireton,G.C.;Knoeber,C.;Stoddard,B.L.;Black,M.E.,Random mutagenesis and selection of Escherichia coli cytosine deaminase for cancer gene therapy.Protein Engineering Design & Selection 2004,17(8),625-633.
    [69]Nyati,M.K.;Symon,Z.;Kievit,E.;Dornfeld,K.J.;Rynkiewicz,S.D.;Ross,B.D.;Rehemtulla,A.;Lawrence,T.S.,The potential of 5-fluorocytosine/cytosine deaminase enzyme prodrug gene therapy in an intrahepatic colon cancer model.Gene Therapy 2002,9(13),844-849.
    [70]Poltoratsky,V.P.;Wilson,S.H.;Kunkel,T.A.;Pavlov,Y.I.,Recombinogenic phenotype of human activation-induced cytosine deaminase.Journal of Immunology 2004,172(7),4308-4313.
    [71]Goblirsch,M.;Zwolak,P.;Ramnaraine,M.L.;Pan,W.H.;Lynch,C.;Alaei,P.;Clohisy,D.R.,Novel cytosine deaminase fusion gene enhances the effect of radiation on breast cancer in bone by reducing tumor burden,osteolysis,and skeletal fracture.Clinical Cancer Research 2006,12(10),3168-3176.
    [72]Zhang,Z.J.;Shirakawa,T.;Hinata,N.;Matsumoto,A.;Fujisawa,M.;Okada,H.;Kamidono,S.;Matsuo,M.;Gotoh,A.,Combination with CD/5-FC gene therapy enhances killing of human bladder-cancer cells by radiation.Journal of Gene Medicine 2003,5(10),860-867.
    [73]Fuerer,C.;Iggo,R.,5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene.Gene Therapy 2004,11(2),142-151.
    [74]Xu,G.;McLeod,H.L.,Strategies for enzyme/prodrug cancer therapy.Clinical Cancer Research 2001,7(11),3314-3324.
    [75]Nemunaitis,J.;Cunningham,C.;Senzer,N.;Kuhn,J.;Cramm,J.;Litz,C.;Cavagnolo,R.;Cahill,A.;Clairmont,C.;Sznol,M.,Pilot trial of genetically modified,attenuated Salmonella expressing the E-coli cytosine deaminase gene in refractory cancer patients.Cancer Gene Therapy 2003,10(10),737-744.
    [76]Spencer,D.M.,Developments in suicide genes for preclinical and clinical applications. Current Opinion in Molecular Therapeutics 2000,2(4),433-440.
    [77]丁强,沈历宗.CD基因治疗大肠癌研究进展.国外医学外科学分册2001,28(4),226-229.
    [78]Kuriyama,S.;Mitoro,A.;Yamazaki,M.;Tsujinoue,H.;Nakatani,T.;Akahane,T.;Toyokawa,Y.;Kojima,H.;Okamoto,S.;Fukui,H.,Comparison of gene therapy with the herpes simplex virus thymidine kinase gene and the bacterial cytosine deaminase gene for the treatment of hepatocellular carcinoma.Scandinavian Journal of Gastroenterology 1999,34(10),1033-1041.
    [79]Kuriyama,S.;Masui,K.;Sakamoto,T.;Nakatani,T.;Kikukawa,M.;Tsujinoue,H.;Mitoro,A.;Yamazaki,M.;Yoshiji,H.;Fukrui,H.;Ikenaka,K.;Mullen,C.A.;Tsujii,T.,Bystander effect caused by cytosine deaminase gene and 5-fluorocytosine in vitro is substantially mediated by generated 5-fluorouracil.Anticancer Research 1998,18(5A),3399-3406.
    [80]Kuriyama,S.;Kikukawa,M.;Masui,K.;Okuda,H.;Nakatani,T.;Sakamoto,T.;Yoshiji,H.;Fukui,H.;Ikenaka,K.;Mullen,C.A.;Tsujii,T.,Cytosine deaminase/5-fluorocytosine gene therapy can induce efficient anti-tumor effects and protective immunity in immunocompetent mice but not in athymic nude mice.International Journal of Cancer 1999,81(4),592-597.
    [81]Zhang,M.;Li,S.P.;Nyati,M.K.;DeRemer,S.;Parsels,J.;Rehemtulla,A.;Ensminger,W.D.;Lawrence,T.S.,Regional delivery and selective expression of a high-activity yeast cytosine deaminase in an intrahepatic colon cancer model.Cancer Research 2003,63(3),658-663.
    [82]Erbs,P.;Regulier,E.;Kintz,J.;Leroy,P.;Poitevin,Y.;Exinger,F.;Jund,R.;Mehtali,M.,In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene.Cancer Research 2000,60(14),3813-3822.
    [83]Lee,K.C.;Hamstra,D.A.;Bullarayasamudram,S.;Bhojani,M.S.;Moffat,B.A.;Dornfeld,K.J.;Ross,B.D.;Rehemtulla,A.,Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit.Gene Therapy 2006,13(2),127-137.
    [84]Nakamura,H.;Mullen,J.T.;Chandrasekhar,S.;Pawlik,T.M.;Yoon,S.S.;Tanabe,K.K.,Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil.Cancer Research 2001,61(14),5447-5452.
    [85]Nyati,M.K.;Sreekumar,A.;Li,S.P.;Zhang,M.;Rynkiewicz,S.D.;Chinnaiyan,A.M.;Rehemtulla,A.;Lawrence,T.S.,High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer.Cancer Research 2002,62(8),2337-2342.
    [86]Stolworthy,T.S.;Korkegian,A.M.;Willmon,C.L.;Ardiani,A.;Cundiff,J.;Stoddard,B.L.;Black,M.E.,Yeast cytosine deaminase mutants with increased thermostability impart sensitivity to 5-fluorocytosine.Journal of Molecular Biology 2008,3 77(3),854-869.
