用户名: 密码: 验证码:
波浪作用下埕岛油田海底管线稳定性数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管线是海洋油气集输与储运系统的重要组成部分,被喻为海上油气田的“生命线”,在海洋油气资源的开发利用中发挥着重大作用。海底管线运行环境恶劣,失效概率高,在波浪、海流、潮汐的作用下,其稳定性状况一直是研究热点。
     位于现代黄河水下三角洲的胜利埕岛海上油田,海底管线稳定性成为重要的安全隐患。这与该海区海床沉积物独特性质及海洋动力条件密切相关。目前设计上采用的常规方法,由于缺少地区特色的针对性使其结果受到置疑。在中石化重点攻关课题“埕岛海管剩余寿命评价及海缆监测技术研究-海底管线安全防护对策”(JP05007)资助下,本论文针对埕岛油田海区特点,在搜集整理分析研究区水文与地质资料的基础上,利用数值模拟的方法,较为系统地研究了海底裸置管线、埋藏管线的稳定性,取得了一些突破性的研究成果,同时在研究方法上也取得一些进展。
     本文的主要研究工作与成果有:
     1.现场调查并收集研究区地质与水文资料,依据138个钻孔数据的统计分析,将埕岛海域研究区地层分为三个亚区,并对各亚区内的海床土性质及水动力特征进行了统计分析,为进一步管线稳定性分析提供必要的水文与地质资料。
     2.基于Biot固结理论,根据埕岛海域特定的水文、地质条件,建立了波流作用下裸置管线动力响应问题的数学模型。采用WakeⅡ模型计算了裸置管线所受的拖曳力和升力,改善了以往采用Morison方程计算管线受力时忽略尾流效应的不足,使计算结果更加符合实际情况。通过与相关研究的对比,验证了本文所采用方法的可靠性。根据所建模型对影响裸置管线横向稳定性的各项因素分析表明,忽略尾流的影响会严重高估裸置管线的在位稳定性,影响管线稳定性最主要的因素是单位长度管线重量。在此基础上建立了埕岛油田地区的裸置管线稳定性校核曲线,可为本地区管线设计提供指导。
     3.将非线性波浪理论和随机波浪理论引入有限元模型,建立了埕岛地区埋置管线复杂波浪荷载作用下瞬态响应的数学模型。讨论了波浪的随机性对管线及海床动力响应的影响及海床土体与埋置管线的接触效应。与前人研究结果相比,本文中所采用的数学模型更为接近实际情况,可以更好的反映波浪作用下埕岛油田地区海床土体与埋置管线之间的相互作用。并据此模型对复杂波浪荷载下埋置管线的动力响应进行分析,发现波浪的非线性和随机性以及管线-土体之间的接触效应对计算结果的影响十分显著,如果忽略这些因素,则会在分析埋置管线动力响应时造成较大误差。
     4.基于大变形理论,开发了基于ABAQUS的用户单元子程序,对波浪作用下埕岛地区海床土体内残余孔压的发展进行了计算,及海床液化判别分析。将液化后土体视为Bingham体,开发了大变形下的用户材料子程序,对管线在液化土体内的移动进行了研究。结果表明,埕岛海域不同工程地质分区土体液化行为差别较大,海床土液化深度随波浪作用时间的增加而增加,但是最终会趋于稳定;液化后土体的粘性系数影响到管线在液化土中的运动速度,但不影响其运动趋势。
     主要创新点:针对埕岛油田具体水文、地质条件,采用更为合理的水动力模型计算裸置管线所受荷载,在此基础上建立了埕岛油田地区裸置管线与土体相互作用的数学模型,提出了适合埕岛油田裸置稳定性分析的校核曲线。建立了复杂波浪荷载作用下埋置管线与周围土体相互作用的数学模型,并基于大变形理论,对管线在液化土体中的移动进行了模拟,并对影响土体液化和管线在液化土体中行为的因素进行了分析。
Submarine pipeline is the important part of ocean oil and gas transportation and reposition system. It is the lifeline of ocean oil field. The stability of submarine pipeline is a key question for pipelines engineering. CoMPared with the pipeline on land, submarine pipeline run in a harder environment, the probability of destability is much higher than former. The pipeline in service is easy to lose destability under wave, current and tide load. At the present time, few investigation about the stability of submarine pipeline with given hydrologic and geologic file is reported. For pipeline laid on seabed, the induced wave force is calculated with Morison model, neglect the wake effect to the velocity of water around pipeline. And to the buried pipeline, the induced wave force is calculated mostly based on the linear wave theory, and the contact effect between pipeline and soil is neglected. The analysis about pipeline is mostly about the wave induced pore pressure stress and strain ect. in the soil around pipeline, few study about the behavior of pipeline in the liquefied soil is reported. Contraposing these shortages, a more reasonable numerical model of pipeline/soil is developed, and the stability of submarine pipeline in Chengdao oil field is analyzed based on the model. The work of this dissertation mainly includes:
     1.Collecting and analyzing file about 138 bores, classing Chengdao oil field 3 different zones, and hydrologic and geologic characteristic of each zone is dissertated. This work has an important tpracticality for oil reconnoitring and transporting in this area. Based on Biot theory and hydrologic、geologic file of Chengdao oil field.
