用户名: 密码: 验证码:
EBPR系统中聚磷菌与聚糖菌的竞争和调控的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境水体问题的日益突出,“水体富营养化”问题已得到国内外学术专家、环保工作者及政府部门的高度重视,污水排放标准不断严格化,污水处理技术逐渐从以单一去除有机物为目的逐渐转变为既要去除有机物,又要脱氮除磷的深度处理,以控制富营养化为目的的脱氮除磷已成为当今污水处理领域的研究热点之一。强化生物除磷(EBPR)是污水除磷的有效而经济的方法,但是近年来很多学者发现由于系统中存在大量的聚糖菌(glycogen accumulating organisms,GAO),它与具有除磷功能的聚磷菌(phosphorus accumulating organisms,PAO)竞争有限基质和环境因素等条件,常常导致强化生物除磷系统恶化甚至崩溃。为促进强化生物除磷工艺的发展,尤其是促进聚磷菌与聚糖菌竞争原理及调控方法方面的探讨,本课题以SBR反应器为试验装置,分别研究了以实际生活污水和人工合成配水为基质的强化生物除磷系统,这对于人们认识EBPR,寻求调节菌群之间的竞争手段具有比较重要的意义。
     首先,本研究以P/C和碳源种类这2个关键因素控制强化生物除磷系统种群富集的方向,试图通过富集获得近似于纯培养的大量的PAO,GAO和α-GAO,高P/C下以乙酸丙酸交替富集PAO,在低P/C下可以以乙酸富集GAO,以丙酸富集α-GAO。富集结果三个反应器中PAO、GAO和α-GAO各占80%,90%,80%以上。
     鉴于纯培养产物对于研究聚磷菌的重要性,本研究采用传统的倾注法和涂布法分离,用连续划线法纯化,以具有强化生物除磷功能的活性污泥作为菌种来源,对聚磷菌进行了分离,纯化和筛选。分离纯化得到纯菌87株。经过蓝白斑法初筛,有4株菌在限磷培养基和高磷培养基上都显篮斑,经过吸放磷试验复筛,得到一株具有厌氧放磷好氧吸磷能力的菌株P4,经考察,它同时具有在厌氧和好氧交替的条件下转换PHA,糖原以及聚磷的功能。结合P4的个体和菌落形态特征、生理生化试验指标,以16sRNA技术鉴定P4为不动杆菌Acinetobacter sp.DG880[AY258108]。
     在环境条件对于EBPR系统的影响以及对于PAO和GAO竞争的影响试验中,本研究主要探讨了pH、温度、碳源、C/P以及亚硝态氮的影响。
     厌氧段pH影响小试试验表明,较高的pH对系统放磷有利,在6.0到8.5范围内pH越高,系统放磷量就越大,厌氧段pH的差异对系统去除COD的能力基本没有影响,却对PHA的合成影响显著,在厌氧段pH为6.0和8.5时,系统合成PHA的能力都受到了明显的抑制。好氧段pH影响小试试验表明,6.0明显是一个非常不利于聚磷菌吸磷的pH条件,在6.5到8.5的范围内,高pH对好氧吸磷有利。厌氧段pH长期影响试验表明,8.0是比较适合聚磷菌放磷的pH条件,在pH为7.0-8.0时除磷率可以达到80%以上,在pH为6.5时放磷量和吸磷量都有显著下降,在pH为6.0和8.5时,系统几乎完全丧失除磷功能,但是聚磷菌只是被不良条件抑制,一旦恢复正常的不调节pH的操作模式,除磷率迅速提升。因此,以实际生活污水驯化的污泥具有一定的适应不良pH影响的能力。
     在以实际生活污水驯化污泥的强化生物除磷系统不能在低温(低于15℃)下长期运行。低温会破坏EBPR的生态系统平衡。
     在碳源影响的正交试验中,与投加碳源量和投加磷量相比,碳源种类是影响EBPR系统磷去除率的最关键因素,葡萄糖的均值最大(96.357),说明葡萄糖是对以生活污水驯化的污泥中的PAO来说最好的碳源,以葡萄糖为碳源,系统去除磷的平均效率为96.357%;此外,投加碳源量是影响系统放磷和吸磷的最关键因素,投加碳源越多,系统放磷/吸磷量就越大,对于系统放磷/吸磷来说,丙酸钠是最好的碳源。
     C/P比影响试验结果显示,C/P对COD去除率的影响微乎其微,在C/P小于或等于30时,磷去除率随着C/P的增加而增加,但是当C/P大于30时,磷去除率的变化就不再显著;随着C/P的增加,系统合成PHA的量没有明显差异,但系统降解COD/释放P的比例增加,两者之间呈线性关系。
     亚硝态氮影响试验表明,随着系统好氧结束时亚硝态氮积累越来越多,SBR系统除磷能力不断的下降,当亚硝态氮积累超过10mg/L时,磷去除率从原来的60%左右下降为20%,所以,10mg/L的亚硝态氮对于强化生物除磷系统来说是一个可以容忍的上限值。
     以丙酸为底物,普通絮状活性污泥为接种污泥,在SBR中通过一系列手段可以实现富集PAO的好氧活性污泥的颗粒化。培养的富集PAO的颗粒污泥对COD去除率可达94%,磷去除率可达100%。成熟的富集PAO的好氧颗粒污泥平均直径为2mm,白色,表面致密,外层有毛状物,同时具有低含水率和低比重等优良性质。与普通的富集PAO的活性污泥相比,富集PAO的颗粒污泥具有生物量大,沉淀速度快,抗COD冲击负荷能力强等众多优点,具有一定的理论和实际意义。
In nowadays, people, including the enrironmental experts, the enriomental protection postulants and the government, pay more and more attention on the eutrophication questions because of the degeneration of the waterbody. The standard of the wastewater discharge was controlled more strictly to achieve not only COD removal but also simultaneous COD, nitrogen and phosphorus removal. So the nitrogen and phosphorus removal technology aimed for eutrophication control has been the study focus in the wastewater treatment area. Enhanced biological phosphorus removal system is accepted in many country for its effective and low cost, while it often faced to deteriotated or collapse because of the existence or enrichment of glycogen accumulating organisms(GAO) in the system. GAO can competed with the phosphorus removal sponsor: phosphorus accumulating organisms(PAO) for the limited carbon souce and other substance. In order to accelerate the investigation development of phosphorus removal, especially on the competition principle and control method between PAO and GAO, this research use lab SBR fed with raw water or synthetic wastewater to study the enhanced biological phosphorus removal system(EBPR). We hope this kind of work can benefit for the people who dedicated in the biological phosphoros removal.