    [87]Kievit,E.;Bershad,E.;Ng,E.;Sethna,P.;Dev,I.;Lawrence,T.S.;Rehemtulla,A.,Superiority of yeast over bacterial cytosine deaminase for emzyme/prodrug gene therapy in colon cancer xenografts.Cancer Research 1999,59(7),1417-1421.
    [88]何志颖,江千里,姚玉成,温丽敏,李建秀,王新民,胡以平,王健民.RFP标记的YCD基因在HeLa细胞中的表达及其介导的细胞毒性.癌变畸变突变2004,16(5),272-275.
    [89]Kievit,E.;Nyati,M.K.;Ng,E.;Stegman,L.D.;Parsels,J.;Ross,B.D.;Rehemtulla,A.;Lawrence,T.S.,Yeast cytosine deaminase improves radiosensitization and bystander effect by 5-fluorocytosine of human colorectal cancer xenografts.Cancer Research 2000,60(23),6649-6655.
    [90]张雨生,王健民,周虹,翟勇平.YCD/5-FC自杀基因治疗系统对K562B白血病细胞杀伤作用的小鼠体内实验研究.中华血液学杂志2002,23(4),173-175.
    [91]Ireton,G.C.;Black,M.E.;Stoddard,B.L.,The 1.14 angstrom crystal structure of yeast cytosine deaminase: Evolution of nucleotide salvage enzymes and implications for genetic chemotherapy.Structure 2003,11(8),961-972.
    [92]Ko,T.P.;Lin,J.J.;Hu,C.Y.;Hsu,Y.H.;Wang,A.H.J.;Liaw,S.H.,Crystal structure of yeast cytosine deaminase-Insights into enzyme mechanism and evolution.Journal of Biological Chemistry 2003,278(21),19111-19117.
    [93]Korkegian,A.;Black,M.E.;Baker,D.;Stoddard,B.L.,Computational thermostabilization of an enzyme.Science 2005,308(5723),857-860.
    [94]Sklenak,S.;Yao,L.S.;Cukier,R.I.;Yan,H.G.,Catalytic mechanism of yeast cytosine deaminase: An ONIOM computational study.Journal of the American Chemical Society 2004,126(45),14879-14889.
    [95]Yao,L.S.;Sklenak,S.;Yan,H.G.;Cukier,R.I.,A molecular dynamics exploration of the catalytic mechanism of yeast cytosine deaminase.Journal of Physical Chemistry B 2005,109(15),7500-7510.
    [96]Yao,L.S.;Yan,H.G.;Cukier,R.I.,A combined ONIOM quantum chemical-molecular dynamics study of zinc-uracil bond breaking in yeast cytosine deaminase.Journal of Physical Chemistry B 2006,110(51),26320-26326.
    [97]Yao,L.S.;Li,Y.;Wu,Y.;Liu,A.Z.;Yan,H.G.,Product release is rate-limiting in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase.Biochemistry 2005,44(15),5940-5947.
    [98]Yao,L.S.;Yah,H.G.;Cukier,R.I.,A molecular dynamics study of the ligand release path inyeast cytosine deaminase.Biophysical Journal 2007,92(7),2301-2310.
    [99]Yao,L.S.;Cukier,R.I.;Yan,H.G.,Catalytic mechanism of guanine deaminase: An ONIOM and molecular dynamics study.Journal of Physical Chemistry B 2007,111(16),4200-4210.
    [100]Xu,Q.;Guo,H.B.;Gorin,A.;Guo,H.,Stabilization of a transition-state analogue at the active site of yeast cytosine deaminase: Importance of proton transfers.Journal of Physical Chemistry B 2007,111(23),6501-6506.
    [101]Matsubara,T.;Dupuis,M.;Aida,M.,The ONIOM molecular dynamics method for biochemical applications: Cytidine deaminase.Chemical Physics Letters 2007,437(1-3),138-142.
    [102]Matsubara,T.;Dupuis,M.;Aida,M.,An insight into the environmental effects of the pocket of the active site of the enzyme.Ab initio ONIOM-molecular dynamics(MD)study on cytosine deaminase.Journal of Computational Chemistry 2008,29(3),458-465.
    [1]Allen,M.P.;Tildesley,D.L.Computer simulation of liquids;Oxford University Press: Oxford,1989.
    [2]Leach,A.Molecular Modelling.: Principles and Applications,2~(nd)ed.;Prentice Hall: Harlow,2001.
    [3]Cramer,C.J.Essentials of Computational Chemistry: Theories and Models,2~(nd)ed.;John Wiley & Sons Ltd: West Sussex,England,2004.
    [4]陈正隆,徐为人.分子模拟的理论与实践,化学工业出版社:北京,2007.
    [5]杨小震.分子模拟与高分子材料,科学出版社:北京,2002.
    [6]江元生.分子模拟基础讲义.
    [7]Dauber-Osguthorpe,P.;Roberts,V.A.;Osguthorpe,D.J.,Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim,a drug-receptor system.Proteins: Structure,Function and Genetics 1988,4,31-47.
    [8]Nevins,N.;Chen,K.;Allinger,N.L.,Molecular mechanics(MM4)calculations on alkenes.Journal of Computational Chemistry 1998,17(5-6),669--694.
    [9]Nevins,N.;Allinger,N.L.,Molecular mechanics(MM4)vibrational frequency calculations for alkenes and conjugated hydrocarbons.Journal of Computational Chemistry 1998,17(5-6),730-746.