     2.Based on Biot theory and hydrologic、geologic file of Chengdao oil field, a numerical model is developed for analyzing the stability of submarine pipeline. The ii WakeⅡmodel is imported into ABAQUS by developing a subroutine‐DLOAD, this make the numerical model more reasonable coMPared with previous models. The reliability is testified by coMParing with the relevant research. The main factors of affecting the stability of submarine pipeline are analyzed, and the result shows: effect of Wake has disadvantage for pipeline stability, weight of per length unit pipeline is a important factor affect the stability of pipeline. Based on the result of numerical model, a set of curve for checking the stability of pipeline in Chengdao oil field is discussed.
     3. A numerical model of pipeline/soil under the nonlinear wave and random wave loading is developed. In the dissertation, the wave loading is calculated based on nonlinear wave theory and random wave theory, and so, the nonlinear effect and randomicity of wave is considered. Besides, the contact effect between pipeline and soil is considered. Compared with previous models, the numerical model in this dissertation is more reasonable.Based on this model, the response of pipeline/soil under the wave loading is analyzed,and the result showes that the nonlinear effect of wave and contact effect between pipeline and soil are can not neglected.
     4. Based on the finite strain theory, a subroutine‐UEL for ABAQUS is developed , and the residual pore pressure under wave load is computed, and stability of soil around pipeline and seabed is analyzed. Regarding the liquefaction soil as model, a subroutine‐UMAT for ABAQUS is developed , and the behavior of pipeline in liquefaction soil analysis qualitatively. The stability of buried pipeline is analyzed with numerical model, and the numerical result shows that: the coefficient of permeability affect the cumulation ratio of pore pressure remarkablely; The coefficient of permeability is greater, the pore pressure cumulates more slowly, and vice versa. The depth of liquefaction increases with the wave load's action time, and finally tend to a constant.
     To the 3 different geologic areas, the depth of liquefaction has the followed relation:Ⅰ<Ⅱ<Ⅲ.The viscidity coefficient of liquefaction soil affect the velocity of pipeline only, can not affect the movement trend. With the numerical models, a formula for checking the stability of pipeline is discussed.
     The main innovation points in this dissertation include:According to the hydrologic、geologic file of Chengdao oil field, the more reasonable hydrodynamic model is adopted to compute the load of pipeline laid on seabed.A numerical model of pipeline laid on seabed and soil interaction in Chengdao oil field is developed,a set of curve for checking the stability of pipeline in Chengdao oil field is discussed.Moreover,a numerical model of embeded pipeline/soil interaction under complex wave laod is developed, the behavior of pipeline in the liquefied soil is simulated base on finite distortion theory, finaly the influence factors are analysed and a set of conclusions are put forward.
引文
[1]冯耀荣,王新虎,赵冬岩.油气输送失效事故的调查与分析[J].中国海上油气(工程), 1999, 11(5):11‐14.
    [2] Herbich J B.Offshore pipeline design elements[M].New York:MARCEL DEKKERINC,1981:6-7.
