用户名: 密码: 验证码:
表生元素在湖相沉积中的地球化学分异及环境演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原东北部的柴达木盆地处于亚洲中部干旱区,同时也是世界上最大的非地带性温带干旱区的中心。由于其特殊的地理位置一处于西风带、东亚季风和西南季风的交汇处,它对于区域和全球气候变化具有较高的响应。因此,对柴达木盆地古气候、环境变化的研究将有助于加深对亚洲中部干旱区对全球变化的响应及反馈机制的理解。进一步深入的、系统的研究我国西部,特别是青藏高原东北缘干旱—干寒区的气候变化具有十分重要的理论意义。
     本论文所选取的柴达木盆地察尔汗湖贝壳堤,是到目前为止在柴达木盆地发现的惟一大型贝壳堤,其完整的地质记录、大量的生物化石为研究的可信度提供了良好的保证。通过对柴达木盆地察尔汗古湖贝壳堤沉积物中可溶与残留(酸不溶)组分中常、微量元素及其稀土元素、元素对的分析,并结合可溶与残留组分中元素相关性对比,讨论了贝壳堤剖面元素地球化学指标和沉积环境之间的关系,并根据根据柴达木盆地贝壳梁剖面的化学元素及生物、物理化学指标,在精确测年的前提下,重建了43.5~22.4cal.ka B.P.(39.7~17.5ka B.P.~(14)C年代)柴达木盆地察尔汗古湖高湖面期间古气候与环境演变过程。根据上述研究本论文得出以下主要结论与认识:
     1.通过对比分析得出,可溶组分与残留组分中所含的元素在环境响应模式上并不完全相同,可溶组分中的元素及其元素对可以作为湖泊和流域古气候演化的代用指标;残留组分中的元素及元素对与原岩及其风化程度紧密相关,更多地是记录了物源区的环境特征。
     2.由于可溶组分与残留组分中元素在环境响应模式上的差异,故在前处理、研究区域演化时应将二者分开,这样有助于避免在解译环境信号时产生偏差。
     3.贝壳堤剖面沉积物中各元素指标揭示了晚更新世43.5~22.4cal.ka B.P.(39.7~17.5ka B.P.~(14)C年代)期间,柴达木盆地察尔汗古湖高湖面从淡水到半咸水-咸水-盐湖转变以及区域古气候与环境演变的过程:43.5~39.8cal.ka B.P.期间,为湖泊高湖面形成期。随着流域降雨增多,湖区的水面扩张,湖泊盐度较低,物源区风化强度增强,气候温湿,但是气候不太稳定,波动较为剧烈;39.8~37.8cal.kaB.P.,当时已经形成淡水至微咸水湖泊;约37.8~31.7cal.ka B.P.为湖泊发育的壮年期,此时段降水量较大,风化强度大,大量的风化物由物源区向湖泊输送物质,湖区水位迅速上升,由于温度适宜,水热条件配备好,形成高湖面鼎盛时期;约31.7~27.0cal.ka B.P.为环境的转变时期,降雨较少,湖泊的盐度加大,物源区风化强度变弱,水动力能下降且入湖水量减少,使得湖泊水位开始降低,气候也由暖湿向温干变化;约27.0~22.4 cal.ka B.P.为湖泊发育的晚期,由于此时降雨较少,湖区的水面强烈收缩,湖泊盐度进一步升高,加上物源区受到环境的影响,风化强度微弱,致使向湖泊输送的物质量衰减,气候表现为凉干的特征;晚期由于环境急剧恶化,湖水快速蒸发,形成盐壳,至此高湖面演化史结束。
     4.柴达木盆地贝壳堤剖面揭示的青藏高原东北部晚更新世中晚期高湖面及其演化过程,且其结果可与腾格里沙漠等进行对比,揭示了当时区域性气候环境、特别是水文循环过程的与现代相比发生了根本性的转变与调整,是大范围跨地域气候环境变化的表现,为我们更好的理解晚更新世气候变化的过程及特点,进而探讨气候变化的机理及其对人类和生物界的影响提供资料。
     5.研究结果表明,对于同一类沉积物,如湖泊沉积物而言,其元素含量、组分变化及特征参数的差异,反映了沉积环境的差异;在同一参考标准下,利用同一分析方法,对不同地区同一类型沉积物做进一步深入、系统的分析,对于探讨不同地区气候环境差异及区域分异、进而探讨气候变化特点以及全球响应模式具有十分重要的意义。
Qaidam Basin, situated at the northeastern Tibetan Plateau, is in the central part ofthe arid Asia, which is the biggest non-zonal arid area in temperate zone on the earth,and is the conjunction area among the Westerly jet, southeastern Asia Monsoon andsouthwestern Asia Monsoon that influence the climate of China. Therefore, it is verysensitive to the regional and global changes. Detailed researches can promote ourunderstandings of the climate change in the central Asia to the global changes and themechanisms behind these changes. The study on the climate change history in thearid-cold area of the northeastern Tibetan Plateau is of great theoretical and appliedimportance.
     Shell Bar is the only one which has been discovered at Qaidam Basin so far, it hasan important significance. In the stratigraphy there are four layers containing largeamount fossil shells of Corbicula fluminea m(u|¨)ller and Corbicula lorgillierti philippi,with both taxa often kept together and standing in situ. Based on the spatial distributionpattern of the shell bar, sedimentary characteristics of the deposits, assemblages ofmicrofossils such as Ostracods, the appearance of fossil shell Corbicula and pollen ofPediastrum, all of them only could survive under certain water depth, it could beconcluded that the shell bar section is a continuously deposited sequence under thewater condition and possibly one of the most suitable geological records of thepaleoclimate change history. Based on the analytical results of the elements of the acidsoluble (AS) and residual (AR) fractions of the Shell Bar section and the correlationsbetween the related elements and their ratios, the geochemical fractionations inpaleolake deposits and their sedimentary environmental significance were studied.According to the results, the paleoenvironment change history between 43.5 cal ka B. P.and 22.4 cal ka B. P. (39.7~17.5 ka B. P. ~(14)C) was reconstructed.
