用户名: 密码: 验证码:
金刚石和铀表面吸附特性的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面吸附是表面科学的一个重要部分,其应用领域包括表面处理、催化及表面防腐蚀等。金刚石由于其在力学、电学、热学及光学等方面的优异性能,在光电子及半导体工业等领域具有广泛的应用前景。本论文通过对碱金属(AM)在金刚石(C)表面的吸附研究,探讨了表面处理对金刚石表面结构及电学性能的影响。铀(U)作为核武器和核能工业的重要材料在国防及开发利用核能中发挥着重要的作用。由于铀的化学性质活泼,表面腐蚀问题在其应用中显得尤为严峻。研究环境气体在铀表面的吸附现象对于进一步探讨其表面腐蚀机理及发展表面防腐蚀技术有着重要的意义。本论文采用基于密度泛函理论的第一性原理方法研究了碱金属在C(100)表面及氢气、氧气在α-U(001)表面的吸附,主要结论如下:
     1.系统研究了碱金属Na,K及Rb吸附于金刚石(100)表面的结构及电子性质。研究发现碱金属的稳定吸附构型对原子半径没有依赖性。在覆盖度为0.5ML时,它们的最稳定吸附位置都为谷桥位(T3)。在覆盖度为1ML时,两个碱金属吸附原子分别占据鞍位和谷桥位(HH+T3)。表面功函的计算表明,碱金属的吸附使得金刚石的表面功函大幅度降低,而当覆盖度增加到1ML的时候,表面功函又有较明显的回升,这与实验上所观察到的现象是一致的。我们把这归结为较高覆盖度下的偶极-偶极去极化作用。表面功函的降低使得体系的真空能级进入了金刚石能隙之内,形成了负电子亲和势。通过计算差分电荷密度,我们观察到碱金属吸附所诱导的“净电荷”大部分聚积在二聚化的碳原子与碱金属的键轴方向上,并且偏向碳原子。因此,我们认为碱金属与碳原子之间的化学键是极性共价键。由于碱金属的吸附,金刚石(100)表面反键表面态的能量明显降低,并在覆盖度为1ML时,与成键表面态发生交迭,从而金刚石表面呈现金属导电特性。这些研究结果表明碱金属吸附可以改变金刚石表面的导电类型,同时极性共价作用诱导了大幅度的表面功函下降现象,使得金刚石表面具有负电子亲和势。
     2.系统研究了氢气及氧气在α-U(001)表面的吸附,解离及扩散特性。研究发现氢气在α-U(001)表面表现出弱分子吸附特征,这与最近的实验研究对铀表面氢分子前驱体的存在的预言相吻合。结构分析表明,氢分子倾向于平行吸附在衬底铀原子的正上方,分子轴向沿100晶向。氧分子则倾向于以解离的形式吸附于α-U(001)表面,其解离伴随着两个氧原子以几乎相同的吸附高度分别占据两个相邻的凹陷位置。解离过程的研究发现氢分子在(α-U(001)表面的解离势垒很低,而氧分子的解离过程中则不存在势垒。在分子吸附态中,我们发现氢分子与铀原子之间只存在范德华作用力,而氧分子由于更接近铀表面,表现出与铀原子共价成键的化学吸附特征。对于解离吸附,氢原子失去了部分电荷并出现较弱的H1s与U6d电子态的杂化现象,表明H-U键为离子性与共价性混合的化学键。O-U键的特征则表现出对吸附结构的依赖性:吸附于凹陷位置的氧原子具有强烈的离子键特征,而吸附于顶位时,我们观察到了O2p-U5f-U6d电子态的杂化现象,表明此时的氧原子具有部分的共价性。分波态密度的分析表明,U5f与U6d电子都参与了与氢原子及氧原子的成键作用,但U5f与吸附物电子态的杂化现象比U6d要弱。这些研究结果表明当氢气和氧气吸附于铀表面时易于发生解离,从而导致铀表面的化学腐蚀。氢和氧原子与铀之间的化学作用以离子键为主,同时存在较弱的共价键特征。
Adsorption is an important part of surface science, application areas of whichinvolve surface treatment technique and surface corrosion prevention et al. Owning toit's outstanding performance in mechanics, electricity, thermal and optics, diamondsurface has wide application prospect in photoelectronic and semiconductor industry.The current work has studied the adsorption of Alkali metal (AM) on diamond surfaceand focused on the adsorption induced influences on the diamond (C) surface structuraland electronic properties. As a kind of important material used in nuclear weapon andnuclear energy industry, Uranium (U) plays an important role in the national defenseand the developing of nuclear energy. We have studied the adsorption of hydrogen andoxygen on Uranium surface which has important significance in further investigatingthe mechanism of surface corrosion and improving the corrosion prevention technology.First principle calculations based on density functional theory have been performed tostudy the adsorption of AM on C(100) surface and hydrogen/oxygen on U(001) surface.The main results are as follows:
     1. A systematic study has been carried out to investigate the structural andelectronic properties of the adsorption systems of Na, K and Rb on C(100) surface. It isfound that the stable adsorption site for AM is independent to its atomic radius. At thecoverage of 0.5 ML, all considered AMs favorite the valley-bridge (T3) site. As thecoverage increases to 1 ML, one of the adsorbates still prefers T3 site with another oneoccupying the pedestal (HH) site. The calculation of surface work function has shownthat the adsorption of