    [3] Putnam J A. Lose of wave energy due to percolation in apermeable sea bottom.Transactions,American Geophysical Union, 1949, 30 : 349 - 356.
    [4] Reid R O et al. On the damping of gravity waves over a permeable sea bed, Transactions, American Geophysical Union, 1957, 33:662-666.
    [5] Sleuth J F A. Wave induced pressures in beds of sand..J.Lof the Hydraulics Division, Proc. Of the ASCE, 1970,96(HY2): 367-378.
    [6] Liu P L. Damping of water waves over porous bed. J. of the Hydraulics Division, Proc. Of the ASCE, 1973,99(HY12): 2263-2271.
    [7] Madsen O S. The stability of a sand bed under breaking waves. Proc. Of the 14th coastal Esngineering Conf., ASCE, 1974, 2: 776-794.
    [8] Mussel S R. Gravity waves propagated over permeable bottom. J. Watways Harb.And Coastal Engineering, ASCE, 1976,102(WW2):11-12.
    [9] Nakamura Met al. On the seepage in the seabed due to waves. Proc.20`h Japan Soc. Civil Engrs Coastal Engineering Conf., 1973: 421-428(in Japanese).
    [10] Moshagen H and Torum A. Wave-induced pressures in permeable sea beds. J.Qatways Harb.and Coastal Engineering, ASCE.
    [11] Prevost J H,Eide O,Anderson K H.Discussion of wave induced pressure in permeable seabed[J].J Watways Harb Cstl EngngASCE, 1975, 101(WW4):464-465.
    [12] Yamamoto T. Wave-induced instability in seabed. Proc.of ASCE Specialty Conf., Coastal Sediments.1977:898-913.
    [13] Madsen O S. Wave-induced pore pressure and effective stresses in a porous bed. Geotechnique, 1978,28(4):377-393.
    [14] Hsu J R C, Jeng D S. Wave-induced soil response in an unsaturated anisotropic seabed offinite thickness. International. Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785-807.
    [15] Hsu J R C, Jeng D S, Lee C P. Oscillatory soil response and liquefaction in an unsaturated layered seabed. International. Journal for Numerical and Analytical
    [16] Jeng D S, Hsu J R C. Wave-induced response in a nearly saturated sea-bed of finite thickness. Geotechnique, 1996, 46(3): 427-440.
    [17] Jeng D S. Wave-induced Liquefaction potential at the tip of a breakwater: an analytical solution. Applied Ocean Research, 1996, 18: 229-241.
    [18] Jeng D S. Soil response in cross-anisotropic seabed due to standing waves. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(1): 9-19.
    [19] Yamamoto T, Koning H L, Sellmejjer H, Hijum E V On the response of a poro-elastic bed to water waves, Journal of Fluid Mechanics, 1978, 87: 193-206.
    [20] Gatmiri, B. Response of cross-anisotropic seabed to ocean waves. Journal of Geotechnical Engineering, ASCE 1992.118 (9),1295-1314.
    [21] Lin Y S, Jeng D S. The effects of variable permeability on the wave induced seabed response. Ocean Engineering, 1997, 24(7): 623-643.
    [22] Jeng D S, Lin Y S. Non-linear wave-induced response of porous seabed: a finite element analysis. International . Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(1): 15-42.
    [23] Zhang J F, Zhang Q H, Han T, Qin C R.Numerical simulation of seabed response and liquefaction due to nonlinear Waves.China Ocean Engineering, 2005, 19(3):497-507.
    [24]张金凤,张庆河,秦崇仁.波浪作用下非均质各向异性海床响应的数值模拟.天津大学学报,2006, 39(2): 159‐164.
    [25]别社安,赵子丹.随机波浪作用下砂质海床中的孔隙水压力响应[J].港口工程.1998.12(2):13‐18
    [26]栾茂田.王栋.波浪作用下海床动力反应有限元数值模拟与液化分析[J].大连理大学学报.2001.41(2):216‐222
    [27] Cheng L, Sumer B M, Fredsee J. Solution of pore pressure build up due to progressive waves. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(9): 885-907.
    [28] Jeng D S, Li J. A three-dimensional numerical model for wave-induced soil response around the head of a breakwater. Research Report No 8859, The University of Sydney, 2005.