     1. According to the correlations between the elements (major, trace and rare earthelements) in AS and AR, which are been seen as the climatic proxies, indicated that thelacustrine deposition have different material sources, experienced varying geochemicalprocedures and the different response in the evolution pattern of environment. The AS fractions of the sediments have been utilized as a sensitive geochemical andenvironmental indicator in lake area, and AR fractions were always bearing thegeochemical characteristics of source area and information of weathering processes.
     2. It is not only necessary, but should separate AS fractions from the AR fractionswhen elements was used to study the paleoclimate and environmental evolution historyrecorded in the lacustrine deposits, especially during the high resolution paleoclimateand lake level reconstruction. In this way, we could not only avoid interfering amongvarious proxies and drawing misleading conclusions, but also improve ourunderstanding on natural processes and reliability of the information about materialsources, climate changes in the catchment and lake areas.
     3. Based on the sediment proxies of geochemical and other results of the section,the environmental change history was reconstructed between 43.9 cal. ka BP and 22.4cal. ka BP. During 43.9~43.5 cal ka BP, the paleolake has been formed and reached thestudy section. From 43.5 to 39.9 cal. ka BP, it is the development of the paleolake andindicated a reductive sedimentary environment, with the precipitation of the catchmentincreasing, the scope of paleolake had been expanding, the climate became warm-humidalong with the paleolake level increased and had strong chemical weathering of sourcearea. From 39.9 to 31.9 cal. ka BP, it is reveal a reductive sedimentary environment, theclimate during this period was the warmest and the paleolake reached it fully developedperiod because of the abundant precipitation and strong chemical weathering. From 31.9to 27.0 cal. ka BP, it was the transitional period of the environment recorded by theShell bar section, all proxies implied strong decrease of the lake level even thetemperature was high, it means that the climate shifted from humid-worm to warm-drythat resulted in an oxidative sedimentary environment. During the period between 27.0and 22.4 cal. ka BP, it is indicated an abrupt temperature decrease and strong lake levelfluctuations during the period, showing that the climate changed from a warm-dry into acold-dry condition. Further temperature decrease and a sudden lowering of lake levelsand shrank of the water body related to the strong evaporation resulted in the formationof the salt layer in the top of the section. Till then, the paleolake retreated quickly alongwith the further climate deterioration, the high paleolake level evolution history ended and never recovered again.
     4. According to the regional correlations between elevated high Qaidam Basinand lower Tengger desert, it shows a similar evolution patter. The study results from theseparated geological evidences prove that palaolake in such different areas not onlyposses a similar evolution pattern but also started synchronously, imply the climatechange resulted from the regional changes which links to global changes, providing newdata for understanding the mechanisms of the climate change. All of these can help usbetter to understand the climate change and the characteristics of the process duringLate Pleistocene. Thereby, we can explore the mechanism of climate change and itsimpact on human beings and the biosphere.
     5. This study suggested that the variations of elements contents, the ratiosbetween different components and their indices revealed the changes of the sedimentaryenvironments. A comprehensive test and detailed analyses on the same kind of deposits,such as lacustrine deposits using a similar technique with the same standard, is crucialto explore the regional climate changes and their responding to the global changes.
引文
1. Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett, 1978, 38 (1): 1-25
    2. A. Andreev, P. E. Tarasov, V. A. Klimanov, et al. Vegetation and climate changes around the Lama Lake, Taymyr Peninsula, Russia during the Late Pleistocene and Holocene. Quaternary International, 2004,122(1): 69-84
    3. Alakendra N. R. Spatial and seasonal variations in depth profile of trace metalsin saltmarsh sediments from Sapelo Island, Georgia, USA. 2007, Estuarine, Coastal and Shelf Science, 2007, 72:675-689
    4. Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett, 1978, 38(1): 1-25
    5. An Z.S., Porter, S.C. Millennial-scale climatic oscillations during the last interglaciation in central China. Geology, 1997, 25(7): 603-606
    6. Bender M., Sowers T., Dickson M.L. et al. Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature, 1994,372, 663-666
    7. Bernd W(?)nnemann, Steffen Mischke, Fahu Chen. A Holocene sedimentary record from Bosten Lake, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234: 223-238
    8. Blanca Bauluz, Maria Jose Mayayo, Constanza Fernandez-Nieto, et al. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology, 2000, 16(1-2): 135-150
    9. Bianchi, T.S., Mitra, S., McKee, B.A., 2002. Sources of terrestriallyderived organic carbon in lower Mississippi River sediments: implications for differential sedimentation and transport at the coastal margin. Mar. Chem. 77, 211-223
    10. Bond, G, Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C, Tedesco, K., Klas, M., Bonani, G, and Ivy, S., Evidence for massive discharges of icebergs into the North-Atlantic ocean during the last glacial period. Nature, 1992,360:245-249
    11. Braun J J, Pagel M, Muller J P, et al. Cerium anomalies in lateritic profiles. Geochim CosmochimActa, 1990, 54: 781-795
    12. Chang F Q, Zhang H C, Chen Y, et al. Sedimentary Geochemistry and Environmental Changes of Paleolake Qarhan during the Late Pleistocene in Qaidam Basin, China, Journal of China University of Geosciences, 2008, 18(2): 135-141
    13. Chappellaz, J., Brook, E., Blunier, T., Malaize, B., CH_4 and delta (18)O of O_2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores. Journal of Geophysical Research-Oceans, 1997, 102 (C12): 26547-26557
    14. Chen, F.H., Bloemendal, Feng, Z.D. et al. East Asian monsoon variations during the last interglacial: evidence from the northwestern margin of the Chinese loess plateau. Quaternary Science Reviews, 1999, 18(8-9):1127-1135
    15. Chen F. H., Fan Y. X, Chun X., et al. Preliminary research on Megalake Jilantai-Fletao in the arid areas of China during the Late Quaternary. Chinese Science Bulletin, 2008,53(11): 1725-1739
    16. Chen F.H., Wang J.M., Li J.J. et al. High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes between 70ka and lOka. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130: 323-335
    17. Chen J, An Z S, Hend J. Variation of Rb/Sr ratios in the loess~paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research, 1999a, 51: 215-219