AM lead to the dramatic decrease of surface work function. As thecoverage increases to 1 ML, the surface work function shows increment relative to thatatΘ=0.5 ML. This is in consistent with what has been experimentally observed and maybe ascribed to the dipole-dipole depolarization effect at higher coverages. The decreaseof surface work function has pulled down the vacuum level below the conduction bandminimum which indicates a negative electron affinity. The charge difference densityanalysis has shown that the AM induced "net charge" mainly locates along the bondaxis between the dimerized carbon atom and AM. The deviation of the "net charge"from AM atoms indicates polarized covalent AM-C bond. The analysis of the projected density of states has given supports to the donation of AMs states and C2p states to theAM-C bond. We found that the AM adsorption has lowered the energy of anti-bondingsurface states which show overlapping with bonding surface states for adsorption atΘ=1ML, thus resulting in a metallic diamond surface. In summary, AM adsorption canchange the conductivity type of C(100) surface and induce negative electron affinity dueto the polarized covalent bonding nature of AM-C which has lead to dramatic decreaseof surface work function.
     2. We have systematically studied the adsorption, dissociation and diffusion ofhydrogen and oxygen onα-U(001) surface. Weak molecular adsorption has been foundfor hydrogen, agreeing well with a recent experimental work which suggests theexistence of the hydrogen molecular precursor on uranium surface. The structuralanalysis showed that hydrogen prefers to adsorb above a substrate atom with H-H axisalong 100 direction. Oxygen was found to favor dissociated adsorption onα-U(001)surface. The dissociation of oxygen is followed by the occupancy of the twoneighboring hollow sites by the two oxygen atoms. The dissociation investigation hasrevealed a low dissociation barrier for hydrogen and no barrier for oxygen. For themolecular adsorption structures, we found van der walls type interaction betweenhydrogen and uranium atom. For adsorbed oxygen molecular which has lower heightfrom the Uranium surface, we found covalent bonding of O-U. For the dissociatedadsorption, hydrogen atom loses some charge with weak hybridization found betweenHis and U6d states which indicates mixing of ionic and covalent characters for H-Ubond. The bonding nature of O-U bond shows dependence on the adsorption site. Strongionic character has been observed for oxygen adsorbed on hollow site while some covalent characterarises for the top site adsorption with the strong hybridization of O2p-U5f-U6d states. Theprojected density of states analysis has shown that both U5f and U6d states are involvedin the bonding with hydrogen and oxygen. The hybridization of U5f with adsorbatesstates is weaker than that of U6d states. These results suggest that hydrogen and oxygenmolecules are easily dissociated when approach Uranium surface which is consequentlyfollowed by chemical corrosion. The chemical interaction between hydrogen/oxygenand Uranium are mainly ionic bonding with mixing of weak covalent bonding.
