用户名: 密码: 验证码:
浙东晚中新世植物解剖学与有机地球化学综合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新生代是被子植物迅速演化的一个重要时期,也是环境变化和现代气候系统形成、定型的关键时期。浙江东部上中新统下南山组含有丰富的压型植物化石,为分析化石植物的解剖学以及有机地球化学特征提供了条件。目前,古植物解剖学与有机地球化学不但是研究化石植物埋藏学特征,尤其是分子埋藏学的最先进的两个方法,同时又是古环境定量研究中应用最广泛的两个方法。
     从下南山组植物群中选取四种优势属种作为本文研究的主要对象:Ilex cornuta、Quercus delavayi、Cunninghamia lanceolata和Liquidambar miosinica。运用埋藏学、植物解剖学、植物生理学和有机地球化学等学科交叉研究的方法对这四种化石进行了分析,获得了浙东化石植物的分子埋藏学数据和古环境信息。
     开展下南山组四种植物的热解-气相色谱/质谱(Py-GC/MS)分析,指示了四种化石植物的有机分子保存情况(从好到差):L.miosinic≧C.lanceolata>I.cornuta>Q.delavayi。Py-GC/MS总离子色谱图(TIC)展示出四种化石及其现生对应植物的脂肪族化合物的变化,并将它们与下南山组沉积物的脂肪族同系物进行比较,表明下南山组四种植物化石脂肪族分子的保存机制属于“内源性的原位聚合”(in situ polymerization)。
     利用栎属植物的气孔指数对CO_2变化的敏感性,根据化石Q.delavayi的气孔指数值,分别采用气孔比率法和气孔指数法获得的浙东晚中新世的CO_2浓度非常接近,分别为321ppmv和338ppmv,该结果与同时代采用其他方法或其他样品获得的结果也接近。
     从下南山被子植物群中鉴定出85个叶片形态型,采用叶缘分析法(LMA)获得了浙江东部天台晚中新世的年均温为19.7~22.9℃,将该值代入本文建立的年均温和年较差的回归关系方程,计算出天台晚中新世的年较差为12.9~17.5℃,由这两个参数推测下南山植物群属于亚热带向热带过渡的植被类型。
     现生和化石枫香的角质层上都含有表皮毛/毛基,利用不同地区间现生枫香叶片上表皮毛的变化建立毛基密度(个/cm~2)与气候参数的关系,根据化石枫香的毛基密度(约10个/cm~2)指示了天台晚中新世的气候与现在广州相似。
     根据经验公式将化石枫香的稳定碳同位素值换算成晚中新世大气中的稳定碳同位素值δ~(13)C_(atm),将之与大洋钻探碳酸盐岩中获得的δ~(13)C_(atm)比较,表明化石枫香不适合作为推算晚中新世δ~(13)C_(atm)的材料。采集于美国Clarkia中新统地层中的δ~(13)C也同样指示了化石枫香不能作为推算晚中新世δ~(13)C_(atm)的可靠材料。校正后的化石枫香碳同位素分馏值(△~(13)C)受环境因素的综合影响,可能来自于光照、温度等,但是与大气CO_2浓度和水分没有关系或关系很小。利用枫香的△~(13)C恢复出中新世下南山的化石L.miosinica水分利用效率(WUE)约为82μmolCO_2/molH_2O,Clarkia的化石L.pachyphyllum约为97μmolCO_2/molH_2O,均比其现生种高,且阳叶的WUE均比阴叶高,表明光照、温度是枫香WUE变化的主要影响因素。
The Cenozoic is a very important era in which climatic and environmental dynamicsresemble modern ones, and angiosperms undergo intensely adaptive radiation. A Mioceneflora from the Xiananshan Formation of eastern Zhejiang Province, containing veryabundant compressive plant fossils, is a significant key for plant anatomy and organicgeochemical research. Now, anatomy and organic geochemistry are extremely usefulmethods and techniques for fossil taphonomy, molecular taphonomy and quantitativelypalaeoenvironmental reconstruction.
     Four predominant species in the Xiananshan Formation, including llex cornuta, Quercusdelavayi, Cunninghamia lanceolata and Liquidambar miosinica, are chosen from theMiocene Xiananshan Flora as materials of the current study. The molecular taphonomicdata and palaeoenvironmental information of the fossil flora are derived from theinvestigations on the four species by application of related taphonomic, anatomic,physiologic and organic geochemic techniques.
     Py-GC/MS results provide clues on organic molecular preservation status of the fourfossil species (from better to worse): L. miosinica≧C. lanceolata>I.cornuta>Q.delavayi. Variations of aliphatic compound observed on TIC among the four fossil species,and corresponding nearest living relative species (NLRs) as well as the deposits ofXiananshan Formation, show that aliphatic molecular preservation of the fossil remains isassigned to "in situ polymerization".
     As is well-known to all, a close negative correlation exists between atmospheric CO_2concentration and stomatal index of Quercus. Therefore, based on stomatal ratios andstomatal indexes of fossil and extant leaves of Q. delavayi, palaeoatmospheric CO_2 levels inthe late Miocene of Tiantai are estimated as 321 ppmv and 338 ppmv, respectively. Theresults are consistent with other relevant studies.
