用户名: 密码: 验证码:
烟幕全遮蔽能力的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于齐齐哈尔建华机械研究所和国家自然科学基金重点项目(编号:50336010)的一部分,目的是研究烟幕形成以后的遮蔽能力和有效遮蔽面积,并研制全遮蔽能力检测系统,以便针对烟幕遮蔽的目标实现有效识别,为电子干扰提供仿真技术、理论模型以及实验平台。
     烟幕干扰是应用最为广泛的一种光电无源干扰方式,它通过在空中施放大量气溶胶微粒,来改变光辐射的大气传输特性,从而掩盖要保护的目标。由于烟幕的消光机理研究是烟幕技术发展的基础,因此西方国家(特别是美国)发展烟幕器材非常重视基础理论研究。国内对于现代烟幕技术的研究起步较晚,对烟幕技术的研究工作主要建立在大量实验的基础上,对烟幕消光机理方面的探讨还比较少。由于基础研究工作的缺乏,使得我国烟幕的理论研究处于落后状态,烟幕材料的选择缺乏理论指引,配方往往靠实验与经验确定,这在一定程度上限制了我国烟幕技术的发展。
     发烟剂的全遮蔽能力值TOP(Total Obscuring Power),是国内外烟幕技术领域表征发烟剂生成的烟幕对人眼视觉产生遮蔽能力的特征参数。但是影响烟幕遮蔽能力的因素是非常复杂的,测试环境的湿度、温度、时间以及烟幕的沉降速度等因素都会影响TOP的测量结果。论文主要围绕烟幕遮蔽能力的测量与评价,结合烟幕对可见光全遮蔽能力检测系统的研制,对该系统所涉及的全遮蔽能力测量原理、测量方法、光散射理论、测量模型及测量不确定度等内容进行了深入地研究,主要完成了以下几方面的研究工作:
     1.烟幕遮蔽特性研究。详尽分析了烟幕对人眼、微光成像系统、被动红外成像系统以及成像制导系统的遮蔽效果,并针对烟幕的透过率模型、吸收系数模型、全遮蔽能力计算模型进行了分析比较。
     2.烟幕全遮蔽能力检测系统设计。基于辐照度测量法以人眼视觉对比度阈值为基准研制烟幕全遮蔽能力检测系统。在温度26℃、相对湿度60%的条件下对磷烟幕的TOP进行了检测,所得到的测试结果与经验值相比较误差小于4%。
     3.不同粒径分布情况下,烟幕可见光全遮蔽能力测量结果分析。不同烟幕成分、相对温度、湿度以及烟幕形成时间、状态等因素都会影响烟幕的粒径分布,进而影响烟幕粒子的有效吸光面积和有效散射面积。针对不同的粒径分布模型和计算结果,利用Mie理论进行建模,提出了TOP对不同粒径分布的响应函数,进而提高了检测系统的针对性和测量结果的可靠性。
     4.对1-3μm、3-5μm、8-14μm三个红外波段以及10.6μm激光的TOP数学模型的扩展应用和参数检测。考虑到随着防红外烟幕技术的发展,针对目前许多研究人员积极探寻红外辐射穿透烟幕能力的现状,以及本测量系统的局限性,对烟幕可见光全遮蔽能力检测系统进行红外波段的扩展和试验研究。
     5.烟幕图像有效面积边缘检测算法研究。通过分析目标与背景的辐射特性,计算所获得红外图像的信噪比;利用形态生态学的方法,实现了烟幕有效遮蔽面积的计算,并进行了仿真试验。
     本论文的研究内容为分析烟幕配方以及发展高效能的烟幕干扰材料提供了理论基础,在进一步完善理论模型和提高系统精度的基础上,可以推进统一表征烟幕遮蔽能力的工作,进而制定出发烟剂遮蔽能力的测试标准。
This research derived partly from the co-operation between Qiqihaer JianHua Machinery Research Institute and the key project of National Natural Science Foundation(Serial Number:50336010). Its intention is to study the obscuring effect and effectual obscurant area following the formation of the smoke and to develop the examining system of Total Obscuring Power. Therefore it is possible to distinguish objects from the smoke obscuring condition and provide simulation technology, theory model and experimental platform for electronic interference.