引文
[1] 孙大明,席光康.固体的表面与界面.合肥:安徽教育出版社,1996,13
    [2] Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review B, 1964, 136(3B): 864-871
    [3] Kohn W, Sham L J. Self-consistent equations including enchange and correlation effects. Physical Review, 1965, 140(4A): 1133-1138
    [4] 梁文平,杨俊林,陈拥军,等.新世纪的物理化学.北京:科学出版社,2004,113-273
    [5] Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for abinitio total-energy calculations-molecular-dynamics and conjugate gradients. Reviews of Modern Physics, 1992, 64(4): 1045-1097
    [6] Gonze X, Beuken J M, Caracas R, et al. First-principles computation of material properties: the ABINIT software project. Computational Materials Science, 2002, 25(3): 478-492
    [7] Bockstedte M, Kley A, Neugebauer J, et al. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Computer Physics Communications, 1997, 107(1-3): 187-222
    [8] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186
    [9] Hammer B, Hansen L B, and Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999, 59(11): 7413-7421
    [10] Blaha P, Schwarz K, Madsen G, et al. Wien2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Wien: Vienna university of technology, 2001, 1-180
    [11] Spear K E, Frenklach M. High-temperature chemistry of CVD (Chemical-Vapor-Deposition) diamond growth. Pure and Applied Chemistry, 1994, 66(9): 1773-1782
    [12] Wild C, Herres N, and Koidl P. Texture formation in polycrystalline diamond films. Journal of Applied Physics, 1990, 68(3): 973-978
    [13] Hamza A V, Kubiak G D, and Stulen R H. Hydrogen chemisorption and the structure of the diamond C(100)-(2×1) surface. Surface Science, 1990, 237(1-3): 35-52
    [14] Kawarada H. Hydrogen-terminated diamond surfaces and interfaces. Surface Science Reports, 1996, 26(7): 205-259
    [15] K(u|¨)ttel O M, Diederich L, Schaller E, et al. The preparation and characterization of low surface-roughness(111) and (100) natural diamond by hydrogen plasma. Surface Science,1995, 337(1-2): L812-L818
    [16] Shiomi H, Tanabe K, Nishibayashi Y, et al. Expitaxial-growth of high-quality diamond film by the microwave plasma-assisted chemical-vapor-deposition method. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1990, 29(1): 34-40
    [17] Sun B W, Zhang X P, and Lin Z D. Growth mechanism and the order of appearance of diamond (111) and (100) facets. Physical Review B, 1993, 47(15): 9816-9824
    [18] Sutcu L F, Thompson M S, Chu C J, et al. nanometer-scale morphology of homoexpitaxial diamond films by atomic force microscopy. Applied Physics Letters, 1992, 60(14):1685-1687
    [19] Thoms B D, Owens M S, Butler J E, et al. Production and characterization of smooth,hydrogen-terminated diamond C(100). Applied Physics Letters, 1994, 65(23): 2957-2959
    [20] Weide J v d, Zhang Z, Baumann P K, et al. Negative-electron-affinity effects on the diamond (100) surface. Physical Review B, 1994, 50(8): 5803-5806
    [21] Diederich L, Kuttel O M, Schaller E, et al. Photoemission from the negative electron affmity (100) natural hydrogen terminated diamond surface. Surface Science, 1996, 349(2):176-184
    [22] Takeuchi D, Kato H, Ri G S, et al. Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces. Applied Physics Letters, 2005, 86(15): 152103
    [23] Takeuchi D, Ri S G, Kato H, et al. Negative electron affinity on hydrogen terminated diamond. Physica Status Solidi a-Applications and Materials Science, 2005, 202(11):2098-2103
    [24] Zhang Z, Wensell M, and Bernholc J. Surface-structures and electron-affinities of bare and hydrogenated diamond C(100) surfaces. Physical Review B, 1995, 51(8): 5291-5296
    [25] Carlsson J M, Hellsing B. First-principles investigation of the quantum-well system Na on Cu(111). Physical Review B, 2000, 61(20): 13973-13982
    [26] Doll K. Density-functional study of the adsorption of K on the Ag(111) surface. Physical Review B, 2002, 66(15): 155421
    [27] Neumann A, Schroeder S L M, and Christmann K. Adsorption of sodium and potassium on a gold(100) surface-an exampale of alkali-metal-induced desorption. Physical Review B,1995, 51 (23): 17007-17022
    [28] Parker S D. Lithium adsorption on Ag(111)-characterization by AES and work function changes. Surface Science, 1985, 157(2-3): 261-272