     85 morphotypes are identified from about 1000 angiosperm specimens of the XiananshanFlora. Consequently, the mean annual temperature (MAT) of 19.7~22.9℃in the LateMiocene Tiantai is derived from leaf margin analysis, the difference of temperatures ofcoldest and warmest mongth (DT) of 12.9~17.5℃is originated from a regressive correlation formula which is established between current MAT and DT. It indicates that theXiananshan flora belongs to a transitional type from subtropic to tropic vegetation.
     A close correlation is established between trichome base density of modern L. formosanaand climatic parameters. The trichome base density of fossil L. miosinica is ca. 10 (cm~(-2)),indicating that the late Miocene climate in Tiantai is similar to that in nowaday Guangzhou.
     Based on the empirical formula of Arens et al. (2000), atmospheric carbon isotopiccomposition (δ~(13)C_(atm))in the late Miocene is calculated from carbon isotopic composition(δ~(13)C) of L. miosinica and is compared toδ~(13)C_(atm) from carbonate isotope record, suggestingthat the species is not suitable forδ~(13)C_(atm) estimates. And the result based on the fossil L.pachyphyllum from the Miocene Clarkia Formation in the U.S.A. agrees with the viewpoint.Carbon isotopic discrimination (Δ~(13)C) of fossil Liquidambar is mainly related toenvironmental factors, such as irradiation, temperature, other than atmospheric CO_2concentration and water availability. According toΔ~(13)C of fossil leaves, water useefficiency (WUE) is estimated to be 82μmolCO_2/molH_2O for L. miosinica,97μmolCO_2/molH_2O for L. pachyphyllum, respectively, and both the values are higher thantheir NLRs as well as WUE of sun morphotypes higher, which indicates that sunlight ortemperature is the significant impact on the WUE.
引文
1.北京气象中心资料室.1971-2000年中国地面气候标准值年值数据集.北京.
    2.白顺良.地质历史与板块构造.北京:地质出版社,1984.1-278.
    3.陈丛林,史晓颖,张兴国.贺兰山北段晚石炭世晚期和早二叠世早期植物群古生态学的研究。现代地质,2001,15(4):355-361.
    4.陈立群,孙启高,李承森.气孔参数对大气CO_2浓度变化的指示.植物科学进展(第三卷),2000.179-186.
    5.广东省植物研究所.广东植被.北京:科学出版社,1976.41-89,166-217.
    6.贺超兴,陶君容.黑龙江依兰早第三纪植物群的古气候分析.植物学报,1994,36(12):952-956.
    7.贺金生,陈伟烈,王勋陵.高山栎叶的形态结构及其与生态环境的关系.植物生态学报,1994,18(3):219-227
    8.解三平,孙柏年,德飞,丛培允,肖良,韦利杰.滇西新近纪植物气孔、碳同位素组成与古环境分析.沉积学报,2006,24(6):883-888.
    9.解三平,阎德飞,韦利杰等.精确重建古大气CO_2浓度的气孔方法.古生物学报,2005,44(3):464-471.
    10.金建华.地质时期植物生活型重建及骨植物群落恢复.生态科学,1999,18(3):40-46.
    11.金则新,郑林友.浙江省天台县种子植物区系分析.福建林业科技,2006,33(1):11-15.
    12.赖旭龙,杨洪.古代生物分子在第四纪研究中的应用.第四纪研究,2003,23(5):457-470.
    13.冷琴.一种观察被子植物压膜化石细微叶结构特征的有效方法.古生物学报,2000,39(1):157-158.
    14.李承森,王宇飞,孙启高,耿宝印,宋书银.白垩纪以来地外星体撞击事件对植物演化的新思索.中国科学基金.1998,12(1):21-25.
    15.李承森,王宇飞,孙启高.定量分析第三纪以来环境变化的新方法-特有种分析法.植物学报(英文版),2001,43(2):217-200.
    16.李承森,王宇飞,王宇飞,孙启高等.山东省临朐县山旺组硅藻土层的划分.植物学通报,2000,第17卷(IPOC-Ⅵ古植物学专辑),247-251.
    17.李承森.生物进化的重大事件-陆地植物的起源及其研究的新进展.中国科学基金,1994,8(4):238-244.
    18.李承森.早期陆地植物和早期陆地生态系统的研究进展.见:李承森(主编).植物科学进展,北京:高等教育出版社;德国海德堡:施普林格出版社,1999.2-12.
    19.李浩敏.郭双星.被子植物群.见:地质矿产部南京地质矿产研究所.《华东地区古生物图册(三)中、新生代分册》.北京:地质出版社,1982.294-316.
    20.李浩敏.叶结构分析-鉴定被子植物叶化石的新方法.见:穆西南编.古生物学研究的新技术新方法.北京:科学出版社,1987.54-62
    21.李明涛.浙东中新世三种被子植物微细构造与古气候重建.2008,兰州大学硕士学位论文.
    22.李明涛,孙柏年,肖良,任文秀,李相传,戴静.浙东中新世Betula mioluminifera Hu et Chaney的发现及古气候重建。地球科学进展,2008,23(6):651-658.
    23.李小强;李承森;鹿化煜;王宇飞.山西榆社-太谷盆地上新世中晚期的植被与环境.海洋地质与第四纪地质,2002,22(1):103-108.