     Because of the absent of PAO or GAO’s pure culture in the world, this research aimed to obtain large quantity of PAO、GAO orα-GAO by enrichment works. This kind of enrichment cultures is very important for people to know the physiological and biochemical characterists and the metabolic pathway of these three groups. Other than some suitable conditions just like pH, tempreture and load, P/C and carben source were two important selective factors for this enrichment works. As results, PAO reached 80%of the total bacteria,the efficiency of P removal of the system was over than 98%. GAO could reach 90%of the total bacteria, and also,α-GAO was a absolutely predominant group in its reactor.
     Although people haven’t isolated PAO successfully till now, but this research tried to isolate and purify the phosphorus accumulating bacterial because of the importance of the pure culture for the understanding of the EBPR system.
     87 strains were isolated from the activated sludge with phosphorus removal ability. After pre-screening by blue-white blaze test, re-screening by phosphorus release/uptake test, 1 strain, P4, with high phosphorus release ability in anaerobic phase and high phosphorus uptake ability in aerobic phase was achieved, and also, it could convert PHA, glycogen and poly-P in the anaerobic-aerobic condititions. Through observing the morphological feature of YP4, analyzing the physiology and biochemistry index, combining the 16SrRNA technique, YP4 was identified as acinetovacter sp.DG880.
     Among many factors that can affect the competition between PAO and GAO, this research focused on pH, tempreture, carbon source, C/P and nitrite.
     The short term effect operated by batch test showed that the amount of phosphorus released was related to the anaerobic pH, PAO prefered higher pH for phosphorus release, the higher pH was, the more phosphorus was released into the water. But on the other hand, the varision of pH did nothing on COD removal but it could affect the PHA synthetic significantly. The system fed with raw water showed steady state when anaerobic pH ranged from 6.5 to 8.0. A slight change of pH from 6.5 to 6.0 or from 8.0 to 8.5 led to a complete loss of phosphate-removing capability. Compared to PAO, GAO fed with raw water had a wider anaerobic pH survival range. When the anaerobic pH changed from 6.0 to 8.5, there was no significant effect of pH on GAO. The activated sludge fed by raw water had ability to be suit for the undesired pH conditions. Aerobic pH affect test showed that 6.0 was not fit for PAO to uptake phosphorus, while other pH conditions(6.5-8.0) had nothing to do with phosphorus uptake.
     The enhanced biological phosphorus removal system, using activated sludge fed by raw water couldn’t be operated in low(<15℃)temperature for a long period, for it might destroy the other bacteria’s metablic leading to destroy the balance of PAO and the other bacteria.
     In the orthogonal tests, all the three factors, including the kind of carbon source, quantity of added carbon source and quantity of added phosphate, could affect the phosphorus removal rate. The kind of carbon source was the crucial factor to affect the phosphorus removal rate, and the phosphorus removal rate increased with the addition quantity of carbon source (from 100mg/L to 300mg/L) and the decrease of the phosphate source (from 21mg/L to 5mg/L). The experiment showed that glucose could be utilized by phosphorus accumulating organisms as the most available carbon source compared with both sodium acetate and sodium propionate in actual WWTP operation. A different result from the traditional concept obtained in this study is that the system could release and uptake more phosphorus when it was fed by propionate than when it was fed by acetate, since the system we used is enriched and cultured by raw water, so it showed different performance from the one cultured by synthetic wastewater.
     Batch experiment showed that phosphorus removal rate varied remarkably with the C/P ratio at the value of 30 or less, while the COD removal rate did not. And also, C/P ratio also effected the COD reduction/ P release greatly.
     The accumulated nitrite in the aerobic phase would affect the phosphorus removal ability of the system. When the concentration of nitrite was over 10mg/L and increased with a rapid speed, the phosphorus removal rate decreased from 60% to 20% darmatically. So 10mg/L was the endurable highest nitrite concentration for the EBPR system. Besides, nitrite could affect phosphorus uptake more than phosphorus release.
     After inoculated with floc activated sludge, the culturing of PAO enriched granular sludge could be achieved by using propionate as substrate, alternating the concentration of COD load, shortening settling time, providing hydrodynamic shear stress and high DO concentration. GAO was washed out of the system and PAO became the dominant population when acetate was used as substrate. The PAO enriched granular sludge had perfect COD removal rate of 94% and phosphorus removal rate of 100%. The mature PAO enriched granules had compact structure, with mean diameter of 2mm and white flagellum on the surface. And also, the mature granules had high OUR, density, integrality rate and low aquiferous rate, leading to the reactor could contain high biomass concentration with good settling properties.
引文
1 Robert J.Seviour, Takashi Mino, Motoharu Onuki. The Microbiology Biological Phosphorus Removal in Activated Sludge Systems. FEMS Microbiology Reviews. 2003,27:99-127
    2 Arvin, E. Biological Removal of Phosphorus from Wastewaters. CRC Crit. Rev. Environ. Cont. 1985,15:25-64
    3 T.Mino, M.C.M.Van Loosdrecht, J.J.Heijnen. Microbiology and Biochemistry of the Enhanced Phosphate Removal Process. Water Res. 1998,32:3193-3207
    4梅特卡夫和埃迪公司。废水工程-处理与回用(Wastewater Engineering-Treatment And Reuse)。秦裕珩等译。第四版。化学工业出版社,2004:454-457
    5张兰英等。现代环境微生物技术。清华大学出版社,2005:255-260
    6 Brdjanovic D, Van Loosdrecht MCM, Hooijmans CM, Alaerts GJ, Heijnen JJ. Minimal Aerobic Sludge Retention Time in Biological Phosphorus Removal Systems. Biotech Bioeng. 1998,60(3):326–32
    7 Liu W-T, Nakamura K, Matsuo T, Mino T. Internal Energy-Based Competition between Polyphosphate- and Glycogen-Accumulating Bacteria in Biological Phosphorus Removal Reactors—Effect of P/C Feeding Ratio. Water Res. 1997,31(6):1430–1438
    8 Brdjanovic D, Slamet A, Van Loosdrecht MCM, Hooijmans CM, Alaerts GJ, Heijnen JJ. Impact of Excessive Aeration on Biological Phosphorus Removal from Wastewater. Water Res. 1998,32(1):200–208.