    [29] Su C, Shi X, Tang D, et al. Core-level photoemission and work-function investigation of Na on Cu(110). Physical Review B, 1993, 48(16): 12146-12150
    [30] Abukawa T, Kono S. Photoelectron diffraction study of Si(001)2×1-K surface-existence of a potassium double-layer. Physical Review B, 1988, 37(15): 9097-9099
    [31] Chao Y C, Johansson L S O, and Uhrberg R I G. Coverage-dependent study of the Cs/Si(100)2×1 surface using photoelectron spectroscopy. Physical Review B, 1996, 54(8):5901-5907
    [32] Enta Y, Kinoshita T, Suzuki S, et al. Angle-resolved ultraviolet photoelectron spectroscopy study of Si(001)-(2×1)/K and Si(001)-(2×1)/Cs surfaces. Physical Review B, 1989, 39(2):1125-1133
    [33] Xiao H Y, Zu X T, Zhang Y F, et al. First-principles study of the adsorption of cesium on Si(001)(2×1) surface. Journal of Chemical Physics, 2005, 122(17): 174704
    [34] Kobayashi K, Morikawa Y, Terakura K, et al. Optimized structures and electronic-properties of alkali-metal (Na, K)-adsorbed Si(001) surfaces. Physical Review B,1992, 45(7): 3469-3484
    [35] Geis M W, Twichell J C, Macaulay J, et al. Electron field-emission from diamond and other carbon materials after H_2, O_2 and Cs treament. Applied Physics Letters, 1995, 67(9):1328-1330
    [36] Diederich L, Kuttel O M, Aebi P, et al. Photoelectron emission from the negative electron affinity caesiated natural diamond (100) surface. Diamond and Related Materials, 1998,7(2-5): 660-665
    [37] Pickett W E. Negative electron-affinity and low work function surface-cesium on oxygented diamond(100). Physical Review Letters, 1994, 73(12): 1664-1667
    [38] Hossain M Z, Kubo T, Aruga T, et al. Adsorbed states of K on the diamond (100)(2×1)surface. Diamond and Related Materials, 2000, 9(2): 162-169
    [39] Lin D S, Miller T, and Chiang T C. Bonding of Cs on Si-surface and Ge-surface studied by core-level spectroscopy. Physical Review B, 1991, 44(19): 10719-10723
    [40] Soukiassion P, Starnberg H I. Physics and chemistry of alkali metal adsorption. Amsterdam: Elsevier, 1989, 449
    [41] Furthm(u|¨)ller J, Hafner J, and Kresse G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Physical Review B, 1996, 53(11):7334-7351
    [42] Kress C, Fiedler M, Schmidt W G, et al. Geometrical-structure and electronic-structure of the reconstructured diamond (100) surface. Physical Review B, 1994, 50(23): 17697-17700
    [43] Scholze A, Schmidt W G, Kackell P, et al. Diamond(111) and (100) surface: Ab initio study of the atomic and electronic structure. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 1996, 37(1-3): 158-161
    [44] Yu Y, Gu C Z, Xu L F, et al. Ab initio structural characterization of a hydrogen-covered diamond (001) surface. Physical Review B, 2004, 70(12): 125423
    [45] Over H, Wasserfall J, Ranke W, et al. Surface atomic geometry of Si(001)-(2×1): A low-energy electron-diffraction structure analysis. Physical Review B, 1997, 55(7):4731-4736
    [46] Needels M, Payne M C, and Joannopoulos J D. Abinitio molecular-dynamics on the Ge(100) surface. Physical Review Letters, 1987, 58(17): 1765-1768
    [47] Goldstei.B. LEED,AUGER and plasmon studies of negative electron affinity on Si produced by adsorption of Cs and O. Surface Science, 1973, 35(1): 227-245
    [48] Levine J D. Structural and electronic model of negative electron affinity on Si-Cs-O surface.Surface Science, 1973, 34(1): 90-107
    [49] Aruga T, Tochihara H, and Murata Y. Measurement of overlayer-plasmon dispersion in K-chains adsorbed on Si(001)(2×1). Physical Review Letters, 1984, 53(4): 372-375
    [50] Ciraci S, Batra I P. Novel electronic-properties of a potassium overlayer on Si(001)-(2×1).Physical Review Letters, 1986, 56(8): 877-880
    [51] Ciraci S, Batra I P. Novel electronic-properties of a potassium overlayer on Si(001)-(2×1)-reply. Physical Review Letters, 1988, 60(6): 547-547
    [52] Ciraci S, Batra I P. Surface metallization of silicon by potassium adsorption on Si(001)-(2×1). Physical Review B, 1988, 37(6): 2955-2967
    [53] Ling Y, Freeman A J, and Delley B. Chemisorption bonding,site preference,and chain formation at the K/Si(001)2×1 interface. Physical Review B, 1989, 39(14): 10144-10153