    [10]Mayo,S.L.;Olafson,B.D.;Goddard Ⅲ,W.A.,DREIDING: A Generic Force Field for Molecular Simulations.Journal of Physical Chemistry 1990,94,8897-8909.
    [11]Hwang,M.J.;Stockfisch,T.P.;Hagler,A.T.,Derivation of Class I1 Force Fields.2.Derivation and Characterization of a Class I1 Force Field,CFF93,for the Alkyl Functional Group and Alkane Molecules.Journal of the American Chemical Society 1994,116,2515-2525.
    [12]Halgren,T.A.,Merck molecular force field.I.Basis,form,scope,parameterization,and performance of MMFF94.Journal of Computational Chemistry 1998,17(5-6),490-519.
    [13]Sun,H.,COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds.Journal of Physical Chemistry B 1998,102,7338-7364.
    [14]Weiner,S.J.;Kollman,P.A.;Case,D.A.;Singh,U.C.;Ghio,C.;Alagona,G.;Profeta,S.J.;Weiner,P.,A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins.Journal of the American Chemical Society 1984,106,765-784.
    [15]MacKerell,A.D.Jr;Bashford,D.;Bellott,M.,All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins.Journal of Physical Chemistry B 1998,102,3586-3616.
    [16]Pranata,J.;Wierschke,S.G..;Jorgensen,W.L.,OPLS potential functions for nucleotide bases-Relative association constants of hydrogen-bonded base pairs in chloroform.Journal of the American Chemical Society 1991,113,2810-2819.
    [17]Van Gunsteren,W.F.;Billeter,S.R.;Eising,A.A.,Biomolecular Simulation: The GROMOS96 Manual and User Guide.Vdf Hochschulverlang: ETH Zurich,Switzerland,1996.
    [18]Berendsen,H.J.C.;van der Spoel,D.;van Drunen,R.,GROMACS: A message-passing parallel molecular dynamics implementation.Computer Physics Communications 1995,91, 43-56.
    [19]Martin,M.G.;Siepmann,J.I.,Transferable potentials for phase equilibria.1.United-atom description of n-alkanes.Journal of Physical Chemistry B 1998,102,2569-2577.
    [20]Brooks,B.R.;Bruccoleri,R.E.;Olafson,B.D.;States,D.J.;Swaminathan,S.;Karplus,M.,CHARMM: A program for macromolecular energy,minimization,and dynamics calculations.Journal of Computational Chemistry 1983,4,187-217.
    [21]林梦海.量子化学计算方法与应用.科学出版社:北京,2004.
    [22]Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.D.;Impey,R.W.;Klein,M.L.,Comparison of simple potential functions for simulating liquid water.Journal of Chemical Physics 1983,79(2),926-935.
    [23]Yuchun Lin,Exploration of the chemical and biological processes through molecular dynamics simulation and blocklocalized wavefunction method.PhD Dissertation of Western Michigan University.2008.
    [24]McQuarrie,D.A.,Statistical Mechanics;University Science Books: Sausalito,California,2000.
    [25]Warshel,A.,Computer simulations of enzyme catalysis: Methods,progress,and insights.Annual Review of Biophysics and Biomolecular Structure 2003,32,425-443.
    [26]Li,G.H.;Zhang,X.D.;Cui,Q.,Free energy perturbation calculations with combined QM/MM potentials complications,simplifications,and applications to redox potential calculations.Journal of Physical Chemistry B 2003,107(33),8643-8653.
    [27]Naray-Szabo,G.;Warshel,A.Computational Approaches to Biochemical reactivity;Kluwer Academic Publishers: Dordrecht,1997,pp 103-123.
    [28]Tapia,O.;Bertr(?)n,J.Solvent Effects and Chemical Reactivity;Kluwer Academic Publishers: Dordrecht,1996,pp 125-177.
    [29]Torrie,G.M.;Valleau,J.P.,Non-Physical sampling distributions in Monte-Carlo free-energy estimation-Umbrella sampling.Journal of Computational Physics 1977,23(2),187-199.
    [30]Kumar,S.;Rosenberg,J.M.;Bouzida,D.;Swendsen,R.H.;Kollman,P.A.,The weighted histogram analysis method for free-energy calculations on biomolecules.I.The method.Journal of Computational Chemistry 1992,13,1011-1021.
    [31]Berman,H.M.;Olson,W.K.;Beveridge,D.L.;Westbrook,J.;Gelbin,A.,The Nucleic Acid Database: A Comprehensive Relational Database of Three-Dimensional Structures of Nucleic Acids.Biophysical Journal 1992,63,751-759.
    [32]Lamoureux,G.;Roux,B.,Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm.Journal of Chemical Physics 2003,119(6),3025-3039.
    [33]Rick,S.W.;Stuart,S.J.;Berne,B.J.,Dynamical fluctuating charge force fields: Application to liquid water.Journal of Chemical Physics 1994,101(7),6141-6156.
    [34]Banks,J.L.;Kaminski,G.A.;Zhou,R.H.;Mainz,D.T.;Berne,B.J.;Friesner,R.A.,Parametrizing a polarizable force field from ab initio data.I.The fluctuating point charge model.Journal of Chemical Physics 1999,110(2),741-754.
    [35]Warshel A.;Levitt,M.,Theoretical studies of enzymic reactions-dielectric,electrostatic and steric stabilization of carbonium-Ion in reaction of lysozyme.Journal of Molecular Biology.1976,103(2),227-249.
    [36]Field,M.J.;Bash,P.A.;Karplus,M.,A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations.Journal of Computational Chemistry 1990,11(6),700-733.
    [37]Stewart,J.J.P.,Optimization of parameters for semiempirical methods.1.Method.Journal of Computational Chemistry 1989,10(2),209-220.