    18. Chen J, An Z S, Wang Y J, et al. Distribution of Rb and Sr in the Luochuan loess paleosol sequence of China during the last 800ka: Implications for paleomonsoon variations. Science in China (Series D), 1999b, 42(2): 225-232
    19. Chen J A, Wang J, Tang D G, et al. Recent climatic changes recorded by sediment grain sizes and isotopes in Erhai Lake. Progress in Natural Science, 2000, 10(1): 54-61
    20. Chen J. S., Li L., Wang J. Y. et al. Water resources: Groundwater maintains dune landscape. Nature, 2004,432-459
    21. Chen Jun, Ji Junfeng, Qiu Gang et al. Geochemical studies on the intensity of chemical weathering in Luochuan loess paleosol sequence, China. Science in China (Series D ) , 1998, 41(3): 235-241
    22. Chen T., Qin D.H., Li J.F. et al., Study on climatic significance of fir tree-ring δ_(13)C from Zhaosu county of Xinjiang Region, China. Journal of Glaciology and Geocryology, 2000, 22(4): 347-352
    23. Clemens S C, Prell W L. A 350000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar Geol, 2003, 3366: 10-17
    24. Clemens S C, Prell W, Murray D, et al. Forcing mechanisms of the Indian Ocean monsoon. Nature, 1991, 353: 720-725
    25. Crichton J G, Cond K C. Trace elements as source indicators in cratonic sediments: A case study from the Early Proterozoic Libby Creek Group, South Eastern Wyoming. The Journal of the Geology, 1993, 101: 319-330
    26. Dam, R. A. C., van der Kaars, Kershaw, A. P., Introduction-Quaternary environmental change in the Indonesia region. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171, 91-95
    27. Dansgaard, W., Johnsen, S.J., Clausen, H.B et al. Evidence for general instability of past climate from a 250 kyr ice-core record. Nature, 1993, 364: 218-220
    28. Das, B.K., Haake, B.. Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting. Geoscience Jounal, 2003, 7: 299-312
    29. Dasch E J. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim Cosmochim Acta, 1969, 33, 1521-1552
    30. Davison W. Iron and manganese in lakes. Earth Science Review, 1993, 34(2): 119-163
    31. Dinescu L C, Duliu O G, Andries E I. INAA study of the vertical distribution of some major and trace elements in lacustrine sediments of the Danube Delta. Journal of Radio Analytical and Nuclear Chemistry, 2000, 244(1): 147-152
    32. Dingle R V, Lavelle M. Late Cretaceous-Cenozoic climate variation of the northern Antarctic Peninsula: new geochemical evidence and review.Palaeography, Palaeoelimatology, Palaeoeeology, 1998, 141: 215-23
    33. E. W. Sawyer. The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico Metasedimentary Belt, Superior Province, Canada. Chemical Geology, 1986, 5(1-2): 77-95
    34. Elderfield H, Greaves M I. The rare earth elements in seawater. Nature, 1982, 296(5854): 214-219
    35. Feng Z. D., Zhai X. W., Ma Y. Z., et al. Eolian environmental changes in the Northern Mongolian Plateau during the past 35,000yr. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007a, 245, 505-517.
    36. Feng Z. D., Tang L. Y., Ma, Y. Z., Zhai, et al. Vegetation variations and associated environmental changes during marine isotope stage 3 in the western part of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007b, 246, 278-291
    37. Feng Z. D. Gobi dynamics in the Northern Mongolian Plateau during the past 20000+ yr: preliminary results. Quaternary International, 2001, 76/77: 77-83
    38. Fleet A J. Aqueous and sedimentary geochemistry of the rare earth elements. In: Henderson P (Ed.), Rare earth element geochemistry. Amsterdam: Elsevier, 1984, 343-373
    39. Fl(u|¨)ckiger, et al, N_2O and CH_4 variations during the last glacial epoch: insight into global processes. Global Biogeochemical Cycles, 2004, 118: 1020
    40. Fontes, J.C., M(?)li(?)res, F., Gibert, E., et al. Stable isotope and radiocarbon balances of two Tibetan lakes (Sumxi Co, Longmu Co) from 13000 B.P. Quat. Sci. Rev., 1993, 12: 875-887
    41. G. Roman-Ross, P. J. DePetris et al. Geochemical variability since the Late Pleistocene in Lake Mascardi sediment, northern Patagonia, Argentina. Journal of South American Earth Science, 2002, 15: 657-667.
    42. GangjianWei, Ying Liu, Xianhua Li, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212: 331-342
    43. Geyh M A, Grosjean M, N(?)ez L et al. Radiocarbon reservoir effect and the timing of the Late-Glacial/Early Holocene humid phase in the Atacama Desert (Northern Chile). Quaternary Research, 1999, 52 (2): 143-153
    44. Glodstein S L. Deeoupled evolution of Nd and Sr isotope in the continental crust and the mantle. Nature, 1998,336: 733-738
    45. GRIP Members, Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 1993, 364: 203-207
    46. Grootes P.M., Stuiver M., White J.W. et al. Comparison of oxygen~isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 1993, 366: 552-554
    47. Guo, Z.T., Peng, S.Z., Wei, L.Y. et al. Weathering Signals of Millennial-scale oscillations of the eastern Asian summer monsoon over the last 220 ka. Chinese Science Bulletin, 1999, 44(Sup.l):20-25
    48. H C Zhang, H F Fan, F Q Chang, et al. AMS DATING ON THE SHELL BAR SECTION FROM QAIDAM BASIN, NE TIBETAN PLATEAU, CHINA. RADIOCARBON, 2008, 50(2): 255-265
    49. H. C. Zhang, Bernd Wuennemann, Yuzhen Ma, et al. Lake level and climate change between 42,000 and 18,000 14C years BP in Tengger desert, NW China. Quaternary Research, 2002, 58: 62-72
    50. H. C. Zhang, Q. Z. Ming, G L. Lei, et al. Dilemma of dating on lacustrine deposits in a hyperarid inland basin of NW China, 2006, Radiocarbon, 48(2): 219-226
    51. H. C. Zhang, Yuzhen Ma, Bernd Wuennemann, et al. Abrupt climate changes during last glacial period in NW China. Geophysical Research Letters, 2001,28(16): 3203-3206
    52. H.C. Zhang, Y.Z. Ma, B. Wunnemann et al. A Holocene climatic record from arid northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162, 389-401
    53. Hedges J.I., Keil R.G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 1995,49: 81-115
    54. Huang W. P., Ji H. X. The climate and uplift of the Qinghai~Xizang (Tibet) Plateau, in the Late Pleistocence and Holocene Geological and Ecological Studies of Qinghai-Xizang Plateau. Science Press, 1981,225-230
    55. Hucai Zhang, Bernd Wunnemann, Yuzhen Ma et al. Lake Level and Climate Changes between 42,000 and 18,000 14C yr B.P. in the Tengger Desert, Northwestern China. Quaternary Research, 2002,58, 62-72
    56. Hughen, Lehman S, Southon J, et al. (14)C activity and global carbon cycle changes over the past 50,000 years. Science, 2004, 303: 5655
    57. Jiang S Y, Zhao H X, Chen Y Q et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China. Chemical Geology, 2007, 244: 584-604
    58. Jin, Z.D., Wang, S., Shen, J., Zhang, E., Ji, J., Li, F., Lu, X., 2001. Chemical weathering since the Little Ice Age recorded in lake sediments: a high-resolution proxy of past climate. Earth Surf. Process. Landf. 26, 775-782.