    [54] 谢希德,资剑.金属在半导体表面上的吸附.物理,1992,21(11):641-646
    [55] Kennou S, Kamaratos M, Ladas S, et al. The influence of steps on the adsorption of Cs on Si(100). Surface Science, 1989, 216(3): 462-471
    [56] Meyerheim H L, Jedrecy N, Sauvage-Simkin M, et al. Surface x-ray diffraction on K/Si(001)(2×1) and Cs/Si(001)(2×1). Physical Review B, 1998, 58(4): 2118-2125
    [57] Meyerheim H L, Moritz W. Structure and dynamics of clean and adsorbate-covered crystal surfaces studied by surface X-ray diffraction. Applied Physics A-Materials Science & Processing, 1998, 67(6): 645-656
    [58] Batra I P. Interaction of alkali-metals with Si(001)-2×1. Physical Review B, 1991, 43(15):12322-12334
    [59] Souda R, Hayami W, Aizawa T, et al. Alkali-metal adsorption on the Si(001) surface studied by low-energy D~+ scattering. Physical Review B, 1993, 47(15): 9917-9920
    [60] Bloch J, Atzmony U, Dariel M P, et al. Surface spectroscopy studies of the oxidation behavior of uranium. Journal of Nuclear Materials, 1982, 105(2-3): 196-200
    [61] Gouder T, Colmenares C, Naegele J R, et al. Study of the surface oxidation of uranium by UV photoemission spectroscopy. Surface Science, 1990, 235(2-3): 280-286
    [62] Haschke J M. Corrosion of uranium in air and water vapor: consequences for environmental dispersal. Journal of Alloys and Compounds, 1998, 278(1-2): 149-160
    [63] McLean W, Colmenares C A, Smith R L, et al. Electron-spectroscopy studies of clean thorium and uranium surfaces-chemisorption and initial-stage of reaction with O_2, CO, and CO_2. Physical Review B, 1982, 25(1): 8-24
    [64] Swissa E, Bloch J, Atzmony U, et al. Interatcion of oxygen and uranium studied by combined AEX, XPS and DRS techniques. Surface Science, 1989, 214(1-2): 323-333
    [65] Colmenares C A. Oxidation mechanisms and catalytic properties of the actinides. Progress in Solid State Chemistry, 1984, 15(4): 257-364
    [66] Schnizlein J G, Woods J D, Bingle J D, et al. Identification of the diffusing species in uranium oxidation. Journal of the Electrochemical Society, 1960, 107(9): 783-785
    [67] Ritchie A G. A review of the rates of reaction of uranium with oxygen and water-vapor at temperatures up to 300℃. Journal of Nuclear Materials, 1981, 102(1-2): 170-182
    [68] McLean W, Colmenares C A, Smith R L, et al. Electron-spectroscopy studies of clean thorium and uranium surfaces-chemisorption and initial-stages of reaction with O_2, CO and CO_2. Physical Review B, 1982, 25(1): 8-24
    [69] Balasubramanian K, Siekhaus W J, and McLean W. Computational modeling of uranium hydriding and complexes. Plutonium Futures - the Science, 2003, 673:125-127
    [70] Bloch J, Mintz M H. Kinetics and mechanism of the U-H reaction. Journal of the Less-common Metals, 1981, 81 (2): 301-320
    [71] Condon J B. Alternative model for nonstoichiometry in uranium hydride. Journal of Chemical Physics, 1975, 79(1): 42-48
    [72] Condon J B, Larson E A. Kinetics of uranium-hydrogen system. Journal of Chemical Physics, 1973, 59(2): 855-865
    [73] DeMint A L, Leckey J H. Effect of silicon impurities and heat treatment on uranium hydriding rates. Journal of Nuclear Materials, 2000, 281 (2-3): 208-212
    [74] Hashino T, Okajima Y. Mechanism of reaction of hydrogen with uranium. Journal of Physical Chemistry, 1973, 77(18): 2236-2241
    [75] Kirkpatrick J R. Diffusion with chemical-reaction and a moving boundary. Journal of Physical Chemistry, 1981, 85(23): 3444-3448
    [76] Libowitz G G, Gibb T R P. High pressure dissociation studies of the uranium hydrogen system. Journal of Physical Chemistry, 1957, 61(6): 793-795
    [77] Powell G L, Harper W L, and Kirkpatrick J R. The kinetics of the hydriding of uranium metal. Journal of the Less-common Metals, 1991, 172:116-123
    [78] Kirkpatrick J R, B. C J. Modeling reaction between uranium and hydrogen. Oak Ridge: Oak Ridge National Lab, 1990, 1-41
    [79] Bazley S G, Nunney T S, Mormiche C, et al. The dynamics of hydrogen adsorption on polycrystalline uranium. Applied Surface Science, 2008, 254(20): 6376-6379