    [38]Wei,K.;Liu,L.;Li X.S.;Guo Q.X.,Combined Quantum Mechanism and Molecular Mechanism Method.Chinese Journal of Chemical Physics 2005,18,641-650.
    [39]莫亦荣,Alhambra,C.,高加力.量子力学和分子力学组合方法及其应用.化学学报2000,58(12),1504-1510.
    [40]Singh,U.C.;Kollman,P.A.,A Combined Ab initio Quantum-Mechanical and Molecular Mechanical Method for Carrying out Simulations on Complex Molecular-Systems-Applications to the CH3Cl+Cl Exchange-Reaction and Gas-Phase Protonafion of Polyethers.Journal of Computational Chemistry 1986,7,718-730.
    [41]Eurenius,K.P.;Chatfield,D.C.;Brooks,B.R.;Hodoscek,M.,Enzyme Mechanisms with Hybrid Quantum and Molecular Mechanical Potentials.I.Theoretical Considerations.International Journal of Quantum Chemistry 1996,60,1189-1200.
    [42]Thery,V.;Rinaldi,D.;Rivail,J.L.;Maigret,B.;Ferenczy,G.G.,Quantum mechanical computations on very large molecular systems: The local selfconsistent-field method.Journal of Computational Chemistry 1994,15(3),269-282.
    [43]Assfeld,X.;Rivail,J.L.,Quantum chemical computations on parts of large molecules: the ab initio local self consisternt field method.Chemical Physics Letters 1996,263(1-2),100-106.
    [44]Gao,J.;Amara,P.;Alhambra,C.;Field,M.J.,A generalized hybrid orbital(GHO)method for the treatment of boundary atoms in combined QM/MM calculations.Journal of Physical Chemistry A 1998,102(24),4714-4721.
    [45]Pu,J.Z.;Gao,J.L.;Truhlar,D.G.,Generalized hybrid orbital.(GHO)method for combining ab initio Hartree-Fock wave functions with molecular mechanics.Journal of Physical Chemistry A 2004,108(4),632-650.
    [46]Zhang,Y.;Lee,T.;Yang,W.,A pseudobond approach to combining quantum mechanical and molecular mechanical methods.Journal of Chemical Physics 1999,110(1),46-54.
    [1]Zhan,C.G.;de Souza,O.N.;Rittenhouse,R.C.;Omstein,R.L.,Determination of two structural forms of catalytic bridging ligand in zinc-phosphotriesterase by molecular dynamics simulation and quantum chemical calculation.Journal of the American Chemical Society 1999,121(32),7279-7282.
    [2]Krauss,M.,Ab initio structure of the active site of phosphotfiesterase.Journal of Chemical Information and Computer Sciences 2001,41(1),8-17.
    [3]Kafafi,S.A.;Krauss,M.,Ab initio determination of the structure of the active site of a metalloenzyme: Metal substitution in phosphotriesterase using density functional methods.International Journal of Quantum Chemistry 1999,75(3),289-299.
    [4]Ko(?)a,J.;Zhan,C.G.;Rittenhouse,R.C.;Omstein,R.L.,Mobility of the active site bound paraoxon and satin in zinc-phosphotriesterase by molecular dynamics simulation and quantum chemical calculation.Journal of the American Chemical Society 2001,123(5),817-826.
    [5]Chen,S.L.;Fang,W.H.;Himo,F.,Theoretical study of the phosphotriesterase reaction mechanism.Journal of Physical Chemistry B 2007,111(6),1253-1255.
    [6]Wong,K.Y.;Gao,J.,The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM Simulations.Biochemistry 2007,46(46),13352-69.
    [7]Warshel,A.;Florian,J.,Computer simulations of enzyme catalysis: Finding out what has been optimized by evolution.Proceedings of the National Academy of Sciences USA 1998,95(11),5950-5955.
    [8]Warshel,A.;Levitt,M.,Theoretical studies of enzymic reactions-dielectric,electrostatic and steric stabilization of carbonium-Ion in reaction of lysozyme.Journal of Molecular Biology 1976,103(2),227-249.
    [9]Singh,U.C.;Kollman,P.A.,A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3C1 + C1-exchange reaction and gas phase protonation of polyethers.Journal of Computational Chemistry 1986,7(6),718-730.
    [10]Field,M.J.;Bash,P.A.;Karplus,M.,A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations.Journal of Computational Chemistry 1990,11(6),700-733.
    [11]Dapprich,S.;Komaromi,I.;Byun,K.S.;Morokuma,K.;Frisch,M.J.,A new ONIOM implementation in Gaussian98.Part I.The calculation of energies,gradients,vibrational frequencies and electric field derivatives.Journal of Molecular Structure.: THEOCHEM 1999,462,1-21.
    [12]Monard,G.;Merz,K.M.,Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems.Accounts of Chemical Research 1999,32,904-911.
    [13]Molecules,S.I.Q.C.M.f.L.,Special Issue: Quantum Chemical Methods for Large Molecules.Journal of Computational Chemistry 2000,21,1419-1588.
    [14]Zhang,Y.K.;Liu,H.Y.;Yang,W.T.,Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface.Journal of Chemical Physics 2000,112(8),3483-3492.
    [15]Cui,Q.;Guo,H.;Karplus,M.,Combining ab initio and density functional theories with semiempirical methods.Journal of Chemical Physics 2002,117(12),5617-5631.
    [16]Field,M.J.,Simulating enzyme reactions: Challenges and perspectives.Journal of Computational Chemistry 2002,23(1),48-58.
    [17]Gao,J.L.;Truhlar,D.G.,Quantum mechanical methods for enzyme kinetics.Annual Review of Physical Chemistry 2002,53,467-505.