    59. Jin Z D, Cao J J, Wu J L et al. A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia. Earth Surface Processes and Landforms, 2006, 31(3): 285-291
    60. Jin Z.D., Wang S., Shen J., Wang, Y. Carbonate versus silicate Sr isotope in lake sediments and its response to the Little Ice Age. Chin. Sci. Bull., 2003. 48: 95-100
    61. Johansson K H, Berry W L, David A B, et al. Rare earth element concentrations and speciation in alkaline lakes from the western U.S.A.. Geophys Res Lett, 1994, 21(9): 773-776
    62. Keil R.G., Hedges J. I., Tsamakis E., et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. Geochim. Cosmochim. Acta, 1994, 58: 879-893
    63. Kenig R., Simons D. Hi., Crich D,et al., Structure and distribution of branched aliphatic alkanes with quaternary carbon atoms in Cenomanian and Turanian black shales of Pasquia Hills (Saskatchewan, Canada). Organic Geochemistry, 2005, 36: 117-138
    64. Krinner, G., Mangerud, J., et al, Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature, 2004,427: 429 - 432
    65. Krishnamurthy, R.V., Bhattacharya, S.K., Kusumgar, S. Palaeoclimatic changes deduced from (13)C/(12)C and C/N ratios of Karewa Lake sediments, India. Nature, 1986, 323: 150-152
    66. L. G. Thompson, T. Yao, M. E. Davis, et al., Tropical climate Instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 1997, 276: 1821-1825
    67. Laird K. R., Cumming B. F., Wunsam S., et al. Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proc. Natl. Acad. Sci, 2003, 100: 2483-2488
    68. Last W.M., Smol J.P. (Eds.). Tracking Environmental Change Using Lake Sediments. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
    69. Lewis A. Owen, Robert C. Finkel, Ma Haizhou et al. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation. Quaternary International, 2006, 154-155: 73-86
    70. Lithner G, borg H, Elk J, et al. The turnover of metals in a eutrophic and an oligotrophic lake in Sweden. Ambio, 2000, 29: 216-228
    71. Ma Y J, Huo R K, Liu C Q. Speciation and fractionation of rare earth elements in a lateritic profile from southern China: Identification of the carriers of Ce anomalies. Geochim Cosmochim Acta, 2002, 66(15 A, Suppl): 471
    72. Mangerud J., et al. Hugh ice-age lakes in Russia. Journal of Quaternary Science, 2001b, 16(8): 773-777
    73. Mangerud, J., et al. The chronology of a large ice-dammed lake and the Barents-Kara ice sheet advances, Northern Russia. Global and Planetary Change, 2001a, 31, 321-336
    74. Martin J M, Philipott S C. Rare earth elements supply to the ocean. J Geophys Res, 1976, 81: 3119-3124
    75. McManus, J.F., Qppo, D.W., Cullen, J.L., A 0.5~million~year record of millennial-scale climate variability in the North Atlantic. Science, 1999,283(5404): 971-975
    76. S M McLennan. Rare earth element geochemistry and the "tetrad" effect. Geochimica et Cosmochimica Acta, 1994, 5(9): 2025-2033
    77. Mullins, H.T. Environmental change controls of lacustrine carbonate, Cayuga Lake, New York. Geology, 1998, 26: 443-446
    78. Murry R W. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18(3): 268-271
    79. Nesbitt H W, Young G M, McLannan S M, et al. Effects of chemical weathering and sorting on the Petrogenesis of siliciclastic sediments, with implications of provenance studies. J Geology, 1996. 104: 525-542
    80. Nesbitt H W, Young G M. Early Proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299: 715-717
    81. Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based in thermodynamic and kinetic considerations. Geochim Cosmochim Acta, 1984, 48: 1523-1534
    82. Nesbitt H W and Young G M. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology, 1996, 43: 341-358