    24.梁明媚,王宇飞,李承森.山旺中新世植被演替及古气候定量研究.古地理学报,2001,3(3):11-20.
    25.刘东生等.中国第四纪环境概要.见:M.A.J.Williams等著,刘东生等编译.第四纪环境.北京:科学出版社,1997.189-239.
    26.马清温,李承森.水杉属和红杉属化石叶表皮鉴定参照系的特殊性.武汉植物学研究,2002,20(6):413-416.
    27.任文秀.浙东白垩纪和新近纪松柏类化石研究及古环境重建.2008,兰州大学硕士学位论文.
    28.上官周平,郑淑霞.黄土高原植物水分生理生态与气候环境变化.北京:科学出版社,2008.1-241.
    29.孙柏年,阎德飞,石亚军,张现军.植物化石角质层分析在环境地质中的应用.地学前缘,2001,8(1):170.
    30.孙柏年,丛培允,阎德飞等.云南腾冲晚第三纪两种被子植物化石的角质层构造及其古环境意义.古生物学报,2003,42(2):216-222.
    31.孙柏年,解三平,阎德飞等.Ulmus harutoriensis Oishi et Huzioka角质层特征及古环境意义.兰州大学学报(自然科学版,2003,39(1):80-85.
    32.孙博.山旺植物化石.山东科学技术出版社,1999.1-167.
    33.孙启高,陈立群,李承森。地质历史时期CO_2浓度变化对陆地维管植物气孔参数的影响.科学通报,1998,43(23):2478-2482.
    34.孙启高,宋书银,王宇飞,李承森.介绍双子叶植物叶结构分类术语.植物分类学报,35(3):275-288.
    35.孙湘君,汪品先.从中国古植被记录看东亚季风的年龄.同济大学学报,2005,33(9):1137-1159.
    36.陶君容.中国晚白垩世至新生代植物区系发展演变.北京:科学出版社,2000.127-183.
    37.王开发,蒋辉,郑卓等.浙江天台、新昌、嵊县地区玄武岩沉积夹层的孢粉、硅藻组合.地层学杂志,1985,9(1):28-36.
    38.杨健,王宇飞,孙启高,李承森.中国东部中新世山旺古海拔与古气候定量研究.地学前缘,2002,9(3):183-188.
    39.杨式溥,孙博.山东中新统山旺组生物群的古生态.古地理学报,2000,2(4):1-11.
    40.叶美娜.关于化石角质层的研究和技术处理方法.中国古生物学会-第十二届古生物学会年会论文集.安徽科学技术出版社,1981,170-179.
    41.张兰生.全球变化.北京:高等教育出版,2000.1-712.
    42.张志耘,路安民.金缕梅科:地理分布、化石历史和起源.植物分类学报,1995,33(4):313-339.
    43.浙江省地质矿产局.浙江省区域地质志.北京:地质出版社.1989,13-188.
    44.浙江省地质矿产局.浙江省岩石地层.武汉,中国地质大学出版社.1996,136-173.
    45.中国科学院北京植物研究所,南京地质古生物研究所《中国新生代植物》编写组.中国植物化石,中国新生代植物.第三册.北京:科学出版社,1978:40,57-71,171-219.
    46.朱华.望天树林与相近类型植被结构的比较研究.云南植物研究,15(1):34-46.
    47. Almendros, G., Dorado, J., Gonz(?)lez-Vila, Mart(?)n, F., Sanz, J., (?)lvarez-Ramis, J. C., Stuchlik, L. Molecular characterization of fossil organic matter in Glyptostrobus europaeus remains from the Orawa basin (Poland): comparison of pyrolytic techniques. Fuel, 1999, 78: 745-752.
    48. Arens, N. C., Jahren, A. H., Amundson, R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology, 2001, 26(1): 137-164.
    49. Aucour, A. M., Gomez, B., Sheppard, S. M. E & Th(?)venard, F. δ~(13)C and stomatal number variability in the Cretaceous conifer Frenelopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 27: 462-473.
    50. Bakker, J.C. Effects of humidity on stomatal density and its relation to leaf conductance. Sci. Hortic., 1991, 48: 205-212.
    51. Barbacka, M., Van Konijnenburg-van Cittert, J.H.A. Sun and shade leaves in two Jurassic species of Pteridosperms. Rev. Palaeobot. Palynol., 1998, 103,209-221.
    52. Beetling D J, Chaloner W G. Huntley B et al. Variation in the stomatal density of Salix herbacea L. under changing atmospheric CO_2 of late- and post-glacial time. Phil Trans R Sco Lond B, 1992, 336: 215-224.
    53. Beerling D J, McElwain J C, Osborne C P. Stomatal responses of the "living fossil" Ginkgo biloba L. to changes in atmospheric CO_2 concentrations. Journal of Experimental Botany, 1998, 49(326): 1603-1607.
    54. Beeriing D J., Chaloner, W G. Huntley B., et al., Stomatal density response to the glacial cycle of environmental change. Proceedings of the Royal Society London B, 1993, 251: 133-138.