    [29] Wang J G, Zhang B Y, Nogami T. Wave-induced seabed response analysis by radial point interpolation meshless method. Ocean Engineering, 2004, 31(1): 21-42.
    [30] Seed H B, Lee K L. Liquefaction of saturated sand during cyclic loading. Journal of the Soil Mechanics and Foundation Division, ASCE, 1966, 92 (SM6): 105-134.
    [31] Zen K, Yamazaki H. Mechanism of wave-induced liquefaction and densification in seabed. Soils and Foundations, 1990, 30(4): 90-104.
    [32] Jeng D S. Wave-induced seabed instability in front of a breakwater. Ocean Engineering, 1997, 24(10): 887-917.
    [33]栾茂田,王栋.波浪作用下海床动力反应的数值分析[J].海洋工程,2001, 19(4): 40‐45
    [34]王栋,栾茂田,郭莹,波浪作用下海床动力反应有限元数值模拟与液化分析[J].大连理工大学学报,2001,41(2):216‐223.
    [35]王栋,栾茂田.波浪作用下粘弹性海床动力响应的数值分析[J],工程力学.2002, 19(4):130‐134.
    [36]栾茂田,张晨明,王栋等.波浪做用下海床孔隙水压力发展过程与液化的数值分析.水利学报[J],2004, (2): 94‐100.
    [37] Seed H B, Lee K L. Liquefaction of saturated sand during cyclic loading. Journal of the Soil Mechanics and Foundation Division, ASCE, 1966, 92 (SM6): 105-134. [ 38] Rahman M S, Jaber W Y A simplified drained analysis for wave-induced liquefaction in ocean floor sands[J].Soils and Foundations, 1986, 26(3): 57-68.
    [39] Mcdougal W G, Tsai Y T, Liu P L F, et al. Wave induced pore water pressure accumulationin marine soils[J]. Journal of Offshore Mechanics and Arctic Engineering,1989, 111:1-11.
    [40]吴梦喜,楼志刚.立波作用下海床的有效应力与液化分析[J].水利学报,2002, (1):56‐61.
    [41]吴梦喜,楼志刚.波浪作用下海床的有效应力分析[J].海洋工程,2002, 20(1): 64‐68.
    [42]吴梦喜,楼志刚.波浪作用下海床的稳定性与液化分析[J].工程力学,2002, 19(5): 97‐102.
    [43]陈仲颐,李向维.波浪引起的饱和土体残余孔压计算[C].第五届土力学及基础工程学术会议论文集.1991: 855‐858.
    [44]徐杨青,郭见扬.波浪荷载下海洋土孔隙水压力内时模型的研究.岩土力学[J],1991, 12(3):43‐52.
    [45]刘惠珊,徐凤萍,李鹏程.液化引起的地面大位移对工程的影响及研究现状[J].工程抗震、1997, 2: 2‐126
    [46]高玉峰,刘汉龙,朱伟.地震液化引起的地面大位移研究进展.岩土力学[J],2000, 21(3): 294‐298
    [47] Finn W D L. Post-liquefaction flow deformation. In: Pak,Yamamura, eds. Soil Dynamics and Liquefaction 2000. ASCE Geotechnical Special Publication, 2000. 108-122
    [48] Shamoto Y, Zhang J M, Goto S. Mechanism of large post liquefaction deformation in saturated sand. Soils and Foundations, 1997, 37(2): 71-78
    [49] Shamoto Y, Zhang J M, Tokimatsu K. Methods for evaluating residual post iquefaction ground settlement and horizontal displacement. Hyogo-ken Narrcbu Earthquake, 1998,38(2): 69-84
    [50] Yang Z H,Elgamal A, Parra E Computational model for cycle mobility and associated shear deformation Journal of Geotechnical and Geoenvironmental Engineering.ASCE.2003,129(12)1119-1127.
    [51]张建民,王刚评价饱和砂土液化过程中小应变到大应变的本构模型[J].岩土工程学报,2004,26(4),546‐552.