    [18]Truhlar,D.G.;Gao,J.L.;Alhambra,C.;Garcia-Viloca,M.;Corchado,J.;Sanchez,M.L.;Villa,J.,The incorporation of quantum effects in enzyme kinetics modeling.Accounts of Chemical Research 2002,35(6),341-349.
    [19]Gordon,M.S.;Schmidt,M.W.,Recent Advances in QM and QM/MM Methods.In Computational Science-Iccs 2003,Pt Iv,Proceedings,2003;Vol.2660,pp 75-83.
    [20]Li,H.;Pomelli,C.S.;Jensen,J.H.,Continuum solvation of large molecules described by QM/MM: a semi-iterative implementation of the PCM/EFP interface.Theoretical Chemistry Accounts 2003,109(2),71-84.
    [21]Monard,G.;Prat-Resina,X.;Gonzalez-Lafont,A.;Lluch,J.M.,Determination of enzymatic reaction pathways using QM/MM methods.International Journal of Quantum Chemistry 2003,93(3),229-244.
    [22]Warshel,A.,Computer simulations of enzyme catalysis: Methods,progress,and insights.Annual Review of Biophysics and Biomolecular Structure 2003,32,425-443.
    [23]Benkovic,S.J.;Hammes-Schiffer,S.,A perspective on enzyme catalysis.Science 2003,301(5637),1196-1202.
    [24]Rega,N.;Iyengar,S.S.;Voth,G.A.;Schlegel,H.B.;Vreven,T.;Frisch,M.J.,Hybrid ab-initio/empirical molecular dynamics: Combining the ONIOM scheme with the atom-centered density matrix propagation(ADMP)approach.Journal of Physical Chemistry B 2004,108(13),4210-4220.
    [25]Elstner,M.,The SCC-DFTB method and its application to biological systems.Theoretical Chemistry Accounts 2006,116(1-3),316-325
    [26]Gao,J.;Ma,S.;Major,D.T.;Nam,K.;Pu,J.;Truhlar,D.G.,Mechanisms and free energies of enzymatic reactions.Chemical Reviews 2006,106(8),3188-3209.
    [27]Warshel,A.;Sharma,P.K.;Kato,M.;Xiang,Y.;Liu,H.;Olsson,M.H.M.,Electrostatic basis for enzyme catalysis.ChemicalReviews 2006,106(8),3210-3235.
    [28]Bruice,T.C.,Computational approaches: Reaction trajectories,structures,and atomic motions.Enzyme reactions and proficiency Chemical Reviews 2006,106(8),3119-3139.
    [29]Riccardi,D.;Schaefer,P.;Yang,Y.;Yu,H.;Ghosh,N.;Prat-Resina,X.;K(o|¨)nig,P.;Li,G.;Xu,D.;Guo,H.;Elstner,M.;Cui,Q.,Development of effective quantum mechanical/molecular mechanical(QM/MM)methods for complex biological processes.Journal of Physical Chemistry B 2006,110(13),6458-6469.
    [30]Lin,H.;Truhlar,D.G.,QM/MM: what have we learned,where are we,and where do we go from here? Theoretical Chemistry Accounts 2007,117(2),185-199.
    [31]Gao,J.L.;Amara,P.;Alhambra,C.;Field,M.J.,A generalized hybrid orbital(GHO)method for the treatment of boundary atoms in combined QM/MM calculations.Journal of Physical Chemistry A 1998,102(24),4714-4721.
    [32]MacKerell,A.D.,Jr.;Bashford,D.;Bellott,M.;Dunbrack,R.L.;Evanseck,J.D.;Field,M.J.;Fischer,S.;Gao,J.;Guo,H.;Ha,S.;Joseph-McCarthy,D.;Kuchnir,L.;Kuczera,K.;Lau, F.T.K.;Matto,C.;Michnick,S.;Ngo,T.;Nguyen,D.T.;Prodhom,B.;Eeiher,W.E.;Roux,B.;Schlenkrich,M.;Smith,J.C.;Stobe,R.;Straub,J.;Watanabe,M.;Wiorkiewicz-Kuczera,J.;Yin,D.;Karplus,M.,All-atom empirical potential for molecular modeling and dynamics studies of proteins.Journal of Physical Chemistry B 1998,102(12),3586-3616.
    [33]van Gunsteren,W.F.;Berendsen,H.J.C.,Algorithms for macromolecular dynamics and constraint dynamics.Molecular Physics 1977,34(5),1311-1327.
    [34]Dewar,M.J.S.;Zoebisch,E.G.;Healy,E.F.;Stewart,J.J.P.,The development and use of quantum-mechanical molecular-models.76.AM1 a new general-purpose quantum-mechanical molecular-model.Journal of the American Chemical Society 1985,107(13),3902-3909.
    [35]Stewart,J.J.P.,Optimization of parameters for semiempirical methods.1.Method.Journal of Computational Chemistry 1989,10(2),209-220.
    [36]Murphy,R.B.;Philipp,D.M.;Friesner,R.A.,Frozen orbital QM/MM methods for density functional theory.Chemical Physics Letters 2000,321(1-2),113-120.
    [37]Hong,G.Y.;Strajbl,M.;Wesolowski,T.A.;Warshel,A.,Constraining the electron densities in DFT method as an effective way for ab initio studies of metal-catalyzed reactions.Journal of Computational Chemistry 2000,21(16),1554-1561.
    [38]Crespo,A.;Scherlis,D.A.;Marti,M.A.;Ordej(?)n,P.;Roitberg,A.E.;Estrin,D.A.,A DFT-based QM-MM approach designed for the treatment of large molecular systems: Application to chorismate mutase.Journal of Physical Chemistry B 2003,107(49),13728-13736.