    9 Cokgor, EU, Yagci, NO, Randall, CW, et al. Effects of pH and Substrate on the Competition between Glycogen and Phosphorus Accumulating Organisms, J Environ Sci Heal A. 2004,39 (7): 1695-1704
    10 Filipe, CDM, Daigger, GT, Grady, CPL. Effects of pH on the Rates of Aerobic Metabolism of Phosphate-Accumulating and Glycogen-Accumulating Organisms. Water Environ Res. 2001,73 (2): 213-222
    11 Filipe, CDM, Daigger, GT, Grady, CPL. pH as a Key Factor in The Competition between Glycogen-Accumulating Organisms and Phosphorus-Accumulating Organisms, Water Environ. 2001,73 (2): 223-232
    12 Adrian Oehmen, M.Teresa Vives, Huabing Lu, Zhiguo Yuan, Jurg Keller. The Effect of Ph on the Competition between Polyphosphate-Accumulating Organisms and Glycogen-Accumulating Organisms. Water Research. 2005, 39:3727-3737
    13 Whang, LM, Park, JK. Competition between Polyphosphate- and Glycogen-Accumulating Organisms in Biological Phosphorus Removal Systems - Effect of Temperature, Water Sci Technol. 2002,46 (1-2): 191-194
    14 Erdal, UG, Erdal, ZK, Randall, CW. The Competition between Paos (Phosphorus Accumulating Organisms) and Gaos (Glycogen Accumulating Organisms) in EBPR (Enhanced Biological Phosphorus Removal) Systems at Different Temperatures and the Effects on System Performance, Water Sci Technol. 2003,47 (11): 1-7
    15 Thongchai Panswad, Apiradee Doungchai, Jin Anotai. Temperature Effect on Microbial Community of Enhanced Biological Phosphorus Removal System. Water Res. 2003,37:409-415
    16 Christine Helmer, Sabine Kunst. Low Temperature Effects on Phosphorus Release and Uptake by Microorganisms in EBPR Plants. Water Res. 1998,37(4-5):531-539
    17 Damir Brdjanovic, Susanne Logemann, Mark C.M.Van Loosdrecht, et al. Influence of Temperature on Biological Phosphorus Removal: Process and Molecular Ecological Syudies. Water Res. 1998,32(3):1032-1048
    18 A. Oehmen, Z. Yuan, L.L. Blackall, J. Keller. Short-Term Effects of Carbon Source on the Competition of Polyphosphate Accumulating Organisms and Glycogen Accumulating Organisms. Water Science and Technology. 2004,50(10):139-144
    19 I.M.Sudiana, T. Mino, et al. Metabolism of Enhanced Biological Phosphours Removal and Non-Enhanced Biological Phosphours Removal Sludge with Acetate and Glucose as Carbon Source. Water Sci Technol. 1999, 39(6):29-35
    20 Yinguang Chen, Yan Liu, Qi Zhou, Guowei Gu, Enhanced Phosphorus Biological Removal from Wastewater—Effect of Microorganism Acclimatization with Different Ratios of Short-Chain Fatty Acids Mixture.Biochemical Engineering Journal. 2005,27:24-32
    21 Saunders, AM, Oehmen, A, Blackall, LL, et al, The Effect of Gaos (Glycogen Accumulating Organisms) on Anaerobic Carbon Requirements in Full-Scale Australian EBPR (Enhanced Biological Phosphorus Removal) Plants. Water Sci Technol. 2003,47 (11): 37-43
    22 Wang, JC, Park, JK, Whang, LM, Comparison of Fatty Acid Composition and Kinetics of Phosphorus-Accumulating Organisms and Glycogen-Accumulating Organisms. Water Environ Res. 2001,73 (6): 704-710
    23 T.Saito, D.Brdjanovic, M.C.M.Van Loosdrecht. Effect of Nitrite on Phosphate Uptake by Phosphate Accumulating Organisms. Water Res. 2004,38:3760-3768
    24 Seviour, R.J., Mino, T., Onuki, M. The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems. Microbiol. Rev. 2003,27:99-127
    25 Liu, W. T., Mino, T., Nakamura, K., Matsuo, T. Role of Glycogen in Acetate Uptake and Polyhydroxyalkanoate Synthesis in Anaerobic-Aerobic Activated-Sludge with a Minimized Polyphosphate Content. J. Ferment. Bioeng. 1994,77 (5):535-540
    26 Satoh, H., Mino, T., Matsuo, T. Deterioration of Enhanced Biological Phosphorus Removal by the Domination of Microorganisms without Polyphosphate Accumulation. Water Sci. Technol. 1994,30 (6):203-211
    27 Mino, T., Liu, W. T., Kurisu, F., Matsuo, T. Modeling Glycogen-Storage and Denitrification Capability of Microorganisms in Enhanced Biological Phosphate Removal Processes. Water Sci. Technol. 1995,31 (2):25-34
    28 Crocetti, G. R., Banfield, J. F., Keller, J., Bond, P. L., Blackall, L. L. Glycogen-Accumulating Organisms in Laboratory-Scale and Full- Scale Wastewater Treatment Processes. Microbiology. 2002,148:3353-3364
    29 Kong, Y. H., Ong, S. L., Ng, W. J., Liu, W. T. Diversity and Distribution of a Deeply Branched Novel Proteobacterial Group Found in Anaerobic-Aerobic Activated Sludge Processes. Environ. Microbiol. 2002b,4 (11):753-757
    30 Saunders, A. M., Oehmen, A., Blackall, L. L., Yuan, Z., Keller, J. The Effect of Gaos (Glycogen Accumulating Organisms) on Anaerobic Carbon Requirements in Full-Scale Australian EBPR (Enhanced BiologicalPhosphorus Removal) Plants. Water Sci. Technol. 2003,47 (11):37-43
    31 Thomas, M., Wright, P., Blackall, L., Urbain, V., Keller, J. Optimisation of Noosa BNR Plant to Improve Performance and Reduce Operating Costs. Water Sci. Technol. 2003,47 (12):141-148
    32 Gu, A. Z., Saunders, A. M., Neethling, J. B., Stensel, H. D., Blackall, L. L. Investigation of Paos and Gaos and Their Effects on EBPR Performance At Full-Scale Wastewater Treatment Plants in U.S. In WEF, Editor. WEFTEC, Washington D.C., U.S.A. Oct 29-Nov 2, 2005.