     The smoke interference is a most widely-used passive photoelectric interference method. It discharges lots of aerosol particles in the air in order to change the atmospheric transmissible characteristic of ray radiation and to protect the object. Because the research of mechanism in the light elimination of the smoke is the basis of the development of the smoke technology, the western countries, especially the USA, attach importance to the basic theory research while developing smoke equipments. The research of modern smoke technology in our country got off to a late start, and the research is mainly based on large amounts of experiments. So the probe on mechanism in the light elimination of the smoke is very little. For the lack of basic research, the backwardness of the theory research, the choices of the smoke materials need theoretical guidance. Formulas were always determined by experiments and experiences, and this situation, to some extent, restricted the development of smoke technology in our country.
     The TOP(Total Obscuring Power) value of the smoke issuing reagent is one characteristic parameter which shows the smoke obscuring effect on human vision by the smoke in the domain of smoke technology at home and abroad. The factors which affect smoke TOP are complicated. The humidity and temperature of the testing surroundings, testing time, subsiding velocity of the smoke and other factors will affect the testing results of TOP value of the smoke. Based on the measurement and evaluation of TOP value, and with analysis to the development of the TOP value testing system of visible light, this thesis deeply elaborates TOP testing theory, TOP testing method, light scattering theory, testing model, uncertainty in the testing process and other contents which involved in the system. Some finished research works are listed below:
     1. Research of the smoke obscuring characteristics. The obscuring effect of smoke was analyzed in details to human eyes, low light level imagery system, passive IR imagery system and imagery guided system. And some models were compared and analyzed, such as the model of penetrating rate, the model of absorbing coefficient, and the calculating model of total obscuring power of the smoke.
     2. Testing system design of TOP of the smoke. A TOP testing system of the smoke has been developed based on the irradiance testing method and vision contrasting scope of human eyes. Under the condition of 26℃and 60% relative humidity, a test of TOP with phosphoric smoke showed that the error was less than 4% compared to the empirical value.
     3. Testing results analysis of TOP of visible light through smoke on the condition of different particle size distribution. The different composition of smoke, relative humidity and temperature, and formation time and state of the smoke had an effect on the particle size distribution and on the effective light-absorption area and scattering area. In view of different models of particle size distribution and calculating results, the model was established based on the Mie theory, the responding function of TOP to different particle size distribution was also provided. Therefore the direction of the testing system and the reliability of the testing results were improved.
     4. Expanding application and parameter test of TOP mathematical model to three IR wave band,1-3μm、3-5μm、8-12μm and laser 10.6μm. Considering the development of IR-proof smoke technology and the limitation of this testing system, it is possible to expand IR wave band and do some experimental research on TOP testing system of visible light through smoke under the condition that lots of researchers are positively exploring the penetration capacity of IR through smoke.
     5. Calculating method research on the edge of effective area of the smoke image. By analyzing the radioactive characteristic of the object and the background, the SNR of received IR image was calculated, and then the effective obscuring area of the smoke was also calculated by the method of morphologic ecology. Finally, the simulation experiment was done based on the analysis results mentioned above.
     This thesis provides theoretic basis which are important for analyzing the smoke formula and developing effective smoke interference material. On the basis of the perfect theory model and the improved system precision, the unified smoke obscuring power was improved and the test standard of the obscuring power of smoke issuing reagent may be established.