    [39]Corminboeuf,C.;Hu,P.;Tuckerman,M.E.;Zhang,Y.,Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein.Journal of the American Chemical Society 2006,128(14),4530-4531.
    [40]Hu,P.;Wang,S.;Zhang,Y.,How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? Revisited by ab initio QM/MM molecular dynamics simulations.Journal of the American Chemical Society 2008,130(12),3806-3813.
    [41]Thiel,W.;Voityuk,A.A.,Extension of the MNDO formalism to d-orbitals-Integral approximations and preliminary numerical results.Theoretica Chimica Acta 1992,81(6),391-404.
    [42]Winget,P.;Horn,A.H.C.;Selcuki,C.;Martin,B.;Clark,T.,AMl*parameters for phosphorus,sulfur and chlorine.Journal of Molecular Modeling 2003,9(6),408-414.
    [43]Lopez,X.;York,D.M.,Parameterization of semiempirical methods to treat nucleophilic attacks to biological phosphates: AM1/d parameters for phosphorus.Theoretical Chemistry Accounts 2003,109(3),149-159.
    [44]Nam,K.;Cui,Q.;Gao,J.;York,D.M.,Specific reaction parametrization of the AM1/d Hamiltonian for phosphoryl transfer reactions: H,O,and P atoms.Journal of Chemical Theory and Computation 2007,3(2),486-504.
    [45]Stewart,J.J.P.,Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements.Journal of Molecular Modeling 2007,13(12),1173-1213.
    [46]Rossi,I.;Truhlar,D.G.,Improved general scaling factors and systematic tests of the SAC method for estimating correlation energies of molecules.Chemical Physics Letters 1995,234(1-3),64-70.
    [47]Br(a|¨)iuer,M.;Kunert,M.;Dinjus,E.;Kluszmann,M.;Doting,M.;Gorls,H.;Anders,E.,Evaluation of the accuracy of PM3,AM1 and MNDO/d as applied to zinc compounds.Journal of Molecular Structure: THEOCHEM 2000,505(1),289-301.
    [48]Brothers,E.N.;Suarez,D.;Deerfield Ⅱ,D.W.;Merz Jr.,K.M.,PM3-compatible zinc parameters optimized for metalloenzyme active sites.Journal of Computational Chemistry 2004,25(14),1677-1692.
    [49]Brooks,B.R.;Bruccoleri,R.E.;Olafson,B.D.;States,D.J.;Swaminathan,S.;Karplus,M.,CHARMM: A program for macromolecular energy,minimization,and dynamics calculations.Journal of Computational Chemistry 1983,4,187-217.
    [50]Berkowitz,M.;McCammon,J.A.,Molecular dynamics with stochastic boundary conditions.Chemical Physics Letters 1982,90,215-217.
    [51]Brooks,C.L.,Ⅲ;Karplus,M.,Deformable stochastic boundaries in molecular dynamics.Journal of Chemical Physics 1983,79,6312-6325.
    [52]Torrie,G.M.;Valleau,J.P.,Non-physical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling.Journal of Chemical Physics 1977,23,187-199.
    [53]Bakowies,D.;Thiel,W.,Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches.Journal of Physical Chemistry 1996,100(25),10580-10594.
    [54]Sherwood,P.;de Vries,A.H.;Collins,S.J.;Greatbanks,S.P.;Burton,N.A.;Vincent,M.A.;Hillier,I.H.In Computer simulation of zeolite structure and reactivity using embedded cluster methods,General Discussion Meeting on Solid State Chemistry-New Opportunities from Computer Simulations,London,England,Jun 30-Jul 02,1997;London,England,1997;pp 79-92.
    [55]Sherwood,P.;de Vries,A.H.;Guest,M.F.;Schreckenbach,G.;Catlow,C.R.A.;French,S.A.;Sokol,A.A.;Bromley,S.T.;Thiel,W.;Turner,A.J.;Billeter,S.;Terstegen,F.;Thiel,S.;Kendrick,J.;Rogers,S.C.;Casci,J.;Watson,M.;King,F.;Karlsen,E.;Sjovoll,M.;Fahmi,A.;Schafer,A.;Lennartz,C.,QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis.Journal of Molecular Structure.: THEOCHEM 2003,632,1-28.
    [56]Ahlrichs,R.;B(a|¨)ir,M.;Haser,M.;Horn,H.;K(o|¨)1mel,C.,Electronic structure calculations on workstation computers: The program system Turbomole.Chemical Physics Letters 1989,162,165-169.
    [57]Smith,W.;Forester,T.R.,DL-POLY-2.0: a general-purpose parallel molecular dynamics simulation package.Journal of Molecular Graphics and Modelling 1996,14(3),136-141.
    [58]Vanhooke,J.L.;Benning,M.M.;Raushel,F M.;Holden,H.M.,Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate.Biochemistry 1996,35(19),6020-6025.
    [59]Jackson,C.J.;Foo,J.L.;Kim,H.K.;Carr,P.D.;Liu,J.W.;Salem,G.;Ollis,D.L.,In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase.Journal of Molecular Biology 2008,3 75(5),1189-1196.
    [60]Hong,S.B.;Raushel,F.M.,Stereochemical constraints on the substrate specificity of phosphotriesterase.Biochemistry 1999,38(4),1159-1165.
    [61]Samples,C.R.;Raushel,F.M.;DeRose,V.J.,Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes.Biochemistry 2007,46(11),3435-3442.
    [62] Hill, C. M; Li, W.-S.; Thoden, J. B.; Holden, H. M.; Raushel, F. M., Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. Journal of the American Chemical Society 2003,125(30), 8990-8991.
    [63] Chen-Goodspeed, M.; Sogorb, M. A.; Wu, F. Y.; Hong, S. B.; Raushel, F. M, Structural determinants of the substrate and stereochemical specificity of phosphotriesterase.Biochemistry 2001, 40(5), 1325-1331.