    33 Barker, P. S., Dold, P. L. Denitrification Behaviour in Biological Excess Phosphorus Removal Activated Sludge Systems. Water Research. 1996,30 (4):769-780
    34 Fuhs, G.W. Chen, M. Microbiological Basis of Phosphate Removal in the Activated Sludge Process for the Treatment of Wastewater. Microb. Ecol. 1975,2:119-138
    35 Deinema, M.H., Van Loosdrecht, M. Scholten,A. Some Physiological Characteristics of Acinetobacter Spp. Accumulating Large Amounts of Phosphate. Water Sci. Technol. 1985,17:119-125
    36 Streichan, M., Golecki, J.R. Schon, G. Polyphosphateaccumulating Bacteria from Sewage Plants with Di?Erent Processes for Biological Phosphorus Removal. FEMS Microbiol. Ecol. 1990,73:113-124
    37 Hiraishi A. Morishita Y. Capacity for Polyphosphate Accumulation of Predominant Bacteria in Activated Sludge Showing Enhanced Phosphate Removal. J.Ferment. Bioeng. 1990,69:368-371
    38 Hiraishi A., Masamune K. Kitamura H. Characterization of the Bacterial Population Structure in an Anaerobic±Aerobic Activated Sludge System on the Basis of Respiratory Quinone. Appl. Environ. Microbiol. 1989,30:197-210
    39 Auling G., Pilz F., Busse H.-J., Karrasch S., Streichan M. Schon G. Analysis of the Polyphosphate Accumulating Microflora in Phosphorus Eliminating, Anaerobic-Aerobic Activated Sludge Systems by Using Diaminopropane as a Biomarker for Rapid Estimation of Acinetobacter Spp. Appl. Environ. Microbial. 1991,57:3685-3692
    40 Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D. SchleiferK.-H. Development of an Rrna-Targeted Oligonucleotide Probe Specific for the Genus Acinetobacter and Its Application for in Situ Monitoring in Activated Sludge. Appl. Environ. Microbiol. 1994,60(3):792-800
    41 Bond P., Hugenholtz P., Keller J. Blackall L. Bacterial Community Structures of Phosphate-Removing and Non-Phosphate-Removing Activated Sludge from Sequencing Batch Reactor. Appl. Environ. Microbial. 1995,61:1910-1916
    42 Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K., Kamagata, Y. Microlunatus Phosphovorus Gen-Nov, Sp-Nov, A New Gram-Positive Polyphosphate-Accumulating Bacterium Isolated from Activated-Sludge. International Journal of Systematic Bacteriology.1995,45 (1):17-22
    43 Santos, M. M., Lemos, P. C., Reis, M. A. M., Santos, H. Glucose Metabolism and Kinetics of Phosphorus Removal by the Fermentative Bacterium Microlunatus Phosphovorus. Applied and Environmental Microbiology. 1999,65 (9):3920-3928
    44 Seviour, R. J., Mino, T., Onuki, M. The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems. FEMS Microbiol. Rev. 2003,27 (1):99-127
    45 Stante, L., Cellamare, C. M., Malaspina, F., Bortone, G., Tilche, A. Biological Phosphorus Removal by Pure Culture of Lampropedia Spp. Water Research. 1997,31(6):1317-1324
    46 Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Schumann, P., Burghardt, J., Tokiwa, Y., Stratton, H. M. Three Isolates of Novel Polyphosphate-Accumulating Gram-Positive Cocci, Obtained from Activated Sludge, Belong to a New Genus, Tetrasphaera Gen. Nov., and Description of Two New Species, Tetrasphaera Japonica Sp, Nov and Tetrasphaera Australiensis Sp Nov. International Journal of Systematic and Evolutionary Microbiology. 2000,50:593-603
    47 Fukase, T., Shibata, M., Miyaji, Y. The Role of the Anaerobic Stage on Biological Phosphorus Removal. Water Sci. Technol. 1985,17:69-80
    48 Cech, J. S., Hartman, P. Glucose Induced Break Down of Enhanced Biological Phosphate Removal. Environ. Technol. 1990,11:651-656
    49 Cech, J. S., Hartman, P. Competition between Polyphosphate andPolysaccharide Accumulating Bacteria in Enhanced Biological Phosphate Removal Systems. Water Res. 1993,27 (7):1219-1225
    50 Tsai, C. S., Liu, W. T. Phylogenetic and Physiological Diversity of Tetrad-Forming Organisms in Deteriorated Biological Phosphorus Removal Systems. Water Sci. Technol. 2002,46 (1-2):179-184
    51 Beer, M., Kong, Y. H., Seviour, R. J. Are Some Putative Glycogen Accumulating Organisms (GAO) in Anaerobic: Aerobic Activated Sludge Systems Members of the Alpha- Proteobacteria? Microbiology. 2004,150:2267-2275
    52 Kong, Y. H., Beer, M., Seviour, R. J., Lindrea, K. C., Rees, G. N. Structure and Functional Analysis of the Microbial Community in an Aerobic: Anaerobic Sequencing Batch Reactor (SBR) With No Phosphorus Removal. Syst. Appl. Microbiol. 2001,24 (4):597-609
    53 Falvo, A., Levantesi, C., Rossetti, S., Seviour, R. J., Tandoi, V. Synthesis of Intracellular Storage Polymers by Amaricoccus Kaplicensis, a Tetrad Forming Bacterium Present in Activated Sludge. Journal of Applied Microbiology. 2001,91 (2):299-305
    54 Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Rees, G. N., Mcdougall, B. M. Amaricoccus Gen. Nov, A Gram-Negative Coccus Occurring in Regular Packages or Tetrads, Isolated from Activated Sludge Biomass, and Descriptions of Amaricoccus Veronensis Sp. Nov, Amaricoccus Tamworthensis Sp. Nov, Amaricoccus Macauensis Sp. Nov, and Amaricoccus Kaplicensis Sp. Nov. Int. J. Syst. Bacteriol. 1997,47 (3):727-734.
    55 Shintani, T., Liu, W. T., Hanada, S., Kamagata, Y., Miyaoka, S., Suzuki, T., Nakamura, K. Micropruina Glycogenica Gen. Nov., Sp, Nov., A New Gram-Positive Glycogen-Accumulating Bacterium Isolated from Activated Sludge. Int. J. Syst. Evol. Microbiol. 2000,50:201-207
    56 Hanada, S., Liu,W.T., Shintani,T., Kamagata, Y., Nakamura, K. Tetrasphaera Elongata Sp Nov., A Polyphosphate-Accumulating Bacterium Isolated from Activated Sludge. Int. J. Syst. Evol. Microbiol. 2002,52:883-887
    57 Liu, W.T., Hanada, S., Marsh, T. L., Kamagata, Y., Nakamura, K. Kineosphaera Limosa Gen. Nov., Sp Nov., A Novel Gram-PositivePolyhydroxyalkanoate-Accumulating Coccus Isolated from Activat Sludge. Int. J. Syst. Evol. Microbiol. 2002,52:1845-1849
    58 Liu W.T., Mino T., Matsuo T. Nakamura K. Glycogen Accumulating Population and Its Anaerobic Substrate Uptake in Anaerobic-Aerobic Activated Sludge without Biological Phosphorus Removal. Water Res. 1996,30(1):75-82
    59 Brdjanovic D., Van Loosdrecht M.C.M., Hooijmans C.M., Mino T., Alaerts G.J. Heijnen J.J. Bioassay for Glycogen Determination in Biological Phosphorus Removal Systems, Proc. 2nd Int. Conf. On Microorganisms in Activated Sludge And Biofilm Processes, Berkeley, U.S.A. 1997
    60 Bond, P. L., Hugenholtz, P., Keller, J., Blackall, L.L. Bacterial Community Structures of Phosphate-Removing and Non- Phosphate-Removing Activated Sludges from Sequencing Batch Reactors. Appl. Environ. Microbiol. 1995,61 (5):1910-1916
    61 Bond, P. L., Erhart, R., Wagner, M., Keller, J., Blackall, L.L. Identification of Some of the Major Groups of Bacteria in Efficient and Nonefficient Biological Phosphorus Removal Activated Sludge Systems. Appl. Environ. Microbiol. 1999,65 (9):4077-4084
    62 Hesselmann, R. P. X., Werlen, C., Hahn, D., Van Der Meer, J. R., Zehnder, A. J.B. Enrichment, Phylogenetic Analysis and Detection of a Bacterium That Performs Enhanced Biological Phosphate Removal in Activated Sludge. Syst. Appl. Microbiol. 1999,22 (3):454-465
    63 Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D., Blackall, L.L. Identification of Polyphosphate-Accumulating Organisms and Design of 16S Rrna-Directed Probes for Their Detection and Quantitation. Appl. Environ. Microbiol. 2000, 66 (3):1175-1182
    64 Zilles, J. L., Peccia, J., Kim, M. W., Hung, C. H., Noguera, D. R. Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants. Appl. Environ. Microbiol. 2002,68 (6):2763-2769
    65 Saunders, A. M. The Physiology of Microorganisms in Enhanced Biological Phosphorus Removal. Ph.D. Thesis. University of Queensland, St. Lucia, Australia. 2005
    66 Liu, W. T., Nielsen, A. T., Wu, J. H., Tsai, C. S., Matsuo, Y., Molin, S. In Situ Identification of Polyphosphate- and Polyhydroxyalkanoate-Accumulating Traits for Microbial Populations in a Biological Phosphorus Removal Process. Environ. Microbiol. 2001,3 (2): 110-122
    67 Kong, Y.H., Nielsen, J. L., Nielsen, P. H. Microautoradiographic Study of Rhodocyclus-Related Polyphosphate-Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants. Appl. Environ. Microbiol. 2004,70 (9):5383-5390
    68 He, S., Gu, A. Z., Mcmahon, K. D. The Role of Rhodocyclus-Like Organisms in Biological Phosphorus Removal: Factors Influencing Population Structure and Activity. in Water Environment Federation Technical Exhibition and Conference (WEFTEC). Washington D.C., USA. October 29 - November 2, 2005.