    [80] Shuai M B, Hu H R, Wang X, et al. Theoretical study on the reaction between uranium and O_2. Journal of Molecular Stracture-Theochem, 2001,536(2-3): 269-276
    [81] Shuai M B, Su Y J, Lang D M, et al. Effects of thermohydrogen processing on microstructure and properties of uranium alloys. Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, 2003, 329-335
    [82] Paulovic J, Gagliardi L, Dyke J M, et al. A theoretical study of the gas-phase chemi-ionization reaction between uranium and oxygen atoms. Journal of Chemical Physics,2005, 122(14): 144317
    [83] Huda M N, Ray A K. Density functional study of O_2 adsorption on (100) surface of gamma-uranium. International Journal of Quantum Chemistry, 2005, 102(1): 98-105
    [84] Senanayake S D, Soon A, Kohlmeyer A, et al. Carbon monoxide reaction with UO_2(111) single crystal surfaces: A theoretical and experimental study. Journal of Vacuum Science and Technology A, 2005, 23(4): 1078-1084
    [85] Born M, Huang K. Dynamical Theory of Crystal Lattice. New York: Oxford University Press, 1954, 110
    [86] 谢希德,陆栋.固体能带理论.上海:复旦大学出版社,1998,2-3
    [87] Fock V. The mechanics of photons. Comptes Rendus Hebdomadaires Des Seances De L Academic Des Sciences, 1930, 190:1399-1401
    [88] Hartree D R. The wave mechanics of an atom with a non-Coulomb central field Part Ⅰ theory and methods. Proceedings of the Cambridge Philosophical Society, 1928, 24:89-110
    [89] Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review B, 1964, 136(3B):B864-B871
    [90] Wang Y, Perdew J P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B, 1991, 44(24):13298-13307
    [91] Francz G, Oelhafen P. Photoelectron-spectroscopy of the annealed and deuterium-exposed natural diamond(100) surface. Surface Science, 1995, 329(3): 193-198
    [92] Schluter M, Chelikowsky J R, Louie S G, et al. Self-consistent pseudopotential calculations for Si(111) surfaces-Unreconstructed (1×1) and reconstructed (2×1) model structures.Physical Review B, 1975, 12(10): 4200-4214
    [93] Chelikowskyjr, Cohen M L. (110) surface states in Ⅲ-Ⅴ and Ⅱ-Ⅵ zincblende semiconductors. Physical Review B, 1976, 13(2): 826-834
    [94] Kerker G P, Louie S G, and Cohen M L. Electronic-structure of ideal and reconstructed Si(001) surface. Physical Review B, 1978, 17(2): 706-715
    [95] Schluter M, Cohen M L. Nature of conduction-band surface resonances for Si(111) surfaces with and without chernisorbed overlayers. Physical Review B, 1978, 17(2): 716-725
    [96] Ihm J, Louie S G, and Cohen M L. Self-consistent pseudopotential calculations for Ge and diamond(111) surfaces. Physical Review B, 1978, 17(2): 769-775
    [97] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Physical Review B, 1990, 41(11): 7892-7895
    [98] Laasonen K, Car R, Lee C, et al. Implementation of ultrasoft pseudopotentials in abinitio molecular-dynamics. Physical Review B, 1991, 43(8): 6796-6799
    [99] Laasonen K, Pasquarello A, Car R, et al. Car-parrinello molecular-dynamics with vanderbilt ultrasoft pseudopotentials. Physical Review B, 1993, 47(16): 10142-10153
    [100] Blochl P E. Projector augmented-wave method. Physical Review B, 1994, 50(24):17953-17979
    [101] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59(3): 1758-1775
    [102] Holzwarth N A W, Matthews G E, Dunning R B, et al. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids. Physical Review B, 1997, 55(4): 2005-2017
    [103] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B,1993, 47(1): 558-561
    [104] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review B, 1994,49(20): 14251-14269
    [105] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1):15-50
    [106] Teter M P, Payne M C, and Allan D C. Solution of Schr(o|¨)dinger's equation for large systems.Physical Review B, 1989, 40(18): 12255-12263
    [107] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical Review B,1976, 13(12): 5188-5192
    [108] Blochl P E, Jepsen O, and Andersen O K. Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 1994, 49(23): 16223-16233
    [109] Kresse G, Furthm(u|¨)ller J. VASP the GUIDE. Wien: Wien Universit(a|¨)t 2007, 1-155
    [110] Fu C L, Ho K M. First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo. Physical Review B, 1983, 28(10): 5480-5486