    55. Beerling, D. J. ~(13)C discrimination by fossil leaves during the late glacial climate oscillation 12-10ka BP: measurements and physiological controls. Oecologia, 1996, 108: 29-37.
    56. Beerling, D. J., Mattey, D. J., Chaloner, D. P. Shifts in the δ~(13)C composition of Salix herbacea L. leaves in response to spatial and temporal gradients of atmospheric CO_2 concentration. Proceeding of the Royal Society of London, Series B, 1993, 253: 53-60.
    57. Beerling, D. J., Woodward, F. 1. Ecophysiological responses of plants to global environmental change since the Last Glacial Maximum. New Phytologist, 1993, 125: 641-648.
    58. Beerling, D. L. Interpreting environmental and biological signals from the stable carbon isotope composition of fossilized organic and inorganic carbon. Journal of the Geological Society, London, 1997, 154:303-309.
    59. Beerling, D.J. Stomatal density and index: theory and application. In: Jones, T.P., Rowe, N.P. (Eds.), Fossil plants and spores: Modern techniques. Geological Society, London, 1999. 251-256.
    60. Behar, F., Hatcher, P. G. Artifical coalification of a fossil wood from brown coal by confined system pyrolysis. Energy and Fuel, 1995, 9:984-994.
    61. Benner R, Hatcher PG, Hedges JI. Early diagenesis of mangrove leaves in a tropical estuary: bulk chemical characterization using solid-state C NMR and elemental analyses. Geochimica et CosmochimicaActa, 1990, 54: 2003-2013.
    62. Benner, R., Fogel, M. L., Sprague, E. K.., Hodson, R. E. Depletion of ~(13)C in lignin and its implications for stable carbon isotope studies. Nature, 1987, 329: 708-710.
    63. Berner R A, Kothavala Z. GEOCARB Ⅲ: a revised model of atmospheric CO_2 over Phanerozoic time. American Journal of Science, 2001, 301: 182-204
    64. Berner R A. GEOCARB Ⅱ: a revised model of atmospheric CO_2 over Phanerozoic time. American Journal of Science, 1994, 294: 56-91.
    65. Berner, R. A. The carbon cycle and CO_2 over Phanerozoic time: the role of land plants. Phil Trans R Soc Lond B., 1998,353: 75-82.
    66. Berner, R. A. The rise of plants and their effects on weathering and CO_2. Science, 1997, 276: 544-546.
    67. Berner, R.A. A model for atmospheric CO_2 over Phanerozoic time: American Journal of Science, 1991,291:339-376.
    68. Bette, L. O. and Garland, R. U. Jr. Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. Nature, 1997, 385: 804-807.
    69. Bland, H.A., van Bergen, P.F., Carter, J.F., Evershed, R.P. Early diagenetic transformations of proteins and polysaccharides in archaeological plant remains. In: Stankiewicz, B.A., van Bergen, P.F. (Eds.), Nitrogen-containing Macromolecules in the Bio- and Geosphere. American Chemical Society, Washington, DC, 1998. 113- 130.
    70. Blokker, P., Schouten, S., de Leeuw, J.W., Sinninghe Damste, J.S., Van den Ende, H. A comparative study of fossil and extant algaenans using ruthenium tetroxide degradation. Geochimica et Cosmochimica Acta, 2000, 64: 2055-2065.
    71. Bocherens H, Friis E M, Mariotti A, Pedersedn K R. Carbon isotopic abundances in Mesozoic and Cenozoic fossil plants: Palaeoecological implications. LETHAIA, 1993,26: 347-358.
    72. Boom, A., J. S. Sinninghe Damste, J.W. de Leeuw. Cutan, a common aliphatic biopolymer in cuticles of droughtadapted plants. Organic Geochemistry, 2005, 36: 595-601.
    73. Boon, J. J. Analytical pyrolysis mass spectrometry: New vistas opend by temperature-resolved in-source PYMS. International Jouranl of Mass Spectrometry and Ion Process, 1992, 118/119: 755-787.
    74. Boon, J.J., Stout, S.A., Genuit, W. Molecular paleobotany of Nyssa endocarps. Acta Botanica Neerlandica, 1998,38: 391-404.
    75. Boon, J.J., Wetlzel, R.G., Godshalk, G.L. Pyrolysis mass spectrometry of some Scirpus species and their decomposition products. Limnology and Oceanography, 1982, 27: 839- 848.
    76. Bosu, P. P., Wagner, M. R. Effects of Induced Water Stress on Leaf Trichome Density and Foliar Nutrients of Three Elm (Ulmus) Species: Implications for Resistance to the Elm Leaf Beetle. Environmental Entomology, 2007, 36(3): 595-601.
    77. Briggs D. E. G., Evershed, R. P., Lockheart, M. J., et al. The biomolecular paleontology of continental fossils. In: Erwin, D. H., Wang, S. L. eds. Deep Time: Paleobiology's Perspective. Paleobiology,2000,4(Suppl. ): 169- 193.
    78. Briggs, D. E. G. Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Phil. Trans. R. Soc. London B., 1999,354: 7-17.
    79. Briggs, D.E.G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Science, 2003, 31: 275-301.
    80. Briggs, D.E.G., Evershed, R.P., Lockheart, M.J. The biomolecular paleontology of continental fossils. In: Erwin, D.H., Wing, S.L. (Eds.), Deep Time: Paleobiology's Perspective. Paleobiology Supplement, vol. 4,2000. 169- 193.