    [64] Benning, M. M.; Hong, S. B.; Raushel, F. M.; Holden, H. M., The binding of substrate analogs to phosphotriesterase. Journal of Biological Chemistry 2000, 275, 30556-30560.
    [65] Griffiths, A. D.; Tawfik, D. S., Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. The EMBO Journal 2003,22(1), 24-35.
    [66] Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L., S_N2 reaction profiles in the gas phase and aqueous solution. Journal of the American Chemical Society 1984,106(10), 3049-3050.
    [67] Mo, Y. R.; Gao, J. L., Ab initio QM/MM simulations with a molecular orbital-valence bond (MOVB) method: Application to an S(N)2 reaction in water. Journal of Computational Chemistry 2000, 21(16), 1458-1469.
    [68] Lewis, V. E.; Donarski, W. J.; Wild, J. R.; Raushel, F. M., Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase.Biochemistry 1988, 27(5), 1591-1597.
    [69] Wong, K. Y; Gao, J., The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM Simulations. Biochemistry 2007, 46(46), 13352-69.
    [70] Kim, J.; Tsai, P. C; Chen, S. L.; Himo, F.; Almo, S. C; Raushel, F. M., Structure of diethyl phosphate bound to the binuclear metal center of phosphotriesterase. Biochemistry 2008,47(36), 9497-9504.
    [71] Aubert, S. D.; Li, Y; Raushel, F. M., Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 2004, 43(19), 5707-5715.
    [72] Hong, S. B.; Raushel, F. M., Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Biochemistry 1996, 35(33), 10904-10912.
    [73] Jackson, C. J.; Kim, H. K.; Carr, P. D.; Liu, J. W.; Ollis, D. L., The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Biochimica et Biophysica Acta 2005,1752, 56-64.
    [74] Caldwell, S. R.; Newcomb, J. R.; Schlecht, K. A.; Raushel, F. M., Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry 1991, 30(30), 7438-7444.
    [1] Sklenak, S.; Yao, L. S.; Cukier, R. I.; Yan, H. G., Catalytic mechanism of yeast cytosine deaminase: An ONIOM computational study. Journal of the American Chemical Society 2004,126(45), 14879-14889.
    [2] Yao, L. S.; Yan, H. G.; Cukier, R. I., A combined ONIOM quantum chemical-molecular dynamics study of zinc-uracil bond breaking in yeast cytosine deaminase. Journal of Physical Chemistry B 2006,110(51), 26320-26326.
    [3] Yao, L. S.; Cukier, R. I.; Yan, H. G., Catalytic mechanism of guanine deaminase: An ONIOM and molecular dynamics study. Journal of Physical Chemistry B 2007,111(16),4200-4210.
    [4] Matsubara, T.; Dupuis, M.; Aida, M., The ONIOM molecular dynamics method for biochemical applications: Cytidine deaminase. Chemical Physics Letters 2007, 437(1-3),138-142.
    [5] Matsubara, T.; Dupuis, M.; Aida, M., An insight into the environmental effects of the pocket of the active site of the enzyme. Ab initio ONIOM-molecular dynamics (MD) study on cytosine deaminase. Journal of Computational Chemistry 2008, 29(3), 458-465.
    [6] Yao, L. S.; Sklenak, S.; Yan, H. G.; Cukier, R. I., A molecular dynamics exploration of the catalytic mechanism of yeast cytosine deaminase. Journal of Physical Chemistry B 2005,709(75;, 7500-7510.
    [7] Yao, L. S.; Li, Y.; Wu, Y.; Liu, A. Z.; Yan, H. G., Product release is rate-limiting in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase. Biochemistry 2005,44(15), 5940-5947.
    [8] Yao, L. S.; Yan, H. G.; Cukier, R. I., A molecular dynamics study of the ligand release path inyeast cytosine deaminase. Biophysical Journal 2007, 92(7), 2301-2310.
    [9] Molecules, S. I. Q. C. M. f. L., Special Issue: Quantum Chemical Methods for Large Molecules. Journal of Computational Chemistry 2000,21, 1419-1588.
    [10] Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J., A new ONIOM implementation in Gaussian98. Part Ⅰ. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Journal of Molecular Structure: THEOCHEM 1999,462, 1-21.
    [11] Monard, G; Merz, K. M., Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Accounts of Chemical Research 1999, 32,904-911.
    [12] Zhang, Y. K.; Liu, H. Y; Yang, W. T., Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. Journal of Chemical Physics 2000,112(8), 3483-3492.
    [13] Gao, J. L.; Truhlar, D. G, Quantum mechanical methods for enzyme kinetics. Annual Review of Physical Chemistry 2002, 55, 467-505.
    [14] Cui, Q.; Guo, H.; Karplus, M., Combining ab initio and density functional theories with semiempirical methods. Journal of Chemical Physics 2002,117(12), 5617-5631.
    [15] Field, M. J., Simulating enzyme reactions: Challenges and perspectives. Journal of Computational Chemistry 2002, 23(1), 48-58.
    [16] Truhlar, D. G; Gao, J. L.; Alhambra, C; Garcia-Viloca, M.; Corchado, J.; Sanchez, M. L.; Villa,J.,The incorporation of quantum effects in enzyme kinetics modeling.Accounts of Chemical Research 2002,35(6),341-349.
    [17]Benkovic,S.J.;Hammes-Schiffer,S.,A perspective on enzyme catalysis.Science 2003,301(5637),1196-1202.
    [18]Gordon,M.S.;Schmidt,M.W.,Recent Advances in QM and QM/MM Methods.In Computational Science-Iccs 2003,Pt Iv,Proceedings,2003;Vol.2660,pp 75-83.