    [52]王志良,砂土的边界面亚塑性模型[D],加利福尼亚大学博士论文,1990
    [53] S. K., Haigh, S. P G, Madabhushi, K., Soga et al., Lateral spreading during centrifuge model earthquakes, Geo2000 International Conference on Geotechnical Engineering, Paper No.0317,2000, University of Sydney, Australia.
    [54]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究[J],岩土工程学报,2002.Vo1.24, No.2: 142‐146.
    [55] R. Uzuoka, A. Yashima, Fluid Dynamics Based Prediction of Liquefaction Induced Lateral Spreading[J], Computers and Geotechnics, 1998, Vol. 22, No. 3: 243-282.
    [56] S. Hadush, A. Yashima, R. Uzuok, Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis[C], Computers and Geotechnics, 2000, Vo1.27: 199-224.
    [57]朱继伟,邱长林,闰澍旺.液化土中海底管线的运动与受力分析[J],石油工程建设,2000, 2,11‐16
    [58]马良,波流作用下海底管道的水动力和在位稳定性研究的近代进展[J],水动力学研究与进展,1995,10(2):135‐145.
    [59]赵冬岩.海底管道稳定性分析综述[J].中国海上油气(工程) 1998,10(5):123~128.
    [60]任艳荣.海底管土相互作用研究概述[J].中国海洋平台2004,19(1)25~30.
    [61]闫澍旺.砂土对管道约束力的模型实验研究[J].海洋工程,1996 ,14(1):62‐72.
    [62]马良,张日向.海底部分埋设管道在波流作用下水动力效应的实验研究[J].中国海上油气,1998 ,10(4):33‐37.
    [63]张日向,马良.海底沟槽内管道在波流作用下水动力效应的实验研究[J].中国海上油气(工程)2000, 12(4):22‐27.
    [64] Sumer, B.M., Fredsoe, J., Christensen, S., Lind, M.T., 1999.SinkingrFloatation of pipelines and other objects in liquefiedsoil under waves. Coastal Eng. 38 (2), 53-90, October.
    [65] Ch. Madhu Sudhan, V. Sundar, S. Narasimha Rao Wave induced forces around buried pipelines [J].Ocean Engineering Volume 29, Issue 5, May 2002, Pages 533-544
    [66] J. S. Damgaard and A. Palmer Pipeline Stability on a mobile and liquefied seabed :A discussion of magnitudes and engineering implications. Offshore Mechanics and Arctic Engineering 2001, OMAE’01 Rio De Janeiro, 4 to 7 June 2001, ASME
    [67] F. P. Gao, X. Y. Gu, D. S. Jeng and H. T. Teo. An experimental study for wave-induced instability of pipelines: the breakout of pipelines Applied Ocean Research, Volume 24, Issue 2, April 2002, Pages 83-90
    [68] F. P. Gao, X. Y. Gu and D. S. Jeng Physical modeling of untrenched submarine pipeline instability Ocean Engineering, Volume 30, Issue 10, July 2003, Pages 1283-1304
    [69]A. Vijaya kumar, S. Neelamani and S. Narasimha Rao Wave pressures and uplift forces on and scour around submarine pipeline in clayey soil Ocean Engineering Volume 30, Issue 2, February 2003, Pages 271-295
    [70] Teh T.C.; Palmer A.C.1; Damgaard J.S. Experimental study of marine pipelines on unstable and liquefied seabed Coastal Engineering, Volume 50, (1-2), November 2003 , pp. 1-17
    [71] Sumer,B.M., Truelsen C. and Fredsoe J. ,Liquefaction around pipelines under waves. Limas project report, March 2004, Technical University of Denmark,Denmark
    [72] Sekiguchi H, Kita K, Okamoto O. Response of poro-elasto-plastic beds to sanding waves. Soils and Foundations, 1995, 35(3): 31-42.
    [73] Sekiguchi H, Kita K, Sassa S, Shimamura T. Generation of progressive fluid waves in a geo-centrifuge. Geotechnical Testing Journal, 1998.21(2): 95-101.
    [74] Zhang J. Stewart D P.etal. An Elasto-Plastic Model for Pipe-Soil Interaction of Unburied Pipelines [A] ,Proc.9th Int.Offshore and Polar Engineering Conference [C] ,1999 ,2:185-192.