    81. Chaloner, W. G. and Creber, G. T. Do fossil plants give a climatic signal? J. Geol. Soc. London. 1990, 147: 343-350.
    82. Chaney, R.W. Axelrod, Miocene floras of the Columbia Plateau. Carnegie Inst. Publ, 1959, 617:1-237.
    83. Chaney, R.W. Quantitative studies of the Bridge Creek flora: American Journal of Science, 1924, 8: 127-144.
    84. Chaney, R.W., Sanborn, E. The Goshen Flora of West Central Oregon: Carnegie Institution of Washington Publication, 1933,439:1-103.
    85. Collinson, M. E., Van Bergen, P. F., Scott, A. C., ed Leeuw, J. W. The oil-generating potential of plants from coal and coal-bearing strata through time: a review with new evidence from Carboniferous plants. In Scott, A. C, Fleet, A. J., eds. Coal and coal-bearing Strata as Oil-prone Source Rocks? Geological Society, London, Special Publications, 1994,77: 31-70.
    86. Collinson, M.E., Mfsle, B., Finch, P., Scott, A.C., Wilson, R. The preservation of plant cuticle in the fossil record: a chemical and microscopical investigation. Ancient Biomolecules, 1998, 2,:251-265.
    87. Crane, P. R., Friis, E. M., Petersen, K. R. The origin and early diversitification of angiosperm. Nature, 1995,374(2): 27-33.
    88. Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., Tu, K. P. Stable isotopes in plant ecology. Annual Reviews in Ecology and Systematics, 2002,33: 507-559.
    89. De Leeuw, J.W., van Bergen, P.F., van Aarssen, B.G.K., Gatelier, J.-P.L.A., Sinninghe Damste', J.S., Collinson, M.E. Resistant biomarcromolecules as major contributors to kerogen. Philosophical Transactions of the Royal Society of London B, 1991,333: 329-337.
    90. Dilcher D L. Approaches to the identification of angiosperm leaf remains[J]. Bot. Rev., 1974, 40: 1-157.
    91. Duursma, R. A. & Marshall, J. D. Vertical canopy gradients in δ~(13)C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees, 2006, 20: 496-506.
    92. Duursma, R. A., Marshall, J. D., Nippert, J. B., Chambers, C. C. & Robinson, A. P. Estimating leaf-level parameters for ecosystem process models: a study in mixed conifer canopies on complex terrain. Tree Physiology, 2005,25: 1347-1359.
    93. Efremov, I. A. Taphonomy, a new branch of paleontology. Pan American Geologist, 1940, 74: 81-93.
    94. Eglinton, G., Logan, G. A. Molecular preservation. Phil. Trans. R. Soc. Lond. B, 1991, 333: 315-328.
    95. Ekart D D, Cerling T E, Monta(?)ez I P, Tabor NJ. A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide. American Journal of Science, 1999, 299: 805-827.
    96. Farquhar G D, Hubick T K, Condon A G, Richards R A. Carbon isotope fraction and plant water-use efficiency. In Rundel W, Eheringer J R, Nagy K A(eds.): Stable isotopes in ecological research. New York, N.Y, 1989,68: 21-40
    97. Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 1982,9: 121-137
    98. Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency in wheat genotypes. Aust. J. Plant Physiol., 1984, 11:539-552
    99. Feng, X., Epstein, S. Carbon isotopes of trees from arid environments and its applications for reconstructing atmospheric CO_2 concentrations. Geochimica et Cosmochimica Acta, 1995, 59: 2599-2608.
    100. Ferguson, D. K. Plant taphonomy: Ruminations on the past, the present, and the future. PALAIOS, 2005,20: 418-428.
    101. Ferguson, D. The origin of leaf-assemblages, new light on an old problem. Rev. Palaeobot. Palynol., 1985,46: 117-188.
    102. Ferguson, D.K. The Miocene flora of Kreuzau, western German, I. The leaf-remains. North Holland Publishing, Amsterdam, Netherlands, 1971. 1-297.
    103. Flannery, M. B., Scott, A. W., Briggs, D. E. G., et al. Chintin in the fossil record: Identification and quantification of D-glucosamine. Organic Geochemistry, 2001, 32: 745-754.
    104. Franchini, J.C., Gonzalez-Vila, F.J., Rodriguez, J. Decomposition of plant residues used in no-tillage systems as revealed by flash pyrolysis. Journal of Analytical and Applied Pyrolysis, 2002,62:35-43.
    105. Garcia-Amorena, I., Wagner, F., Van Hoof, T.B., Manzaneque, F.G. Stomatal responses in deciduous oaka from southern Europe to the anthropogenic atmospheric CO_2 increase; refining the stomatal-based CO_2 proxy. Rev. Palaeobot. Palynol., 2006, 141: 303-312.
    106. Gastaldo, R. A. Preliminary obserbations on phytotaphonomic assemblages in a subtropical/temperate Holocene bayhead delta: Mobile Delta, Gulf Coastal Plain, Alabama. Review of Palaeobotany and Palynology, 1989, 58: 61-83.