引文
1 [苏]希特洛夫斯基著.诸葛嵩.沈玉华译.烟火学原理[M].北京国防工业出版社. 1958.227-229
    2李澄俊.统一表征发烟剂对可见光和红外的遮蔽能力[J].火工品. 2001, (2): 8-10
    3 Jaya Ramaprasad, Eric Eisenberg. Optical attenuation in fog and clouds[J]. Proceeding of SPIE-The International Society for Optical Engineering. 2001, 45(30):58-71
    4 Steven K Chai, Darko Koracin, Leif Enger. Modeling the dispersion of vapor and aerosol particulates in the atmospheric boundary layer[R]. Nevada Desert Research Institute of University and Community College System of Nevada, 1999
    5 Gerald C. Infrared transmission measurements through smoke screen: experimental considerations[R]. AD-A090404
    6 William E K. Chemical corps smoke is there a future in the army of the twenty first-century[R]. ADA350023, 1998
    7潘功配.高等烟火学.哈尔滨哈尔滨工程大学出版社, 2005: 177-291
    8王玄玉,潘功配.红磷烟幕中红外光谱和红外消光性能研究[J].红外与毫米波学报. 2006, 25(5): 397-400
    9胡碧茹,吴文健,满亚辉,李蒙.红外热像仪定性评判烟幕的遮蔽效果[J].国防科技大学学报. 2004, 26(4): 90-92
    10丁楠,张其土,王庭慰.红外烟幕干扰材料的制备与性能研究[J].光学技术. 2005, 31(3): 452-454
    11 SCHLEHER D C. Electronic Warfare in the Information Age. Boston: Artech House Radar Library, 1999
    12 HATESUN R D. Infrararbited System Principle. National Defense Industry Press. 1975
    13 Vakin S, Shustov L, Dunwell R. Fundamentals of electronic warfare[M]. Boston: Artech House, 2001: 111-166
    14 Chrzanowski K. Testing of military optoelectronic systems[J]. Opto-Electronics Review. 2001,9(4):377-384
    15 Zhu Guifang, Xu Jun, Gu Xiaofei, Kong Lingjian, Cao Fuyun, Li Xilai. Research on the Smokes Screening Laser. ICO20: Lasers and laser Technologies. Changchun, China, 2005. International Society for Optical Engineering, 2005
    16 Brown D F, Dunn W E. Assessment and computerized modeling of the environmental deposition of military smokes[R]. Illinois: Department of Mechanical and Industrial Engineering of University of Illinois at Unbana-champaign, 1991
    17马绥华.火灾烟幕颗粒粒径分布的测量与计算模拟[D].中国科学技术大学火灾科学国家重点实验室.博士论文. 2006: 6-12
    18周永霞.基于物理的烟雾动画研究[D].浙江大学博士论文. 2006: 6-32
    19郭增军.基于光谱吸收光纤甲烷气体传感系统的研究[D].燕山大学博士论文. 2002: 2-15
    20李世祥.光电对抗技术[M].长沙:国防科技大学出版社. 2000: 153-199
    21 C.F.Bohren, D.R.Huffman. Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983
    22 P.J.Flatau. Improvements in the Discrete Dipole Approximateon Method of Computing Scattering and Absorption. Opt Lett. 1977(16): 1205
    23 Naishadham K. Measurement of Microwave Conductiveity of Polymeric Materiall with Potentiall Applications in Absorbers and Shielding. IEEE Trans MTT. 1991, 39(7): 1158-1165
    24 Calder K L. Atmospheric Diffuseion of Particularte Material Considered as a Boundary Value Problem. JMet. 1961, 18(2): 413-416