    83. Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 1979,279: 206-210
    84. Norman M D., De Deokker P. Trace metals in lacustrine and marine sediments: A case study from the Guif of Carpentaria, northern Australia. Chem Geol, 1990, 82: 299-318
    85. Ohta A, Ishii S, Sakakibara M, et al. Systematic correlation of the Ce anomaly with the Co/(Ni+Cu) ratio and Y fractionation from Ho in distinct types of Pacific deep-sea nodules. Geochem J, 1999, 33: 399-417
    86. Pachur H. J., B. Wuennemann, H. C. Zhang. Lake evolution in the Tengger Desert, northwestern China, during the Last 40000 years. Quaternary Research, 1995, 44: 171-180
    87. Porter, S.C. and An, Z.S. Correlation between climate events in the North-Atlantic and China during last glaciation. Nature, 1995, 375: 305-308
    88. Rioual P, Andrie-Ponel V, Rietti-Shati M, et al. High-resolution record of climate stability in France during the last interglacial period. Nature, 2001,413: 293-296
    89. Roberts N., Erol O., de Meester T.and Uerpmann H.P., Radiocarbon chronology of the late Pleistocene Konya Lake. Turkey. Nature, 1979,281: 662-664
    90. Rognerud S, Fjeld E. Trace element contamination of Norwegian lake sediments. Ambio, 2001, 30: 11-19
    91. Rose, N.L., Boyle, J.F., Du, Y., et al. Sedimentary evidence for changes in the pollution status of Taihu in the Jiangsu region of eastern China. Journal Paleolimnology, 2004, 32: 41-51
    92. Ross G R, Guevara S R, Arribere M A. Rare earth geochemistry in sediments of the Upper Manso River Basin, Rio Negro, Argentina. Earth Planet Sci Lett, 1995, 133: 47-57
    93. Roy P D, Kloss W S. REE geochemistry of the recent playa sediments from the Thar Desert, India: An implication to playa sediment provenance. Chem Erde-Geochem, 2007, 67: 55-68
    94. Roymo, M.E., Ganley, K., Carter, S., et al. Millennial-scale climate instability during the early Pleistocene epoch. Nature, 1998, 392 (6677): 699-702
    95. Sawyer E W. The influence of source rock type chemical weathering and sorting on the geochemistry of elastic sediments from the Quetico metasedimentary belt, Superior Province, Canada. Chemical Geology, 1986, 55: 77-95
    96. Stoll H M., Schrag D P. Sr/Ca variations in Cretaceous: relation to productivity and sea level changes. Palaeogeography Palaeoclimate Palaeoecology, 2001,168: 311-336
    97. Tanaka K, Akagawab F, Yamamoto K, et al. Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the Last Glacial/Interglacial transition. Quaternary Sci Rev, 2007,26: 1362-1368
    98. Tanaka K, Akagawab F, Yamamoto K, et al. Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the Last Glacial/Interglacial transition. Quaternary Science Review, 2007, 26: 1362-1368
    99. Taylor S.R., McLennan S.M. The Continental Crust: Its Composition and Evolution. London: Blackwell, 1985
    100. Thomas E. Rhodes, Francoise Gasse, Lin Ruifen, et al. A Late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1-2): 105-121
    lOl.Tjeerd H. van Andel. The Climate and Landscape of the Middle Part of the Weichselian Glaciation in Europe: The Stage 3 Project. Quaternary Research, 2002, 57(1): 2-8
    102. Van Andel, T. h., Reconstructing climate and landscape of the last midpleniglacial in Europe the Stage 3 Project. Quaternary Research, 2001, 57: 2-8
    103. Wagner B, Melles M, Hahne J, et al. Holocene climate history of Geographical Society, East Greenland evidence from lake sediments. Palaeogeography, Palaeoelimatology, Palaeoecology, 2000,160: 45-67
    104. Wang Y. J., Cheng H., Edwards R. L., et al. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 2001, 294: 2345-2348