    107. Gastaldo, R. A. Sticks and mud: perspectives for the 90's. PALAIOS, 1990, 5: 201-202.
    108. Gastaldo, R.A. SEPM session explores new frontiers in plant taphonomy: PALAIOS, 1987, 2: 107-109.
    109. Gelin, F., Boogers, I., Noordeloos, A. A. M., Sinninghe Damst(?), J. S., Riegman, R., de Leeuw, J. W. Resistant biomacromolecules in marine microalgae of the classes Eustigmatopgyceae and Chlorophyceae: Geochemical implications. Organic Geochemistry, 1997,26: 659-675.
    110. Gelin, F., Volkman, J.K., Largeau, C., Derenne, S., Sinninghe Damste, J.S., de Leeuw, J.W. Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Organic Geochemistry, 1999, 30: 147-159.
    111. Giannasi, D. E., Niklas, K. J. The paleobiochemistry of fossil angiosperm floras. Part Ⅰ. Chemosystematic aspects. In: C.J. Smiley (ed.), Late Cenozoic history of the Pacific Northwest. Pacific division, American Association for the Advancement of Science, San Francisco, California, USA. 161-174.
    112. Gillaizeau, B., Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B. Source organisms and formation pathway of the kerogen of the G(?)yn(?)k Oil Shale (Oligocene, Turkey) as revealed by electron microscopy, spectroscopy and pyrolysis. Organic Geochemistry, 1996, 24: 671-679.
    113. Globalview-CO_2. Cooperative Atmospheric Data Integration Project- Carbon Dioxide. CD-ROM, NOAA CMDL, Boulder, Colorado, 2001. [Also available on Internet via anonymous FTP toftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW].
    114. Goossens H., Due A., Leeuw J. W. de., De Graaf B. van and Schenk P. A. The Pristane Formation Index, a new molecular maturity parameter. A simple method to assess maturity by pyrolysis/evaporation gas chromatography of unextracted samples. Geochim. Cosmochim. Acta, 1988,52:1189-1193.
    115. Gr(?)ck, D. R. The carbon isotope composition of ancient CO_2 based on higher-plant organic matter. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2002, 360: 633-658.
    116. Gupta, N. S., Briggs, D. E. G., Collinson, M. E., Briggs, Evershed, R. P., Michels, R., Pancost, R. D. Molecular preservation of plant and insect cuticles from the Oligocene Enspel Formation, Germany: Evidence against derivation of aliphatic polymer from sediment. Organic Geochemistry, 2007a, 38: 404-418.
    117. Gupta, N. S., Briggs, D. E. G., Collinson, M. E., Briggs, Evershed, R. P., Michels, R., Jack, K. S., Pancost, R. D. Evidence for the in situ polymerization of labile aliphatic organic compounds during the preservation of fossil leaves: Implication for organic matter preservation. Organic Geochemistry, 2007b, 38: 499-522.
    118. Gupta, N. S., Briggs, D. E. G., Landmann N. H., Tanabe, K., Summons, R. E. Molecular structure of organic components in cephalopods: Evidence for oxidative cross linking in fossil marine invertebrates. Organic Geochemistry, 2008,39: 1405-1414.
    119. Gupta, N. S., Cambra-Moo, O., Briggs, D. E. G., Love, G. D., Fregenal-Martinez, M. A., Summons, R. E. Molecular taphonomy of macrofossils from the Cretacesous Las Hoyas Formation, Spain. Cretaceous Research, 2008,29: 1-8.
    120. Gupta, N. S., Collinson, M. E., Briggs, D. E. G., Evershed, R. P., Pancost, R. D. Reinvestigation of the occurrence of cutan in plants: implications for the leaf fossil record. Paleobiology, 2006, 32(3): 432-449.
    121. Guy, J. Towards a physical based model of CO_2-induced stomatal frequency response. New Phytol., 2003,57: 391-398.
    122. Handley, R., Ekbom, B., Agren, J. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology, 2005, 30: 284-292.
    123. Hatcher, P. G., Cliford, D.J. The organic geochemistry of coal: from plant materials to coal: Organic Geochemistry, 1997, 27: 251-274.
    124. Hatcher, P. G., Wenzel, K. A., Cody, G D. The coalification reactions of vitrinite derived from coalified wood: Transformations to the rank of bituminous coal: In: Mukhopadhyay, P. K., Dow, W. G., eds. Vitrinite Reflections as a Maturity Parameter. Washington DC: American Chemical Society, 1994. 112-135.
    125. Hatcher, P. G., Wilson, M. A., Vassallo, A. M. and Lerch, H. E., Ⅲ. Studies of angiospermous wood in Australian brown coal by nuclear magnetic resonance and analytical pyrolysis: new insights into the early coalification process. In Coal: Classification, Coalification, Mineralogy, Trace-element Chemistry, and Oil and Gas Potential, eds. P. C. Lyons and B. Alpern. International Journal of Coal Geology, 1989,13: 99-126.
    126. Hatte, C., Fontugne, M., Rousseau, D-D., Antoine, P., Z(?)ller, L., Tisn(?)rt-Laborde, N., Bentaleb, I. δ~(13) C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian. Geology, 1998,26: 583-586.