    69 Wong, M. T., Mino, T., Seviour, R. J., Onuki, M., Liu, W. T. In Situ Identification and Characterization of the Microbial Community Structure of Full-Scale Enhanced Biological Phosphorous Removal Plants in Japan. Water Res. 2005,39 (13):2901-2914
    70 Saunders, A. M., Oehmen, A., Blackall, L. L., Yuan, Z., Keller, J. The Effect of Gaos (Glycogen Accumulating Organisms) on Anaerobic Carbon Requirements in Full-Scale Australian EBPR (Enhanced Biological Phosphorus Removal) Plants. Water Sci. Technol. 2003,47 (11):37-43
    71 Nielsen, A. T., Liu, W. T., Filipe, C., Grady, L., Molin, S., Stahl, D. A. Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Appl. Environ. Microbiol. 1999,65 (3):1251-1258
    72 Kong, Y.H., Xia, Y., Nielsen, J. L., Nielsen, P. H. Ecophysiology of a Group of Uncultured Gammaproteobacterial Glycogen-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Wastewater Treatment Plants. Environ. Microbiol. 2006,8 (3):479-489
    73 Wong, M.T., Tan, F.M., Ng, W.J., Liu,W.T. Identification and Occurrence of Tetrad-Forming Alphaproteobacteria in Anaerobic-Aerobic Activated Sludge Processes. Microbiology. 2004,150:3741-3748
    74 Meyer,R.L.,Saunders, A.M., Blackall, L.L. Putative Glycogen-AccumulatingOrganisms Belonging to Alphaproteobacteria Identified Through Rrna-Based Stable Isotope Probing. Microbiology.2006,152:419-429
    75 Burow, L. C., Kong, Y. H., Nielsen, J. L., Blackall, L. L., Nielsen, P. H. Abundance and Ecophysiology of Defluviicoccus Spp., Glycogen Accumulating Organisms in Full-Scale Wastewater Treatment Processes. Microbiology. 2007,153:178-185
    76 Oehmen, A., Zeng, R. J., Saunders, A. M., Blackall, L. L., Yuan, Z., Keller, J. Anaerobic and Aerobic Metabolism of Glycogen Accumulating Organisms Selected with Propionate as the Sole Carbon Source. Microbiology. 2006,152 (9):2767-2778
    77 Y.Comeau, K.J.Hall, R.E.W.Hancock W.K.Oldham Biochemical Model for Enhanced Biological Phosphorus Removal, Water Res. 1986,12:1511-1521
    78 Viswanath Arun, Takashi Mino, Tomonori Matsuo. Biological Mechanism of Acetate Uptake Mediated by Carbohydrate Consumption in Excess Phosphorus Removal Systems, Water Res. 1988,22:565-570
    79 Cuevas-Rodriguez, G., Tejero-Monzon, I. Sedimentation and Prefermentation of Domestic Wastewater in a Fixed Bed Biofilm Reactor. Water Sci. Technol. 2003,48 (3):47-55
    80 Ahn, Y. H., Speece, R. E. Elutriated Acid Fermentation of Municipal Primary Sludge. Water Res. 2006,40 (11):2210-2220
    81 Zeng, R. J., Yuan, Z., Keller, J. Effects of Solids Concentration, pH and Carbon Addition on the Production Rate and Composition of Volatile Fatty Acids in Prefermenters Using Primary Sewage Sludge. Water Sci. Technol. 2006,53 (8):263-269
    82 Smolders, G. J. F., Vandermeij, J., Vanloosdrecht, M. C. M., Heijnen, J. J. Model of the Anaerobic Metabolism of the Biological Phosphorus Removal Process - Stoichiometry and pH Influence. Biotechnol. Bioeng. 1994,43 (6):461-470
    83 Wentzel, M. C., Lotter, L. H., Ekama, G. A., Loewenthal, R. E., Marais, G. V. R. Evaluation of Biochemical-Models for Biological Excess Phosphorus Removal. Water Sci. Technol. 1991,23 (4-6):567-576
    84 Satoh, H., Mino, T., Matsuo, T. Uptake of Organic Substrates and Accumulation of Polyhydroxyalkanoates Linked with Glycolysis ofIntracellular Carbohydrates under Anaerobic Conditions in the Biological Excess Phosphate Removal Processes. Water Sci. Technol. 1992,26 (5-6):933-942
    85 Mino, T., Van Loosdrecht, M. C. M., Heijnen, J. J. Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process. Water Res. 1998,32 (11):3193-3207
    86 Filipe, C. D. M., Daigger, G. T., Grady, C. P. L. A Metabolic Model for Acetate Uptake under Anaerobic Conditions by Glycogen Accumulating Organisms: Stoichiometry, Kinetics, and The Effect of pH. Biotechnol. Bioeng. 2001,76 (1):17-31
    87 Zeng, R. J., Van Loosdrecht, M. C. M., Yuan, Z. G., Keller, J. Metabolic Model for Glycogen-Accumulating Organisms in Anaerobic/Aerobic Activated Sludge Systems. Biotechnol. Bioeng. 2003,81 (1):92-105
    88 Lemos, P. C., Dai, Y., Yuan, Z., Santos, H., Keller, J., Reis, M. A. M. Elucidation of Carbon Metabolism in Glycogen Accumulating Organisms by in Vivo Nuclear Magnetic Resonance.in 11th International Symposium on Microbial Ecology - ISME 11, Vienna, Austria. Aug 20-25, 2006