    25 B. T. N. Evans. An interactive program for estimating extinxtion and scattering properties of most particle clouds. Materials Research Laboratory, Report MRL-R-1123, 1988.6
    26 Y. Han, Z. S. Wu. Scattering of a Spheroidal Particle Illuminated by a Gaussian Beam[J]. Appl Opt. 2001,40:2501-2509
    27 Chen ZhiPing, Zhu Qi,Xu ShanJia. Improved Smokescreen for MM Wave and IR. Proceedings of the 1999 IEEE International Antennas and Propagation Symposium and USNC/URSI National Radio Science Meeting, Orlando, FL, USA, 1999. Institute of Electrical and Electronics Engineers Inc, 1999: 1020-1023
    28常胜利,胡永明,陈哲,韩泽.多波段红外烟幕干扰特性测量系统的设计[J].激光与红外. 1999, 29(4): 225-228
    29 Jerold Bottiger. Aerosol characterization methods. US Army Edgewood Research, AD-A280084
    30 O. I. Sindom. Computations of the Absorption coefficient of a dispersion of clusterseomparsion of computed data With experimental for small clusters. AD-A213370:299-308
    31 K.A. Fuller. Scattering and absoPtion by spheres containing arbitrarily located spherical inhomogeneities. AD-A280084:443-474
    32 Milham M E. et al. Infrared Optical Properties of Phosphorus-derived Smoke Appl.opt. .1982, 21(14): 2501
    33 L. M. Ruan, Q. Z. Yu, H. P. Tan. A transmission method for the determination of the radiation properties of small ash particles[J]. Journal of Harbin Institute of Technology. 1994, E-1(2):10-14
    34 D.B.Cohn, M.J.Nicol, M.B.Haeri. Gaseous Laser Power Limiter Initiated by Nuclear Radiation. U.S.patent 5,299,068,1994
    35郑付兴,王玄玉,宋黎,王晓阳.氧化剂对红磷烟幕抗10.6μm激光性能的影响研究[J].含能材料. 2007, 15(2):155-157
    36王永仲,王晓,徐岱.烟幕对信息激光的衰减及其相关性能试验[J].应用激光. 2003, 23(5):287-288
    37关华,潘功配,周遵守.抗红外-毫米波双模发烟剂烟幕性能研究[J].南京理工大学学报. 2006, 30(1): 89-91
    38徐代升,胡以华,舒嵘.提高室外遮蔽物透过率测量精度的一种方法.应用光学. 2005, 26(5): 7-9
    39陈宁,陈厚和,潘功配.不同真空度对烟幕近红外衰减性能的影响[J].含能材料. 2005,13(2): 103-106
    40鞠剑峰,徐铭,李澄俊.超细赤磷的安定性及发烟剂烟幕对10.6μm激光的消光性能[J].含能材料. 2007, 15(1): 76-78
    41 H B Berchtesgaden, J S Bischofswiesen. Composition generating an IR-opaque smoke[P]. US5389308, 1995
    42 Dobbins R A, Mulholland G W, Bryner N P. Comparison of a fractal smoke optics model with light extinction measurements. Atmospheric Environment. 1994,28(5): 889-897
    43王玄玉,潘功配.几种烟幕对CO2激光的衰减性能研究[J].激光与红外. 2006, 36(2):144-146
    44高东华,张祥林.舰载烟幕干扰对抗激光制导反舰导弹的战术研究[J].激光与红外. 2005,35(6): 427-429
    45王玄玉,潘功配.红磷烟幕使用特性及其对红外激光的最佳消光直径[J].兵工学报. 2007, 28(9): 1138-1143
    46姜宁,迟忠先,钟万勰.舰艇烟幕使用与布放的仿真研究[J].系统工程与电子技术. 2000, 22(8): 75-77
    47熊晓伟,刘上乾.红外气溶胶烟幕干扰效果的定量评估[J].系统工程与电子技术. 2001, 23(2):38-41
    48李毅,潘功配,周遵宁.烟幕凝聚粒子的消光特性研究[J].兵工学报. 2002, 23(2):184-187
    49周遵宁,潘功配,李毅,关华.赤磷对改进型HC发烟剂烟幕性能影响的试验研究[J].含能材料. 2002, 10(3):128-131
    50王永仲,王晓,易明.烟雾干扰场的时域特性试验与分析[J].光学技术. 2003, 29(2):245-246
    51任慧,焦清介,乔小晶,崔庆忠.抗红外烟幕遮蔽剂CuCl2-NiCl2-GIC的研究[J].激光与红外. 2004, 34(4):282-285