    [19]Li,H.;Pomelli,C.S.;Jensen,J.H.,Continuum solvation of large molecules described by QM/MM: a semi-iterative implementation of the PCM/EFP interface.Theoretical Chemistry Accounts 2003,109(2),71-84.
    [20]Monard,G.;Prat-Resina,X.;Gonzalez-Lafont,A.;Lluch,J.M.,Determination of enzymatic reaction pathways using QM/MM methods.International Journal of Quantum Chemistry 2003,93(3),229-244.
    [21]Warshel,A.,Computer simulations of enzyme catalysis: Methods,progress,and insights.Annual Review of Biophysics and Biomolecular Structure 2003,32,425-443.
    [22]Rega,N.;Iyengar,S.S.;Voth,G.A.;Schlegel,H.B.;Vreven,T.;Frisch,M.J.,Hybrid ab-initio/empirical molecular dynamics: Combining the ONIOM scheme with the atom-centered density matrix propagation(ADMP)approach.Journal of Physical Chemistry B 2004,108(13),4210-4220.
    [23]Elstner,M.,The SCC-DFTB method and its application to biological systems.Theoretical Chemistry Accounts 2006,116(1-3),316-325
    [24]Riccardi,D.;Schaefer,P.;Yang,Y.;Yu,H.;Ghosh,N.;Prat-Resina,X.;K(o|¨)nig,P.;Li,G;Xu,D.;Guo,H.;Elstner,M.;Cui,Q.,Development of effective quantum mechanical/molecular mechanical(QM/MM)methods for complex biological processes.Journal of Physical Chemistry B 2006,110(13),6458-6469.
    [25]Lin,H.;Truhlar,D.G.,QM/MM: what have we learned,where are we,and where do we go from here? Theoretical Chemistry Accounts 2007,117(2),185-199.
    [26]Gao,J.;Ma,S.;Major,D.T.;Nam,K.;Pu,J.;Truhlar,D.G.,Mechanisms and free energies of enzymatic reactions.Chemical Reviews 2006,106(8),3188-3209.
    [27]Warshel,A.;Sharma,P.K.;Kato,M.;Xiang,Y.;Liu,H.;Olsson,M.H.M.,Electrostatic basis for enzyme catalysis.Chemical Reviews 2006,106(8),3210-3235.
    [28]Bruice,T.C.,Computational approaches: Reaction trajectories,structures,and atomic motions.Enzyme reactions and proficiency Chemical Reviews 2006,106(8),3119-3139.
    [29]Field,M.J.;Bash,P.A.;Karplus,M.,A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations.Journal of Computational Chemistry 1990,11(6),700-733.
    [30]Warshel,A.;Levitt,M.,Theoretical studies of enzymic reactions.-dielectric,electrostatic and steric stabilization of carboniumIon in reaction of lysozyme.Journal of Molecular Biology 1976,103(2),227-249.
    [31]Singh,U.C.;Kollman,P.A.,A combined abinitio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3C1 + C1-exchange reaction and gas phase protonation of polyethers.Journal of Computational Chemistry 1986,7(6),718-730.
    [32]Gao,J.L.;Amara,P.;Alhambra,C.;Field,M.J.,A generalized hybrid orbital(GHO)method for the treatment of boundary atoms in combined QM/MM calculations.Journal of Physical Chemistry A 1998,102(24), 4714-4721.
    [33] MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.;Lau, F. T. K.; Matto, C; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Eeiher, W. E.;Roux, B.; Schlenkrich, M; Smith, J. C; Stobe, R.; Straub, J.; Watanabe, M.;Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B 1998,102(12),3586-3616.
    [34] van Gunsteren, W. F.; Berendsen, H. J. C, Algorithms for macromolecular dynamics and constraint dynamics. Molecular Physics 1977, 34(5), 1311-1327.
    [35] Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M,CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 1983, 4, 187-217.
    [36] Brothers, E. N.; Suarez, D.; Deerfield Ⅱ, D. W.; Merz Jr., K. M., PM3-compatible zinc parameters optimized for metalloenzyme active sites. Journal of Computational Chemistry 2004,25(14), 1677-1692.
    [37] Ireton, G. C; Black, M. E.; Stoddard, B. L., The 1.14 angstrom crystal structure of yeast cytosine deaminase: Evolution of nucleotide salvage enzymes and implications for genetic chemotherapy. Structure 2003,11(8), 961-972.
    [38] Ireton, G. C; Stoddard, B. L., Microseed matrix screening to improve crystals of yeast cytosine deaminase. Acta Crystallographica Section D-Biological Crystallography 2004, 60,601-605.
    [39] Ko, T. P.; Lin, J. J.; Hu, C. Y.; Hsu, Y. H.; Wang, A. H. J.; Liaw, S. H., Crystal structure of yeast cytosine deaminase - Insights into enzyme mechanism and evolution. Journal of Biological Chemistry 2003,278(21), 19111-19117.
    [40] Xu, Q.; Guo, H. B.; Gorin, A.; Guo, H., Stabilization of a transition-state analogue at the active site of yeast cytosine deaminase: Importance of proton transfers. Journal of Physical Chemistry B 2007,111(23), 6501-6506.
    [41] Berkowitz, M.; McCammon, J. A., Molecular dynamics with stochastic boundary conditions.Chemical Physics Letters 1982, 90, 215-217.
    [42] Brooks, C. L., Ⅲ; Karplus, M., Deformable stochastic boundaries in molecular dynamics.Journal of Chemical Physics 1983, 79, 6312-6325.
    [43] Tome, G. M.; Valleau, J. P., Non-physical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Chemical Physics 1977, 23,187-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700