    89 Tong Zhang, Yan Liu, Herbert H.P. Fang. Effect of pH Change on the Performance and Microbial Community of Enhanced Biological Phosphate Removal Process. Biotechnology And Bioengineering, 2005, 92, (2): 20
    90 Kuba, T., Wachtmeister, A., Vanloosdrecht, M. C. M., Heijnen, J. J. Effect of Nitrate on Phosphorus Release in Biological Phosphorus Removal Systems. Water Sci. Technol. 1994,30 (6):263-269
    91 Brdjanovic, D., Hooijmans, C. M., Van Loosdrecht, M. C. M., Alaerts, G. J., Heijnen, J. J. The Dynamic Effects of Potassium Limitation on Biological Phosphorus Removal. Water Res. 1996,30 (10):2323-2328
    92 Pattarkine, V. M., Randall, C. W. The Requirement of Metal Cations for Enhanced Biological Phosphorus Removal by Activated Sludge. Water Sci. Technol. 1999,40 (2):159-165
    93 Brdjanovic, D., Slamet, A., Van Loosdrecht, M. C. M., Hooijmans, C. M., Alaerts, G. J., Heijnen, J. J. Impact of Excessive Aeration on Biological Phosphorus Removal from Wastewater. Water Res. 1998b,32 (1):200-208
    94 Filipe, C. D. M., Daigger, G. T., Grady, C. P. L. pH As a Key Factor in theCompetition between Glycogen-Accumulating Organisms and Phosphorus-Accumulating Organisms. Water Environ. Res.2001,73 (2):223-232
    95 Oehmen, A., Yuan, Z. G., Blackall, L. L., Keller, J. Comparison of Acetate And Propionate Uptake by Polyphosphate Accumulating Organisms and Glycogen Accumulating Organisms. Biotechnol. Bioeng. 2005,91(2):162-168
    96 Lu, H., Oehmen, A., Virdis, B., Keller, J., Yuan, Z. G. Obtaining Highly Enriched Cultures of Candidatus Accumulibacter Phosphatis through Alternating Carbon Sources. Water Res. 2006,40(20):3838-3848
    97 Hesselmann, R. P. X., Werlen, C., Hahn, D., Van Der Meer, J. R., Zehnder, A. J. B. Enrichment, Phylogenetic Analysis and Detection of A Bacterium That Performs Enhanced Biological Phosphate Removal in Activated Sludge. Syst. Appl. Microbiol. 1999,22 (3):454-465
    98 Mcmahon, K. D., Dojka, M. A., Pace, N. R., Jenkins, D., Keasling, J. D. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal. Appl. Environ. Microbiol. 2002,68 (10):4971-4978
    99 He, S., Gu, A. Z., Mcmahon, K. D. Fine-Scale Differences between Accumulibacter-Like Bacteria in Enhanced Biological Phosphorus Removal Activated Sludge. Water Sci. Technol. 2006,54 (1):111-117
    100 Oehmen, A., Yuan, Z., Blackall, L. L., Keller, J. Short-Term Effects of Carbon Source on the Competition of Polyphosphate Accumulating Organisms and Glycogen Accumulating Organisms. Water Sci. Technol. 2004,50 (10):139-144
    101 Chen, Y., Randall, A. A., Mccue, T. The Efficiency of Enhanced Biological Phosphorus Removal from Real Wastewater Affected by Different Ratios of Acetic to Propionic Acid. Water Res. 2004,38 (1):27-36
    102 Pijuan, M., Saunders, A. M., Guisasola, A., Baeza, J. A., Casas, C., Blackall, L. L. Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Using Propionate as the Sole Carbon Source. Biotechnol. Bioeng. 2004,85 (1):56-67
    103 Chen, Y. G., Liu, Y., Zhou, Q., Gu, G. W. Enhanced Phosphorus Biological Removal from Wastewater - Effect of Microorganism Acclimatization withDifferent Ratios of Short-Chain Fatty Acids Mixture. Biochemical Engineering Journal. 2005,27(1):24-32
    104 Oehmen, A., Saunders, A. M., Vives, M. T., Yuan, Z., Keller, J. Competition between Polyphosphate and Glycogen Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems with Acetate and Propionate as Carbon Sources. J. Biotechnol. 2006,123(1):22-32
    105 Hood, C. R., Randall, A. A. A Biochemical Hypothesis Explaining the Response of Enhanced Biological Phosphorus Removal Biomass to Organic Substrates. Water Res. 2001,35 (11):2758-2766
    106 Oehmen, A., Vives, M. T., Lu, H., Yuan, Z., Keller, J. The Effect of pH on the Competition between Polyphosphate-Accumulating Organisms and Glycogen-Accumulating Organisms. Water Res. 2005,39 (15):3727-3737
    107 Pijuan, M., Baeza, J. A., Casas, C., Lafuente, J. Response of an EBPR Population Developed in an SBR with Propionate to Different Carbon Sources. Water Sci. Technol. 2004,50 (10):131-138
    108 Oehmen, A., Zeng, R. J., Yuan, Z. G., Keller, J. Anaerobic Metabolism of Propionate by Polyphosphate-Accumulating organisms in Enhanced Biological Phosphorus Removal Systems. Biotechnol. Bioeng. 2005,91 (1):43-53.