    52陈兵,李澄俊.一种基于诊断风场模式的烟幕浓度估算方法[J].南京理工大学学报. 2004,28(4): 427-431
    53任慧,康飞宇,崔庆忠,沈万慈.基于红外定量分析方法检测烟幕粒子质量消光系数[J].含能材料. 2005, 13(2): 106-109
    54朱晨光,潘功配.对烟幕微粒的终端沉降速度研究[J].含能材料, 2005, 13(6):412-415
    55李明,范东启.殷纯永.烟幕激光和红外透过率对应关系研究[J].红外毫米波学报. 2006,25(2): 127-130
    56高卫.烟幕干扰效果评估方法研究[J].兵工学报. 2006,27(4):681-684
    57 Canny J F. A computational approach to edge detection[J]. IEEE Trans on PAM I. 1985, 8(6):679-698
    58 Yitzhak Yitzhaky, Eli Peli. A Method for Objective Edge Detection Evaluation and Detector Parameter Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2003,25(8):1027-1033
    59 John Canny. A Computational Approach to Edge Detection. IEEETransactions on Pattern Analysis and Machine Intelligence. 1986,8(6):679-698
    60 Ng C M, Leung W N, Chun F. Edge Detection using Evolutionary Algorithms. IEEE International Conference on Systems, Man, and Cybernetics. 1999,4(6):865-868
    61 F. Bergholm, Edge focusing. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1987,9(6): 726-741
    62 Michael D. Heath, Sudeep Sarkar. A Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1997, 19(12):1338-1395
    63 Fesharaki M N, Hellestrand G R. A new edge detection algorithm based on a statistical approach. 1994 International Symposium on Speech, Image Processing and Neural Networks, 1994:21-24
    64 Rishi R R, Probal C, Murthy C A. Thresholding in Edge Detection: A Statistical Approach. IEEE Trans. On Image Processing. 2004, 13(7):927-937
    65朱晨光,潘功配,吴小云,关华.小波分析法在红外烟幕面积评估中的应用[J].兵工学报. 2005, 26(5):620-624
    66 Kundu M K, Chanda B, Vani Padmaja Y. Morphologic edge detection with multiscale approach. IEEE International Conference on Global Connectivity in Energy, Computer, Communication and Control, 1998: 53-56
    67 Haralick RM. Digital Step Edges from Zero Crossing of Second Directional Derivatives. IEEE Transon PAMI. 1984, 16:58-68
    68 Lee M K, Leung S W, Pun T L, Cheung H L, Lee A M K. Edge detection by genetic algorithm. International Conference on Image Processing, 2000:478-480
    69周燕,金伟其.人眼视觉的传递特性及模型.光学技术. 2002, 28(1): 57-59
    70军事科学院军事百科研究所.给武器安上智慧的眼睛.精确制导武器国防.2005(10):68-70
    71 Fanf Youpei. Jamming Technology Research to the Imaging ZR Guidance Missile. Infrared and Laser Engineering. 2000, 29(3):7-9
    72 Vance A Hedin. Atmospheric Effects on 1.06 Micron Laser-guidedWeapons[R]. ADA017460. 1975
    73郭修煌.精确制导技术[M].北京国防工业出版社, 1999:77-104
    74彭望泽.防空导弹武器系统电子对抗技术[M].北京:宇航出版社, 1995:327-370
    75张金生,高智杰,李征委,王仕成.烟幕透过特性对激光寻的武器制导的影响[J].含能材料. 2006, 14(3):209-215
    76 Powers P E. Differential Backscatter Absorption Gas Imaging. Proc. SPIE, 1997:56-88
    77朱晨光.红外烟幕遮蔽率测试方法研究[J].红外技术. 2004,(4):81-84
    78徐峰,蔡小舒,苏明旭,赵志军,李俊峰.独立模式算法求解颗粒粒径分布的研究.中国激光. 2004,31(2):223-228