    105. Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth Planet Sci Lett, 2002, 201: 621-636
    106. Wersin P, Hehener P, Giovanoli R et al. Early diagenetic influences on iron transformations in freshwater lake sediment. Chemical Geology, 1991, 90(3-4): 233-252
    107. Willemse N.W., Tornqvist T. E. Holocene century-scale temperature variability from west Greenland lake records. Geology, 1999, 27: 580-584
    108. Wright J, Seymour R S, Shaw H F. REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Geol Soc Am Bull, Spec Pap, 1984, 196: 325-340
    109. Wunnemann, B., Pachur, H.J., Zhang, H. C. Climatic and environmental changes in the deserts of Inner Mongolia, China, since the Late Pleistocene. In Quaternary Deserts and Climatic Changes (Alsharhan, A. S., Glennie, K. W., Whittle, G L. & Kendall, C. G St. C. eds.), Balkema, Rotterdaman and Brookfield, 1998, 381-394
    110. Wunnemann B, Mischke S, Chen Fahu. A Holocene sedimentary record from Bosten Lake, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,234(2-4): 223-238
    111. Xiaoping Yang, Tungsheng Liu, Honglang Xiao. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31,000 years. Quaternary International, 2003,104(1): 99-112
    112. Yafeng Shi, Ge Yu, Xiaodong Liu, et al. Reconstruction of the 30~40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 16(1-2): 69-83
    113. Yangn W, Spencer R J, Krouse H R et al. Stable isotopes of lake and fluid inclusion brines, Dabusun lake, Qaidam Basin, Western China: Hydrology and paleoclimatology in arid environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 117(3-4): 279-290
    114. Yao Tandong, Thompson L G, Shi Yafeng, et al. Climate variation since the Last interglaciation recorded in the Guliya ice core. Science in China (Series D), 1997,40(6): 662-668
    115.YAO Tandong, L. G. Thompson, SHI Yafeng, et al. Climate variation since the Last Interglaciation recorded in the Guliya ice core. Science in China Series D: Earth Sciences, 1997, 40(6): 662-668
    116. Zhang, H. C., Li, J. J., Ma, Y. Z. et al. Paleolake evolution and abrupt climate changes during last glacial period in NW China. Geophysical research Letters, 2001, 28, 3203-3206
    117. Zhang H. C., Ma Y. Z., Wunnemann B., et al. A Holocene climatic record from arid Northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162: 389-401
    118. Zhang H. C., Peng J. L., Ma Y. Z. et al., Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211: 45-58
    119. Zhang H.C., Li B., Yang M.S., et al. 2006a. Dating paleosol and animal remains in loess deposits. Radiocarbon, 48(1): 109-116
    120. Zhang H.C., Ming Q.Z., Lei G.L., et al. 2006b. Dilemma of dating on lacustrine deposits in a hyperarid inland basin of NW China. Radiocarbon 48(2): 219-226
    121. Zhang Hucai, Wunnemann B, Ma Yuzhen, et al. Lake level and climate changes between 42, 000 and 18, 000 ~(14)C yr B.P. in the Tengger desert, North Western China. Quaternary Research, 2002, 58(1): 62-72
    122. Zhang Hucai, Chang Fengqin, Li Bin, et al. Branched aliphatic alkanes of Shell Bar section in Qarhan Lake, Qaidam Basin and their paleoclimate significance. Chinese Science Bulletin, 2007, 52(9): 248-1256
    123. Zhang Hucai, ZhangWenxiang, Chang Fengqin, et al. Geochemical fractionation of Rare Earth Elements in lacustrine deposits: a case study on the Shell Bar section from Qaidam Basin. Science in China Series D: Earth Sciences, 2009 (In Printing)
    124.安芷生,Porte S,Kukia G等,最近13万年黄土高原季风变化的磁化率证据.科学通报,1990,35(7):529-531
    125.曹家欣编著.第四纪地质.北京:商务印书馆,1983,11-28
    126.曹建廷,沈吉,王苏民等.内蒙古岱海地区小冰期气候演化特征.地球化学,2001,30(3):231-23
    127.曹建廷,沈吉,金章东.内蒙古岱海地区小冰期气候特征的地球化学记录.南京师范大学学报,2000.23:247-251