    109 Meyer, R. L., Saunders, A. M., Blackall, L. L. Putative Glycogen-Accumulating Organisms Belonging to Alphaproteobacteria Identified Through Rrna-Based Stable Isotope Probing. Microbiology. 2006,152:419-429
    110 Oehmen, A., Zeng, R. J., Saunders, A. M., Blackall, L. L., Yuan, Z., Keller, J. Anaerobic and Aerobic Metabolism of Glycogen Accumulating Organisms Selected with Propionate as the Sole Carbon Source. Microbiology. 2006,152 (9):2767-2778
    111 Liu, W. T., Mino, T., Nakamura, K., Matsuo, T. Glycogen Accumulating Population and Its Anaerobic Substrate Uptake in Anaerobic-Aerobic Activated Sludge without Biological Phosphorus Removal. Water Res. 1996b,30 (1):75-82
    112 Randall, A. A., Benefield, L. D., Hill, W. E. Induction of Phosphorus Removal in an Enhanced Biological Phosphorus Removal BacterialPopulation. Water Res. 1997,31 (11):2869-2877
    113 Lemos, P. C., Viana, C., Salgueiro, E. N., Ramos, A. M., Crespo, J., Reis, M. A. M. Effect of Carbon Source on the Formation of Polyhydroxyalkanoates (PHA) by a Phosphate-Accumulating Mixed Culture. Enzyme Microb. Technol. 1998,22 (8):662-671
    114 Levantesi, C., Serafim, L. S., Crocetti, G. R., Lemos, P. C., Rossetti, S., Blackall, L. L., Reis, M. A. M., Tandoi, V. Analysis of the Microbial Community Structure and Function of a Laboratory Scale Enhanced Biological Phosphorus Removal Reactor. Environ. Microbiol. 2002,4 (10):559-569
    115 Carucci, A., Lindrea, K., Majone, M., Ramadori, R. Different Mechanisms for the Anaerobic Storage of Organic Substrates and Their Effect on Enhanced Biological Phosphate Removal (EBPR). Water Sci. Technol. 1999,39 (6):21-28
    116 Sudiana, I. M., Mino, T., Satoh, H., Nakamura, K., Matsuo, T. Metabolism of Enhanced Biological Phosphorus Removal and Non- Enhanced Biological Phosphorus Removal Sludge with Acetate and Glucose as Carbon Source. Water Sci. Technol. 1999,39 (6):29-35
    117 Jeon, C. O., Park, J. M. Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose as a Sole Carbon Source. Water Res. 2000,34 (7):2160-2170
    118 Wang, N. D., Peng, J., Hill, G. Biochemical Model of Glucose Induced Enhanced Biological Phosphorus Removal under Anaerobic Condition. Water Res. 2002,36 (1): 49-58
    119 Canizares, P., De Lucas, A., Rodriguez, L., Villasenor, J. Anaerobic Uptake of Different Organic Substrates by an Enhanced Biological Phosphorus Removal Sludge. Environ. Technol. 2000,21 (4):397-405
    120 Tasli, R., Artan, N., Orhon, D. The Influence of Different Substrates on Enhanced Biological Phosphorus Removal in A Sequencing Batch Reactor. Water Sci. Technol. 1997,35 (1):75-80
    121 Tsai, C. S., Liu, W. T. Phylogenetic and Physiological Diversity of Tetrad-Forming Organisms in Deteriorated Biological Phosphorus Removal Systems. Water Sci. Technol. 2002,46 (1-2):179-184
    122 Satoh, H., Ramey, W. D., Koch, F. A., Oldham, W. K., Mino, T., Matsuo, T. Anaerobic Substrate Uptake by the Enhanced Biological Phosphorus Removal Activated Sludge Treating Real Sewage. Water Sci. Technol. 1996, 34 (1-2):9-16
    123 Satoh, H., Mino, T., Matsuo, T. Anaerobic Uptake of Glutamate and Aspartate by Enhanced Biological Phosphorus Removal Activated Sludge. Water Sci. Technol. 1998,37 (4-5):579-582
    124 Chua, A. S. M., Eales, K., Mino, T., Seviour, R. The Large PAO Cells in Full-Scale EBPR Biomass Samples are not Yeast Spores but Possibly Novel Members of the Beta-Proteobacteria. Water Sci. Technol. 2004,50 (6):123-130
    125 Kong, Y. H., Nielsen, J. L., Nielsen, P. H. Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants. Appl. Environ. Microbiol. 2005,71 (7):4076-4085
    126 Liu, W. T., Mino, T., Matsuo, T., Nakamura, K. Biological Phosphorus Removal Processes - Effect of pH on Anaerobic Substrate Metabolism. Water Sci. Technol. 1996,34 (1-2):25-32
    127 Bond, P. L., Keller, J., Blackall, L. L. Anaerobic Phosphate Release from Activated Sludge with Enhanced Biological Phosphorus Removal. A Possible Mechanism of Intracellular pH Control. Biotechnol. Bioeng. 1999,63 (5):507-515
    128 Filipe, C. D. M., Daigger, G. T., Grady, C. P. L. Stoichiometry and Kinetics of Acetate Uptake under Anaerobic Conditions by an Enriched Culture of Phosphorus-Accumulating Organisms at Different Phs. Biotechnol. Bioeng. 2001,76 (1): 32-43
    129 Filipe, C. D. M., Daigger, G. T., Grady, C. P. L. Effects of pH on the Rates of Aerobic Metabolism of Phosphate-Accumulating and Glycogen-Accumulating Organisms. Water Environ. Res. 2001,73 (2):213-222
    130 Filipe, C. D. M., Daigger, G. T., Grady, C. P. L. A Metabolic Model for Acetate Uptake Under Anaerobic Conditions by Glycogen Accumulating Organisms: Stoichiometry, Kinetics, and the Effect of pH. Biotechnol. Bioeng. 2001,76 (1):17-31
    131 Bond, P. L., Erhart, R., Wagner, M., Keller, J., Blackall, L. L. Identification of Some of the Major Groups of Bacteria in Efficient and Nonefficient Biological Phosphorus Removal Activated Sludge Systems. Appl. Environ. Microbiol. 1999,65 (9):4077-4084
    132 Jeon, C. O., Lee, D. S., Lee, M. W., Park, J. M. Enhanced Biological Phosphorus Removal in an Anaerobic-Aerobic Sequencing Batch Reactor: Effect of pH. Water Environ. Res. 2001,73 (3):301-306
    133 Schuler, A. J., Jenkins, D. Effects of pH on Enhanced Biological Phosphorus Removal Metabolisms. Water Sci. Technol. 2002,46 (4-5):171-178
    134 Serafim, L. S., Lemos, P. C., Reis, M. A. M. Effect of pH Control on EBPR Stability and Efficiency. Water Sci. Technol. 2002,46 (4-5):179-184
    135 Brdjanovic, D., Logemann, S., Van Loosdrecht, M. C. M., Hooijmans, C. M., Alaerts, G. J., Heijnen, J. J. Influence of Temperature on Biological Phosphorus Removal: Process and Molecular Ecological Studies. Water Res. 1998,32 (4):1035-1048
    136 Whang, L. M., Park, J. K. Competition between Polyphosphate- and Glycogen-Accumulating Organisms in Biological Phosphorus Removal Systems - Effect of Temperature. Water Sci. Technol. 2002,46 (1-2):191-194