    79陈敏,孙东松,顾江,沈法华,夏海云.激光雷达探测的大气气溶胶空间二维分布.红外与激光工程. 2007,36(3):369-372
    80 Enoki. Toshiaki. Graphite Intercalation Compounds and Applications. New York: Oxford University, 2003
    81 Nussenzveig H M, Wiscombe W J. Efficiency factors in Mie scattering[J]. Physical Review Letters. 1980, 45(18):1490-1494
    82 Mackowski D W, Mishchenko M I. Calculation of the T matrix and the scattering matrix for ensembles of spheres, J Opt Soc Am A. 1996, 13(11):2266-2278
    83胡静,杨宗凯,杨代琴.烟雾粒子的识别及其激光散射特性的蒙特卡罗模拟[J].中国激光. 2002, 29(10):950-954
    84李学彬,徐青山,胡欢陵.双散射角光学粒子计数器测量气溶胶折射率的新方法研究[J].光学学报. 2007, 27(3):391-394
    85韩一平,杜云刚.非球形大气粒子对任意波束的电磁散射特性[J].光学学报. 2006, 26(4):630-633
    86周留柱,顾学军,朱元,郭晓勇,赵文武,郑海洋,方黎,张为俊.气溶胶单粒子的检测效率与基质辅助激光解吸电离研究[J].中国激光. 2006, 33(1):97-101
    87谈和平.红外辐射特性与传输的数值计算-计算热辐射学[M].哈尔滨:哈尔滨工业大学出版社, 2006:105-135
    88 VAN DE HULST. Light Scattering by Small Particles[M]. New York: Willey, 1981:35-78
    89 KERKER M. The Scattering of Light[M]. New York: Academic Press, 1969:54-97
    90 BOHREN C F, HUFFMAN D R. Absorption and Scattering of Light by Small Particles[M]. New York: John Willey & Sons, 1983:2-55
    91薛利敏,张洪向,李敏勇.效力准则的电子战干扰效果度量的研究[J].火力与指挥控制. 2004, 29(3):58-60
    92王世勇,付有余,郭劲.脉冲激光对CCD图像跟踪系统干扰效果评估[J].激光与红外. 2002, 32(1):20-22
    93朱晨光,潘功配,关华,陈昕.烟幕云团形成初期的流动规律研究[J].含能材料. 2007, 15(5):540-543
    94周遵宁,潘功配,关华,朱晨光.烟幕对红外成像探测干扰作用研究[J].兵工学报. 2005, 26(3):348-352
    95 G J Grevera, J K Udupa. A Task-specific Evaluation of Three-dimensional Image Interpolation Techniques. IEEE Trans. On Medical Imaging. 1999, 18(2):137-143
    96 Chi Zeying, Chen Zhigang, Chen Wenjian, Li Li, You Mingjun. Thermal Image Measurement and Analysis under the Condition of IR Smoke Screen Obscuration. Proceedings of SPIE-The International Society for Optical Engineering. Detectors, Focal Plane Arrays, and Imaging DevicesⅡ, Beijing, China, 1998. The International Society for Optical Engineering. 1998:271-274
    97 HO C P, CHIN R T. Decomposition of Arbitrarily Shaped Morphological Structuring Elements[J]. IEEE Trans PA-MI. 1995,17:2-15
    98 B. CHANDA, M. K. KUNDU, V. PADMAJA. A multi-scale morphologic edge detection[J]. Pattern Recognition. 1998,31(10):1469-1478
    99焦斌亮,胡永刚.边缘检测的形态学算法与传统算法比较.微处理机. 2007(3): 75-80
    100李卓,郭立红.多尺度形态学边缘检测算法.电子器件. 2006,29(3):821-824
    101刘曙,罗予频,杨士元.基于多尺度形态学的红外图像边缘检测方法.计算机应用. 2007,27(4):970-975
    102冉彦中,曹婧华,韦军.基于数学形态学的图像边缘检测方法及应用.河南科技大学学报:自然科学版. 2007, 28(5):40-42
    103乔广林,苏东林,康文运.满足烟幕透过率测量的红外辐射源设计[J]. 激光与红外. 2005,35(3):171-174
    104 J. Ishii, A. Ono. Uncertainty estimation for emissivity measurements near room temperature with a Fourier transforms spectrometer[J]. Meas. Sci. Technol. 2001, 12: 2103-2112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700