    [75] Bransby, M.F., Newson, T.A., Brunning, P. Centrifuge modelling of the upheaval capacity of pipelines in liquefied clay. Proc. ISOPE, Kitakyushu, Japan, May 2002.
    [76] Lixun Sun, Centrifuge modeling and finite element analysis of pipeline buried in liquefiable soil[D],哥伦比亚大学博士论文,2001
    [77] Sekiguchi, K.and Oishi H.(1987)., Experimental study on the effectiveness of stabilizing techniques of underground pipelines against liquefaction. Proceedings of Japan Society of Civil Engineers,382(3-7):175-181.
    [79]李玉成,陈兵, J.L.J.Marchal, Ph.D.Rigo.,波浪作用下海底管线的物理模型实验研究[J].海洋通报, 1996(05):68‐73
    [80] S. Iimura, Simplified mechanical model for evaluating stress in pipeline subject to settlement, Constr Build Mater, 2004 (6) :469–479.
    [81] Liu Xuezeng, Numerical Simulation on Earthquake Fault Rupture Propagation through Soil and Its Effects on pipeline ,Waseda Uuniversity,2002
    [82] Lyons C G. Soil Resistance to Lateral Sliding of Marine Pipelines [A]. Proceedings of Fifth Annual Offshore Technology Conference [C] ,1973 ,OTC.1876:479-484.
    [83] Lai N w, Dominguez R F. Numerical Solution for Determining Wave-induced Pressure Distribution around Buried Pipelines.TAMU-SG-75-205,Texas A&M University, USA 1974
    [84] Monkmeyer P.L.et al. Wave-induced Seepage Effects on Buried Pipeline,Coastal Structure's83,1983.
    [85] McDougal.W.Get al.Wave-induced Forces on Buried Pipelines.Research Report of Oregon University of Tech.1986.
    [86] Mei CC. Foda M.A. Wave-induced responses in a fluid-filled poro-elastic solid with a free surfaced boundary layer theory(J). Geophys J Royal Aust Soc,1981,66:597-631
    [87] Cheng A.H.D.,Liu.P.F., Seepage Force on a Pipeline Buried in a Poroelastic Sea bed under Wave Loading.Applied Ocean Research,1986,8:22-32.
    [88] Magda W. Wave-induced uplift force acting on a submarine buried pipeline: finite elementformulation and verification of computations[J]. Computers and Geotechnics, 1996, 19(1):47-73.
    [89] Magda.W. Wave-induced uplift force acting on a submarine buried pipeline in a compressible seabed.Ocean Engineering. .1997,24:551-576
    [90] Magda W. Wave-induced cyclic pore-preassure perturbation effects in hydrodynamic uplift force acting on submarine pipeline buried in seabed sediments.Coastal Engineering, 2000,39,(02) 243-272
    [91] Jeng D S ,Cheng L. Wave induced seabed response around a pipe laid on a pore-elastic seabed [A].17th International Conference on Offshore Mechanics and Arctic Engineering [C]:98-105.
    [92] Kim, MH; Koo, WC; Hong,S.Y, Wave interactions with 2D structures on/inside porous seabed by a two-domain boundary element method,Applied Ocean Research,2000,22(5):255-266
    [93] D.S. Jeng, Numerical modeling for wave-seabed-pipe interaction in a non-homogeneous porous seabed. Soil Dynamics and Earthquake Engineering.2001(21):535-547
    [94] F. P. Gao, D. S. Jeng and H. Sekiguchi. Numerical study on the interaction between non-linear wave, buried pipeline and non-homogenous porous seabed Computers and Geotechnics, Volume 30, Issue 6, September 2003, 535-547
    [95] Ameir Altaee and Bengt H. Fellenius., Finite Element Modeling of Lateral Pipeline-Soil Interaction, 14th International Conference on Offshore Mechanics and Arctic Engineering[C], OMAE 96, Florence, Italy, 1996:1-9
    [96] Yong Bai et al. A finite-Element Model for In-Situ Behavior Offshore Pipelines On Uneven Seabed and Its Application to On-Bottom Stability [A] ,Proc.9thInt.Offshore and Polar Engineering Conference [C] ,1999 ,2:132-140.