    128.陈光仲.安徽巢县二叠系地层的C/S比值及其指相意义.地层学杂志,1991,1:62-64
    129.陈辉,吕新苗,李双成.柴达木盆地东部表土花粉分析.地理研究,2004,23(2):201-210
    130.陈敬安,万国江,徐经意.洱海沉积物粒度记录与气候干湿变迁.沉积学报,2000,18(3):341-345
    131.陈敬安,万国江,张峰等.不同时间尺度下的湖泊沉积物环境记录-以沉积物粒度为例.中国科学(D辑),2003,33(6):563-568
    132.陈敬安,万国江,汪福顺等.湖泊现代沉积物碳环境记录研究.中国科学(D辑),2002,32(1):73-80
    133.陈敬安,万国江,陈振楼等.洱海沉积物化学元素与古气候演化.地球化学,1999,28(6):562-570
    134.陈骏,王洪涛,鹿化煜.陕西洛川黄土沉积物中稀土元素及其他微量元素的化学淋滤研究.地质学报,1996,70(1):61-72
    135.陈骏,安芷生,刘连文等.最近2.5Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化.中国科学(D辑),2001,31(2):136-145
    136.陈骏,汪永进,季峻峰等.陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义.第四纪研究,1999,4:350-356
    137.陈克造,J.M.Bowler.柴达木盆地察尔汗盐湖沉积特征古气候及其演化的初步研究.中国科学(D辑),1985,5:463-473
    138.陈克造,J.M.鲍勒,柴达木盆地晚更新世盐湖演化.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,83-91
    139.陈克造,J.M.Bowler,K.Kelts,四万年来青藏高原的气候变迁.第四纪研究,1990,3(1):21-31
    140.程继满,刘弈,彭子成等.热带海洋珊瑚Sr/Ca、Mg/Ca温度计的研究及其意义.海洋地质动态,2004,20(9):1-9
    141.戴俊生,叶兴树,汤良杰等.柴达木盆地构造分区及其油气远景.地质科学,2003,38(3):291-296
    142.狄恒恕,王松贵.柴达木盆地北缘中、新生代构造演化探讨.地球科学-中国地质大学学报,1991,5:533-539
    143.刁桂仪,文启忠.渭南黄土剖面中的稀土元素.海洋地质与第四纪地质,2000,20(4):57-61
    144.杜俊民,朱赖民,张远辉.南黄海中部沉积物微量元素的环境记录研究.海洋学报,2004,26(6):49-57
    145.段振豪,袁见齐.察尔汗盐湖物质来源的研究.现代地质,1988,7(4):420-428
    146.郭志刚,杨作升,范德江等.东海中陆架泥质区及其周边底质中钙、锶、钡的地球化学特征.青岛海洋大学学报,1998,28(3):481-488
    147.黄宝仁.柴达木盆地甘森区介形类化石.古生物学报,1964,12(2):241
    148.黄麒,蔡碧琴.察尔汗盐湖沉积物年代学初步研究.中国-澳大利亚第四纪学术讨论会论文集,科学出版社,1987,106-114
    149.黄麒,孟昭强等.柴达木盆地察尔汗湖区古气候波动模式的初步研究.中国科学(D辑),1990b,10(6):652-663
    150.黄麒,陈克造.七十三万年来柴达木盆地察尔汗盐湖古气候波动的形式.第四纪研究,1990,9(3):205-211
    151.黄勇,陈宗颜,刘春娥.柴达木盆地与青海省东北部地区43年气温变化的对比分析.青海大学学报(自然科学版),2005,3:56-60
    152.贾玉连,施雅风,王苏民等,40ka以来青藏高原的4次湖涨期及其形成机制初探.中国科学(D辑),2001,31(增刊),241-251
    153.江德昕,杨惠秋.青海达布逊湖50万年以来气候变化的孢粉学证据.沉积学报,2001,19(1):101-106
    154.金秉福,林振宏,季福武等.东海外陆架Q43岩芯末次冰期矿物学特征及其古环境意义.海洋学报,2003,25:181-189
    155.金章东,王苏民,沈吉等.全新世岱海流域化学风化及其对气候事件的响应.地球化学,2004,33(1):29-36
    156.金章东,王苏民,沈吉等.小冰期弱化学风化的湖泊沉积记录.中国科学(D辑),2001,31(3):221-225
    157.金章东,邹成娟,李福春等.湖泊沉积物中元素相态的连续提取分析-以岱海为例.湖泊科学,2005,17(1):47-53
    158.景民昌,孙镇城,杨革联等.柴达木盆地达布逊湖地区3万年来气候演化的微古生物记录.海洋地质与第四纪地质,2001,21(2):55-58
    159.景民昌,杨革联,孙乃达.末次间冰期-末次冰期柴达木盆地东部气候演化形式.地球科学与环境学报,2004,26(3):83-87
    160.篮先洪.判别陆相与海相沉积岩的C/S法及其应用.地质科技情报,1998,1:102-105
    161.雷国良,张虎才,张文翔,等,柴达木盆地察尔汗湖贝壳堤剖面粒度特征及其沉积环境,沉积学报,2007,25(2):274-282
    162.李斌.柴达木盆地贝壳堤剖面有机分子化石与沉积环境.兰州大学博士毕业论文,2007
    163.李炳元,张青松,王富葆,喀喇昆仑山-西昆仑山地区的湖泊演化.第四纪研究,1991,(1):64-71
    164.李炳元.青藏高原大湖期.地理学报,2000,55(2):174-182
    165.李世杰,张宏亮,施雅风等.青藏高原甜水海盆地MIS3阶段湖泊沉积与环境变化.第四纪研究,2008,28(1):122-131
    166.李玉成,王苏民,黄耀升。气候环境变化的湖泊沉积学响应。地球科学进展,1999,14(4):412-416
    167.梁青生,黄麒.青海察尔汗盐湖达布逊区段和别勒滩区段的成盐年代.沉积学报,1995,13(3):126-131
    168.林瑞芬,卫克勤,程致远等。新疆玛纳斯湖沉积柱样的古气候古环境研究。地球化学,1996,25(1):63-72
    169.刘丛强,吴佳红,于文辉.氢氧化铁胶体/水界面作用与地表水中稀土元素的分异-pH控制机理的实验研究.中国科学D辑,2001,31(10):873-880
    170.刘东生编著.黄土与环境.北京:科学出版社,1985
    171.刘东生编著.第四纪环境.北京:科学出版社,1997
    172.刘东生,刘嘉麒,吕厚远.玛洱湖高分辨率古环境研究的新进展.第四纪研究,1998,(4):289-295
    173.刘东生,安芷生,陈明杨等.最近0.6Ma南北半球古气候对比初探.中国科学(D辑),1996,26(2):97-102
    174.刘连文,陈骏,陈旸等.最近130 ka以来黄土中Zr/Rb值变化及其对冬季风的指示意义.科学通报,2002,47(9):702-706
    175.刘兴起,王苏民,沈吉.青海湖QH-2000钻孔沉积物粒度组成的古气候古环境意义.湖泊科学,2003,15(2):112-117
    176.刘英俊,曹励明,李兆麟等.元素地球化学.北京:科学出版社,1984
    177.马玉贞,张虎才,李吉均等.腾格里沙漠晚更新世孢粉植物群与气候环演变.植物学报,1998,40(9):871-879
    178.牟保磊编著.元素地球化学.北京:北京大学出版社,1999
    179.牛洁,张虎才,常凤琴等.柴达木察尔汗贝壳堤剖面Sr同位素及其环境意义.高校地质学报,2007,13(1):14-22
    180.沈才明,唐领余,王苏民.若尔盖地区年以来的植被与气候.微体古生物学报,1996,13(4):401-406
    181.沈吉,汪勇,羊向东等.湖泊沉积记录的区域风沙特征及湖泊演化历史:以陕西红碱淖湖泊为例.科学通报,2006,51(1):87-92
    182.沈吉,王苏民,Matsumoto R等。内蒙古岱海古水温定量恢复及其古气候意义。中国科学(D辑),2001,32(12):1017-102
    183.施雅风,贾玉连,于革等.40-30ka BP青藏高原及邻区高温大降水事件的特征、影响及原因探讨.湖泊科学,2002,14(1):1-11