    137 Erdal, U. G., Erdal, Z. K., Randall, C. W. The Competition between Paos (Phosphorus Accumulating Organisms) and Gaos (Glycogen Accumulating Organisms) in EBPR (Enhanced Biological Phosphorus Removal) Systems at Different Temperatures and the Effects on System Performance. Water Sci. Technol. 2003,47 (11):1-8
    138 Panswad, T., Doungchai, A., Anotai, J. Temperature Effect on Microbial Community of Enhanced Biological Phosphorus Removal System. Water Res. 2003,37 (2):409-415
    139 Rodrigo, M. A., Seco, A., Ferrer, J., Penya-Roja, J. M. The Effect of Sludge Age on the Deterioration of the Enhanced Biological Phosphorus Removal Process. Environ. Technol. 1999,20 (10):1055-1063
    140 Whang, L. M., Park, J. K. Competition between Polyphosphate- and Glycogen-Accumulating Organisms in Enhanced-Biological-Phosphorus-Removal Systems: Effect of Temperature and Sludge Age. Water Environ. Res. 2006,78 (1):4-11
    141 Griffiths, P. C., Stratton, H. M., Seviour, R. J. Environmental Factors Contributing to The "G Bacteria" Population in Full-Scale EBPR Plants. Water Sci. Technol. 2002,46 (4-5):185-192
    142 Lemaire, R., Meyer, R., Taske, A., Crocetti, G. R., Keller, J., Yuan, Z. G. Identifying Causes for N2O Accumulation in a Lab-Scale Sequencing Batch Reactor Performing Simultaneous Nitrification, Denitrification and Phosphorus Removal. J. Biotechnol. 2006,122 (1):62-72
    143 Kuba, T., Vanloosdrecht, M. C. M., Heijnen, J. J. Effect of Cyclic Oxygen Exposure on the Activity of Denitrifying Phosphorus Removing Bacteria. Water Sci. Technol. 1996,34 (1-2):33-40
    144 Saito, T., Brdjanovic, D., Van Loosdrecht, M. C. M. Effect of Nitrite on Phosphate Uptake by Phosphate Accumulating Organisms. Water Res. 2004, 38 (17): 3760-3768
    145 De Haas, D. W., Wentzel, M. C., Ekama, G. A. The Use of Simultaneous Chemical Precipitation in Modified Activated Sludge Systems Exhibiting Biological Excess Phosphate Removal - Part 5: Experimental Periods Using a Ferrous-Ferric Chloride Blend. Water Sa. 2001, 27 (2):117-134
    146 Tykesson, E. Enhanced Biological Phosphorus Removal: Processes, Competing Substances and Tools for Operation of Wastewater Treatment Plants. Lund University, Lund, Sweden. 2005
    147 Rayne, S., Carey, S., And Forest, K. Evidence for Tin Inhibition of Enhanced Biological Phosphorus Removal at a Municipal Wastewater Treatment Plant. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering. 2005,40(3):535-551.
    148 P.A.Wilderer, R.L.Irvine. Sequencing Batch Reactor Technology Batch Application of Peiodic Processes.Water Science and Technology.1997,35(1):278
    149 L.H.Jr.Kethun. Desigen and Physical Features of Sequencing Batch Reactors. Water Science and Technology.1997,35(1):11-18
    150 J.Oles, P.A.Wilderer. Computer Aided Design of Sequencing Batch Reactors. Water Science and Technology.1991,23(4-6):1087-1095
    151 R.L.Irvine, P.A.Wilderer, H.C.Flemming. Controlled Unsteady State Processed and Technologies-an Overview. Water Science andTechnology.1997,35(1):1-10
    152 N.Artan, P.Wilderer, D.Orthon, E.Morgenroth. The Mechanism and Desigen of Sequencing Batch Reactor Systems for Nutrient Removal-The State of the Art.Water Science and Technology. 2001,43(3):53-60
    153 J.Mikosz, E.Plaza And J.Kurbiel. Use of Computer Simulation for Cycle Length Adjustment in Sequencing Batch Reactor. Water Science and Technology. 2001,43(1):61-68
    154 C.R.Woolard. The Advantages of Periodically Operated Biofilm Reactors for The Treatment of Highly Variable Wastewater. Water Science and Technology.1997,35(1):199-206
    155 C.B.Shaw, C.M.Carliell, A.D. Wheatley. Anaerobic/Aerobic Treatment of Coloured Textile Effluents Using Sequencing Batch Reactors. Water Research. 2002,36(8):1993-2001
    156 C.Mervyn Goronszy, Slater Nigel, Onicki Dennis.The Cyclic Activated Sludge System for Resort Area Wastewater Treatment.Water Science and Technology.1995,32(9-10):105-114
    157 Sudesh, K., Abe, H., Doi, Y.. Synthesis. Structure and Properties of Polyhydroxyalkanoates: Biological Polyesters. Prog Polym Sci. 2000, 25, 1503– 1555
    158 Liu, W.T., Mino, T., Nakamura, K., Et Al. Glycogen Accumulating Population and Its Anaerobic Substrate Uptake in Anaerobic– Aerobic Activated Sludge without Biological Phosphorus Removal. Water Res. 1996, 30: 75– 82
    159 Braunegg G, Sonnleitner B, Lafferty R M.. A Rapid Gas Chromatographic Method for the Determination of Poly-Β-Hydroxybutyrate in Microbial Biomass. Eur J Appl Microbiol. 1978, 6:29-37
    160刘燕,陈银广,郑弘等。乙酸丙酸比例对富集聚磷菌生物除磷系统影响研究。环境科学学报。2006, 26(8):1278-1283
    161 L.STANTE, C.M.CELLAMARE, F.MALASPINA, G.BORTONE, A. TILCHE. Biological Phosphorus Removal by Pure Culture of Lampropedia Spp. Wat.Res. 1997,31(6):1317-1324
    162竺建荣,刘纯新。好氧颗粒污泥的培养及理化特性的研究。环境科学。1999,20 (2):38-41
    163王强,陈坚,堵国成。选择压法培育好氧颗粒污泥的试验。环境科学。2003,24(4):99-104
    164 Lettinga G, Van Velsen A, Hobma S, Et Al. Use of The UASBR Concept for Biological WWT, Especially for Anaerobic Treatment. Biotechnology and Bioengineering. 1980, 22: 699-734
    165 Dulekgurgen E, Ovez S, Artan N, Et Al. Ehnanced Biological Phosphate Removal by Granular Sludge in A Sequencing Batch Reactor. Biotechnology Letters. 2003, 25(9):687-693
    166 Lin YM, Liu Y, Tay JH. Development and Characteristics of Phosphorus-Accumulating Microbial Granules in Sequencing Batch Reactors. Applied Microbiology And Biotechnology. 2003, 62(4): 430-435
    167 Liu Y, Lin YM, Tay JH. The Elemental Compositions of P-Accumulating Microbial Granules Developed in Sequencing Batch Reactor. Process Biochemistry. 2005, 40 (10):3258-3262
    168 Randall C. W., Barnard J. L., David H. S. Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal Pennsylvania: Technomic Publishing Company. Inc1, 1992
    169 Janssen P. M. Operating Experiences on Two Full Scale Plants. Rerofitted for Biological Phosphorus Removal Nutrient Removal from Wastewaters Pennsylvania :Technomic Publishing Company. Inc, 1994
    170 Andrew J.S., David J.. Enhanced Biological Phosphorus Removal From Wastewater by Biomass with Different Phosphorus Contents, PartⅠ: Experimental Results and Comparison with Metabolic Models. Wat Environ Res. 2003, 75 (6) : 485-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700