    [97] Jeng D S,L.Cheng.Wave-induced seabed instability around a buried pipeline in a poro-elastic seabed[J].Ocean Engineering,2000,27:127-146.
    [98] 3D Finite Element Analysis of Pipe-Soil Interaction-Effects of Groundwater Final Report, prepared by C-CORE, Report R-02-029-076, February 2003
    [99] S.L.Dunn, P.L.Vun, A.H.C.Chan,and J.S.DamgaardNumerical Modeling of Wave-Induced276-288
    [100]任艳荣,砂质海底管土相互作用数值模拟[D],中科院力学所博士论文,2002
    [101]潘冬子.波浪荷载作用下海床及管线的动力响应研究[D] ,浙江大学博士论文,2007
    [102]埕岛油田灾害地质研究成果报告.国家海洋局第一海洋研究所,2006年1月.
    [103]李广雪,刘守全,姜玉池,等.黄河三角洲北部海底刺穿初步研究[J].中国科学(D辑),1999, 29(4):379‐384.
    [104] Li, G.X., Zhuang, K.L., Wei, H.L. Sedimentation in the Yellow River delta Part III Seabed erosion and diapirsm in the abandoned sub-aqueous delta lobe[J]. Marine Geology, 2000, 168:129-144.
    [105]埕岛海管剩余寿命评价及海缆监测技术研究‐海底管线安全防护对策研究.中国海洋大学环境科学与工程学院,2007,09.
    [106]中国海洋石油总公司.中国海洋石油总公司企业标准Q/HS 7016‐93—海底管道稳定性设计[S].1993.
    [107]毕家驹,近海力学导论[M],同济大学出版社,1989.
    [108]薛鸿超,顾家龙,任汝述.海岸动力学[M],人民交通出版社,1980.12
    [109] Lambrakos, K.F., Chao, J.C., Beckmann, H., Brannon, H.R.,Wake model of hydrodynamic forces on pipelines. J. Ocean Engng, 1987.14 (2), 117–136.
    [110] Soedigdo, I.R., Wake II model for hydrodynamic forces on marine pipelines. Ph.D. dissertation,Texas A&M University,1997. College Station, Texas
    [111]吴春秋,非线性有限元法在土体稳定分析中的理论及应用研究[D],武汉大学博士论文,2004.
    [112]薛鸿超,顾家龙,任汝述,海岸动力学[M],人民交通出版社,1980.12
    [113]梁其荀,方钜译.海滨防护手册[M].北京:海洋出版社,1998
    [114]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社, 2000.
    [115]中华人民共和国行业标准,海港水文规范,JTJ213‐98.北京:人民交通出版社,1998
    [116]王栋,波浪作用下海床动力响应与液化的数值分析[D],大连理工大学博士论文,2002
    [117]杨秀竹,静动力作用下浆液扩散理论与试验研究[D],中南大学博士论文,2005
    [118] HKS,inc.ABAQUS Benchmarks Manual:Interactive Version,Hibbitt,Karlsson & Sorensen,USA
    [119]杨作升,王涛等.埕岛油田勘探开发海洋环境[M].青岛:青岛海洋大学出版社,1993.
    [120]钟仕荣.海底输油管道的稳定性设计[J].北京石油化工学院学报,2004,12(3):58-61.
    [121]张宗峰,冯春健.丁红岩埕岛油田服役中后期海洋平台冰激振动疲劳分析[J],石油矿场机械,2008,37(3):56‐61.
    [122]冯秀丽,陈之贺等.黄河水下三角洲埕岛油田海底管线悬空分析[J],海岸工程, 2008, 27(2): 26‐32.
    [123]孟凡生,徐爱民,李军.滩海海底管线悬空问题治理对策[J],中国海洋平台,2006,21(1): 52‐54.
    [124]胡洪勤.埕岛油田海底管道冲刷及工程治理[J],海洋科学,2005,29(6):13‐16.
    [125]肖文功.海底管道悬空隐患治理技术研究及应用[J],中国海洋平台,2004,19(6):36‐39.
    [126]王利金,刘锦昆.埕岛油田海底管道冲刷悬空机理及对策[J],油气储运, 2004/01

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700