    184.施雅风,末次冰期各阶段的气候与环境变化.见施雅风,李吉均,李炳元主编:青藏高原晚新代隆升与环境变化.广州科技出版社出版,1997,422-431
    185.施雅风,于革.40-30 ka BP中国暖湿气候和海侵的特征与成因探讨.第四纪研究,2003,23(1):1-11
    186.施雅风,赵井东.40-30 ka BP中国特殊暖湿气候与环境的发现与研究过程的回顾.冰川冻土,2009,31(1):1-10
    187.时兴合,赵燕宁,戴升等.柴达木盆地40多年来的气候变化研究.中国沙漠,2005,25(1):123-128
    188.史基安,郭雪莲,王琪,等.青海QH1孔晚全新世沉积物稀土元素地球化学与气候环境关系探讨.湖泊科学,2003,15(1):28-34
    189.孙立广,谢周清,赵俊琳.南极阿德雷岛湖泊沉积物Sr/Ba与B/Ga比值特征.海洋地质与第四纪地质,2000,20(4):43-46
    190.孙千里,周杰,肖举乐.岱海沉积物粒度特征及古环境意义.海洋地质与第四纪地质,2001,21(1):93-95
    191.孙镇城,曹丽,张海泉等.柴达木盆地全球末次冰期介形类动物的演变.古地理学报,2003,5(3):365-377
    192.王建,黄巧华,柏春广等.2.5Ma以来柴达木盆地的气候干湿变化特征及其原因.地理科学,2002,22(1):34-38
    193.王靖泰,E.德比希尔,张勇等.柴达木盆地第四纪研究的新进展.科学通报,1985,12:936-940
    194.王靖泰,焦克勤.,柴窝堡-达坂城地区地貌,第四纪沉积及湖面变化.柴窝堡-达坂城地区水资源与环境(施雅风、曲耀光等,编著)科学出版社,1989,11-22
    195.王苏民,张振克.中国湖泊沉积与环境演变研究的新进展.科学通报,1999,44(0):579-587
    196.王中刚,于学元,赵振华.稀土元素地球化学.北京:科学出版社,1989,88-93
    197.韦刚健,陈毓蔚,李献华等.NS93-5钻孔沉积物不活泼微量元素记录与陆源输入变化探讨.地球化学,2001,30(3):208-216
    198.吴敬禄,G.H.Schleser,王苏民等.青藏高原东部兴措湖近0.2 ka来的气候定量复原.中国科学(D辑),2001,31(12):1024-1030
    199.吴艳宏,李世杰.湖泊沉积物色度在短尺度古气候研究中的应用.地球科学进展,2004,19(5):789-792
    200.谢树成,姚檀栋,康世昌等。青藏高原希夏邦马峰地区雪冰有机质的气候与环境意义。中国科学(D辑),1999,29(5):457-465
    201.谢周清,孙立广,刘晓东等.近2000年来南极菲尔德斯半岛西湖沉积物中稀土元素1/δEu 特征与气候演变.沉积学报,2002,20(2):303-306
    202.薛滨,王苏民,吴敬禄等.青藏高原东北部末次间冰期以来的古气候一以若尔盖盆地RM孔分析为例.海洋与湖沼,1999,30(3):327-332
    203.鄢明才,迟清华,顾铁新等.中国火成岩化学元素的丰度与分布.地球化学,1996,5(25):409-424
    204.杨藩,孙镇城,马志强等.柴达木盆地第四系介形类化石带与磁性柱.微体古生物学报,1997,14(4):378-390
    205.杨藩,叶素娟,曹春潮等.新生代阿尔金断层中、东段右行走滑特征.地质科学,1994,29(4):346-354
    206.杨藩.从介形类化石的分布试论柴达木盆地东部地区第四系的划分和对比.中国微体古生物学会编:中国微体古生物学会第一次学术会议论文选集.北京:科学出版社,1981,46-53
    207.杨伦庆,张虎才,类延斌等.内蒙古西部额济纳古湖小狐山剖面有机质与碳酸盐组成及其古环境意义.第四纪研究,2009,29(2):356-367
    208.杨小平,刘东生.距今30 ka前后我国西北沙漠地区古环境.第四纪研究,2003,23(1):25-30
    209.杨小平.巴丹吉林沙漠地区钙质胶结层的发现及其古气候意义.第四纪研究,2000,20(3):295
    210.姚檀栋,L.G.Thompson,施雅风等,古里雅冰芯中末次间冰期以来气候变化记录研究.中国科学(D辑),1997,127(5):447-452
    211.于革,赖格英,刘建等.MIS3晚期典型阶段气候模拟的初步研究.第四纪地质,2003,23(1):12-24
    212.余素华,郑洪汉,陈肖柏,等.南极长城站区燕窝湖岩芯中稀土元素特征.极地研究,1993,5(3):49-54
    213.余素华,郑洪汉.宁夏中卫长流水剖面沉积物中稀土元素及其环境意义.沉积学报,1999,17(1):149-155
    214.余源盛,朱育新.湖泊沉积物中S、C及其比值的环境意义.湖泊科学,1995,1:41-46
    215.袁林旺,陈晔,刘泽纯,柴达木盆地深钻孔轨道调谐时间标尺的再研究.南京师大学报(自然科学版),2003,26(2):87-93
    216.袁林旺,刘泽纯,陈晔.柴达木盆地自然伽玛曲线记录的古气候变化对太阳辐射响应关系的对比研究.冰川冻土,2004,26(3):298-304
    217.张保珍,范海波,张彭熹等.察尔汗盐湖石盐的流质包裹体氢氧稳定同位素分析及其地球化学意义.沉积学报,1990,8(1):3-17
    218.张洪,靳鹤龄,肖洪浪等.东居延海易溶盐沉积与古气候环境变化.中国沙漠,2004,24(4):409-415
    219.张虎才,李吉均,马玉贞等.腾格里沙漠南缘武威黄土沉积元素地球化学特征.沉积学报,1997b,15(4):152-158
    220.张虎才,王强,彭金兰等.柴达木察尔汗盐湖贝壳堤剖面介形类组合及其环境意义.第四纪研究,2008,28(1):103-111
    221.张虎才,李吉均,马玉贞,等.腾格里沙漠南缘武威黄土沉积元素地球化学特征.沉积学报,1997,15(4):152-158
    222.张虎才,雷国良,常凤琴等.柴达木盆地察尔汗贝壳堤剖面年代学研究.第四纪研究,2007,27(4):511-521
    223.张虎才,马玉贞,彭金兰等.距今42-18Ka腾格里沙漠古湖泊及古环境.科学通报,2002,47(24):1847-1857
    224.张虎才,B.W(u|¨)nnemann.腾格里沙漠晚更新世以来湖相沉积年代及高湖面期的初步确定.兰州大学学报(自然科学版),1997,33(2):87-91
    225.张虎才.腾格里沙漠南缘武威黄土稀土元素及黄土沉积模式.兰州大学学报(自然科学版),1998,34(4):157-164
    226.张虎才.武都黄土剖面稀土元素研究.地球化学,1996,25(6):545-551
    227.张虎才.元素表生地球化学特征及其理论基础.兰州:兰州大学出版社,1997
    228.张彭熹,张保珍.柴达木地区近三百万年来古气候环境演化的初步研究.地理学报,1991,46(3):327-333
    229.张彭熹,张保珍,T.K.洛温斯坦等,古代异常钾盐蒸发的成因-以柴达木盆地察尔汗盐湖钾盐的形成为例.北京:科学出版社,1993,10-48
    230.张振克,王苏民,吴瑞金.全新世中期洱海湖泊沉积记录的环境演化与西南季风变迁.科学通报,1998,43(19):2127-2128
    231.张志军,尹观,张其春.碳酸盐岩Sr同位素比值的选择性溶解及测定技术.地质地球化学,2002,30(4):80-84
    232.张志军,尹观,周蓉生.HAc溶解碳酸盐岩测定~(87)Sr/~(86)Sr值实验方法研究.分析测试学报,2004,23(2):98-100
    233.赵锦慧,王丹,樊宝生等.延安地区黄土堆积的地球化学特征与最近13万年东亚夏季风气候的波动.地球化学,2004,33(5):495-500
    234.赵希涛,朱大岗,严富华等.西藏纳木错末次间冰期以来的气候变迁与湖面变化.第四纪研究,2003,23(1):41-52
    235.郑绵平,向军,青藏高原盐源.北京:科学技术出版社,1989
    236.周昆叔,距今两万至三万年间中国北方河谷、平原区云杉、冷杉植被分布意义.第四纪孢粉分析与古环境,中国科学院地质研究所孢粉分析组,同济大学海洋地质系孢粉分析室著.北京,科学出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700