    127. Haworth M, McElwain J. Hot, dry, wet, cold or toxic? Revising the ecological significance of leaf and cuticular micromorphology. Palaeogeograph, Palaeoclimatology, Palaeoecology, 2008, 262: 79-90
    128. Haworth, M., Stephen, P. H., Jennifer, C. M., Stuart, A. R., James, W. B. Mid-Cretaceous pCO_2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology, 2005, 33(9): 749-752.
    129. Herrick, J. D., Thomas, R. B., Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentration. Tree Physiology, 2003,23: 109-118.
    130. Herrick, J.D., Maherali, H., Thomas, R.B. Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO_2 enrichment. New Phytologist, 2004, 162: 387-396.
    131. Hickey L J. Stratigraphy and Paleobotany of the Golden Valley Formation (Early Tertiary) of Western North Dakota. Geol. Soc. Amer. Inc. Memoir., 1977, 1-181
    132. Hu, H.H., Chaney, R.W. A Miocene flora from Shantung Province, China. Carnegie Inst. Wash. Publ., 1940, 507: 1-147.
    133. Jasper, J.P., Hayer. J. M. A carbon isotope record of CO_2 levels during the late Quaternary. Nature 1990,347:462-464.
    134. Jonathan G W. Towards a physically based model of CO_2-induced stomatal frequency response. New Phytologist, 2003, 157: 391-398.
    135. Jones, H.G .Plants and microclimate. Cambridge University Press, Cambridge, 1992.
    136. Kennett, J. P. Miocene to Early Pliocene oxygen and carbon isotope stratigraphy in the southwest pacific, deep sea drilling project Leg90. ODP, 1986, 1383-1411.
    137. Kerp H. The study of fossil gymnosperms by means of cuticular analysis. PALAIOS, 1990, 5: 548-569.
    138. Koch, P.L., Zachos, J.C., Dettman, D.L. Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 1995,115:61-89.
    139. K(?)rner, C., Farquhar, G.D., Wong, S.C.. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia, 1991,74: 623-632.
    140. Kouwenberg, L. L. R., K(?)rschner, W. M., McElwain, J. C. Stomatal frequency change over altitudinal gradients: Prospect for paleoaltimetry. Review in Mineralogy and Geochemistry, 2007,66:215-241.
    141. Kouwenberg, L.L.R., K(?)rschner, W.M., McElwain J.C. Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. Review in Mineralogy& Geochemisty, 2007, 66:215-241.
    142. K(?)rschner W M. Carbon isotope composition of fossil leaves - revealing ecophysiological responses to past environmental change. New Phytologist, 2002, 155: 197-203.
    143. K(?)rschner, W. M., Kva(?)ek, Z., Dilcher, D. L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. PNAS, 2008, 105(2), 449-453.
    144. K(?)(?rschner, W.M. Leaf stomata as biosensor of palaeoatmospheric CO_2 levels. Ph.D Thesis, Laboratory of Palaeobotany and Palynology, Utrecht University, The Netherlands. LPP Contribution Series, 5. 1996.
    145. K(?)rschner, W.M. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goepert) -implications for their use as biosensors of palaeoatmospheric CO_2 levels. Rev. Palaeobot. Palynol., 1997, 96: 1-30.
    146. Kurschner, W.M., Stulen, I., Wagner, F., Kuiper, P.J.C. Comparison of palaeobotanical observations with experimental data on the leaf anatomy of Durmast oak [Quercus petraea (Fagaceae)] in response to environmental change. Ann. Bot., 1998, 81: 657-664.
    147. K(?)rschner, W.M., Van de Brugh, J., Visscher, H., Dilcher, D.L. Oak leaves as biosensors of Late Neogene and Early Pleistocene paleoatmospheric CO_2 concentration. In: R. Poore and L. Solan (Eds.), Climate and Climate Variability of the Pliocene. Mar. Micropaleontrol. 1996, 27: 299-312.
    148. Kvacek, Z., Walther, H. Bemerkenswerte und seltene cinnamomoide blatter aus dem Grenzbereich des Oligo-Mioz(?)ns Mitteleuropas. Abh. Staatl. Mus. Mineral. Geol. Dresden, 1974, 21: 197-221.
    149. Leaf Architecture Working Group. Manual of Leaf Architecture-Morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. Smithsonian Institution, Washington, 1999, pp. 1-67.
    150. Lehmann, M. F., Bernasconi, A., Barbieri, A. & McKenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 2002, 66: 3573-3584.
    151. Li Haomin. Neogene floras from eastern Zhejiang, China. In: Whyte, R. O. (Ed.), The Evolution of the East Asian Environment. Vol. Ⅱ. Palaeobotany, Palaeozoology and Palaeoanthropology. Centre of Asian Studies, University of Hong Kong, Hong Kong, 1984, Pp. 461-466.
    152. Liakoura, V., Stefanou, M., Manetas, Y., Cholevas, C, Karabourniotis, G. Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy. Environmental and Experimental Botany, 1997, 38: 223-229.
    153. Lichtenthaler, H. K., A(?), A., Marek, M .V., Kalina, J., Urban, O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 2007,45: 577-588.