    [111] Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals.Physical Review B, 1989, 40(6): 3616-3621
    [112] Ekpenuma S N, Ray A K. Stabilities of adsorption sites and charge transfers at the K/Si(100) surface. Physical Review B, 1992, 46(24): 16163-16166
    [113] Lindsay R, Durr H, Wincott P L, et al. Dangling-bond adsorption site for potassium on Si(100)-(2×1). Physical Review B, 1995, 51(16): 11140-11143
    [114] Martin-Gago J A, Asensio M C, Aebi P, et al. Semiconductor-metal transition of the single-domain K/Si(100)-(2×1) interface by Fermi-surface determination. Physical Review B, 1998, 57(15): 9201-9207
    [115] Michel E G, Pervan P, Castro G R, et al. Structural and electronic-properties of K/Si(100)2×1. Physical Review B, 1992,45(20): 11811-11822
    [116] Morikawa Y, Kobayashi K, Terakura K, et al. Theoretical support to the double-layer model for potassium adsorption on the Si(001) surface. Physical Review B, 1991, 44(7): 3459-3462
    [117] Pomyalov A. Relaxation of the adsorption geometry of Sb and K on Si(001) surface induced by an electric field. Physical Review B, 1998,57(15): 8989-8996
    [118] Shi H Q, Radny M W, and Smith P V. Atomic and electronic structure of the Si(001 )2 ×1 -K surface. Surface Science, 2004,561(2-3): 215-226
    [119] Soukiassian P, Kubby J A, Mangat P, et al. Atomic structure, adsorbate ordering, and mode of growth of the K/Si (100) 2×1 surface. Physical Review B, 1992,46(20): 13471
    [120] Tanaka S, Takagi N, Minami N, et al. Existence of 2 adsorbed states for K on the Si(100) (2×1) surface-A thermal-desorption study. Physical Review B, 1990,42(3): 1868-1871
    [121] Kress G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 1994,6(40): 8245-8257
    [122] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992,46(11): 6671-6687
    [123] Fischer T H, Almlof J. General-methods for geometry and wave-function optimization. Journal of Physical Chemistry, 1992, 96(24): 9768-9774
    [124] Murnaghan F D. The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences of the United States of America, 1944, 30(9): 244-247
    [125] Kaiser W, Bond W L. Nitrogen, A major impurity in common type Ⅰ diamond Physical Review, 1959,115(4): 857
    [126] Lurie P G, Wilson J M. Diamond surface .1. structure of clean surface and interaction with gases and metals. Surface Science, 1977, 65(2): 453-475
    [127] Kinsky J, Graupner R, Stammler M, et al. Surface vibrations on clean, deuterated, and hydrogenated single crystal diamond(100) surfaces studied by high-resolution electron energy loss spectroscopy. Diamond and Related Materials, 2002, 11(3-6): 365-370
    [128] Sternberg M, Zapol P, and Curtiss L A. Carbon dimers on the diamond (100) surface: Growth and nucleation. Physical Review B, 2003, 68(20): 205330
    [129] Thachepan S, Okuyama H, Aruga T, et al. Surface phonons of C(100)(2×1)-H. Physical Review B, 2003, 68(4): 041401
    [130] Clark C D, Dean P J, and Harris P V. Intrinsic edge absorption in diamond. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1964, 277(137): 312
    [131] Furthmuller J, Hafner J, and Kresse G. Structural and electronic-properties of clean and hydrogenated diamond(lOO) surfaces. Europhysics Letters, 1994,28(9): 659-664
    [132] Kr(?)ger P, Pollmann J. Dimer reconstruction of diamond(001), Si(001), and Ge(001) surfaces. Physical Review Letters, 1995, 74(7): 1155-1158
    [133] Wu J, Cao R, Yang X, et al. Photoemission-study of diamond (100) surface. Journal of Vacuum Science and Technology A, 1993,11(4): 1048-1051
    [134] Kobayashi K, Morikawa Y, Terakura K, et al. Optimized structures and electronic-properties of alkali-metal (Na, K)-adsorbed Si(001) surfaces. Physical Review B, 1992,45(7): 3469-3484
    [135] Xiao H Y, Zu X T, Zhang Y F, et al. Atomic and electronic structures of rubidium adsorption on Si(001)(2×1) surface: Comparison with Cs/Si(001) surface. Chemical Physics, 2006, 323(2-3): 383-390
    [136] Ko Y J, Chang K J, and Yi J Y. Atomic-structure of na-adsorbed Si(100) surfaces. Physical Review B, 1995, 51(7): 4329-4335
    [137] Hamamatsu H, Yeom H W, Yokoyama T, et al. Surface structure of cesium adsorption on the Si(001)2×1 surface. Physical Review B, 1998,57(19): 11883-11886
    [138] Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978-9985
    [139] Henkelman G, Uberuaga B P, and Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000,113(22): 9901-9904
    [140] Mills G, Jonsson H, and Schenter G K. Reversible work transition-state theory-Application to dissociative adsorption of hydrogen. Surface Science, 1995, 324(2-3): 305-337
    [141] Axe J D, Grubel G, and Lander G H. Structure and phase-transformations in uranium metal. Journal of Alloys and Compounds, 1994, 213-214: 262-267
    [142] Crocombette J P, Jollet F, Nga L N, et al. Plane-wave pseudopotential study of point defects in uranium dioxide. Physical Review B, 2001, 64(10): 104107
    [143] Soderlind P. First-principles elastic and structural properties of uranium metal. Physical Review B, 2002, 66(8): 085113
    [144] Barrett C S, Mueller M H, and Hitterma R L. Crystal structure variations in alpha uranium at low temperatures. Physical Review, 1963, 129(2): 625-629
    [145] Yoo C S, Cynn H, and Soderlind P. Phase diagram of uranium at high pressures and temperatures. Physical Review B, 1998, 57(17): 10359-10362
    [146] Huda M N, Ray A K. Molecular hydrogen adsorption and dissociation on the plutonium (111) surface. Physical Review B, 2005,72(8): 085101
    [147] Balooch M, Hamza A V. Hydrogen and water vapor adsorption on and reaction with uranium. Journal of Nuclear Materials, 1996, 230(3): 259-270
    [148] Cakmak M, Srivastava G P, and Ellialtioglu S. Adsorption of Te on Ge(001):Density-functional calculations. Physical Review B, 2003, 67(20): 205314
    [149] Qian G X, Martin R M, and Chadi D J. 1st-principles study of the atomic reconstructions and energies of Ga-stabilized and As-stabilized GaAs(100) surfaces. Physical Review B, 1988, 38(11): 7649-7663
    [150] Reuter K, Scheffler M. Composition, structure, and stability of RuO_2(110) as a function of oxygen pressure. Physical Review B, 2002,65(3): 035406
    [151] Soon A, Todorova M, Delley B, et al. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation. Physical Review B, 2006, 73(16): 165424
    [152] Stall D R, Prophet H. JANAF Thermochemical Tables. Washington: U.S. National Bureau of Standards, 1971,1-1856
    [153] Maragakis P, Andreev S A, Brumer Y, et al. Adaptive nudged elastic band approach for transition state calculation. Journal of Chemical Physics, 2002, 117(10): 4651-4658
    [154] Mills G, Jonsson H. Quantum and thermal effects in H-2 dissociative adsorption-Evaluation of free-energy barriers in multidimensional quantum-systems. Physical Review Letters, 1994,72(7): 1124-1127
    [155] Pozzo M, Alfe D, Amieiro A, et al. Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces. Journal of Chemical Physics, 2008,128(9): 094703
    [156] Pozzo M, Carlini G, Rosei R, et al. Comparative study of water dissociation on Rh(111) and Ni(111) studied with first principles calculations. Journal of Chemical Physics, 2007, 126(16): 164706
    [157] Sorescu D C, Thompson D L, Hurley M M, et al. First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe(100) surface. Physical Review B, 2002, 66(3): 035416
    [158] Sorensen M R, Jacobsen K W, and Jonsson H. Thermal diffusion processes in metal-tip-surface interactions: Contact formation and adatom mobility. Physical Review Letters, 1996,77(25): 5067-5070
    [159] Bader R. Atoms in Molecules: A Quantum Theory. New York: Oxford University Press, 1990,1-567
    [160] Dholabhai P P, Atta-Fynn R, and Ray A K. A density functional study of atomic hydrogen and oxygen chemisorption on the relaxed (0001) surface of double hexagonal close packed americium. European Physical Journal B, 2008,61(3): 261-270
    [161] Atta-Fynn R, Ray A K. Ab initio full-potential fully relativistic study of atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of delta-Pu. Physical Review B, 2007,75(19): 195112
    [162] Huda M N, Ray A K. A density functional study of molecular oxygen adsorption and reaction barrier on Pu (100) surface. European Physical Journal B, 2005,43(1): 131-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700