    154. Liu, Y.-Sh., Zetter, R., Ferguson, D.K., Mohr, B.A.R., 2007. Discriminating fossil evergreen and deciduous Quercus pollen: A case study from the Miocene of eastern China. Rev. Palaeobot. Palynol. 145,289-303.
    155. Liu,W. G., Yang, H. Multiple controls for the variability of hydrogen isotopic compositions in higher plant n-alkanes from modern ecosystems. Global Change Biology, 2008,14: 2166-2177.
    156. Lockheart, M. J., Van Bergen, P. F., Evershed, R. P. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: implications for the study of higher land plant-derived sedimentary organic matter. Organic Geochemistry, 1997, 26, 137-153.
    157. Lockheart, M.J., Poole, I., Van Bergen, P.F., Evershed, R.P. Leaf carbon isotope compositions and stomatal characters: important considerations for palaeoclimate reconstructions. Org. Geochem., 1998,29(4): 1003-1008.
    158. Logan, G.A., Boon, J.J., Eglinton, G Structural biopolymer preservation in Miocene leaf fossils from the Clarkia site, northern Idaho. Proceedings of the National Academy of Sciences of the United States of America, 1993,90: 2246-2250.
    159. Loizeau, P.-A., Barriear, G., Manen, J.-F. and Broennimann, O. Towards an understanding of the distribution of Ilex L. (Aquifoliaceae) on a World-wide scale. Biol. Skr., 2005, 55: 501-520.
    160. Mark Pagani, James C.Zachos, Katherine H.Freeman, at.el.Marked Decline in Stmospheric Carbon Dioxide Concentrations During the Paleogene. SCIENCE, 2005, 309:600-603.
    161. Mark Pagani, Michael A. Arthur and Katherine H. Freeman. Miocene evolution of atmosphetic carbon dioxide.PALEOCEAN OGRAPHY, 1999,14(3): 273-292.
    162. Mart(?)n-Closas, C. The fossil record and evolution of freshwater plants: A review. Geologica Acta, 2003, 1(4): 315-338.
    163. Martinelli, L. A., Almeida, S., Brown, I. F., Moreira, M. Z., Victoria, R. L., Sternberg, L. S. L., Ferreira, C. A. C, Thomas, W. W. Stable isotope ratio of tree leaves, boles and fine litter in tropical forest in Rondonia, Brazil. Oecologia, 1998, 114: 170-179.
    164. Maruoka T., Koeberl C., Bohor, B. F. Carbon isotopic compositions of organic matter across continental Cretaceous-Tertiary (K-T) boundary sections: Implications for paleoenvironment after the K-T impact event. Earth and Planetary Science Letters, 2007,253: 226-238.
    165. McCobb, L.M.E., Briggs, D.E.G., Evershed, R.P., Hall, A.R., Hall, R.A. Preservation of fossil seeds from a 10th Century AD Cess pit at Coppergate, York. Journal of Archaeological Science. 2001,28:929-940.
    166. McElwain J C, Chaloner W G, Stomatal density and index of fossil Plnats track atmosPheric carbon dioxide in the Palaeozoie.Ann Bot, 1995, 76: 389-395.
    167. McElwain J C. Do fossil plants signal palaeoatmospheric CO_2 concentration in the geological past? Philosophical Transactions of the Royal Society of London, 1998, B353: 83-96.
    168. McElwain J. C., Mayle F. E., Beerling D. J.Stomatal evidence for a declince in atmospheric CO_2 concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records. Journal of Quaternary Science, 2002, 17 (1): 21-29.
    169. McElwain J.C. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO_2 partial pressure. Geology, 2004, 32(12): 1017-1020.
    170. McElwain J.C., Chaloner, W.G. The fossil cuticle as a skeletal record of environmental change. PALAIOS, 1996, 11:376-388.
    171. McElwain, J. C., Chaloner, W. G. The Fossil Cuticle as a Skeletal Record of Environmental Changes. Palaios, 1996, 11: 376-388.
    172. Meyer, H.W., Manchester, S.R. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Science, 1997,141: 1-195.
    173. Mook, W.G. 13C in atmospheric CO_2. Netherlands Journal of Sea Research, 1986, 20, 211-223.
    174. Mosbrugger, V., Utescher, T. The coexistence approach-a method for quantitative reconstruction of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134(1-4): 61-86.
    175. M6sle, B., Collinson, M. E., Finch, P., Stankiewicz, B. A., Scott, A. C., Wilson, R. Factors influencing the preservation of plant cuticles: a comparison of morphology and chemical composition of modern and fossil examples. Organic Geochemistry, 1998, 29: 1369-1380.
    176. Nguyen Tu, T. T., Bocherens, H., Mariotti, A., Baudin, F., Pons, D., Broutin, J., Derenne, S., Largeau, C. Ecological distribution of Cenomanian terrestrial plants based on ~(13)C/~(12)C ratios. Palaeogregraphy, Palaeoclimatology, Palaeoecology, 1999, 145: 79-93.
    177. Nguyen Tu, T. T., Derenne, S., Largeau, C., Bardoux, G., Mariotti, A. Diagenesis effects on specific carbon isotope composition of plant n-alkanes. Organic Geochemistry, 2004, 35: 317-329.
    178. Nguyen Tu, T. T., Kva(?)ek, J., Uli(?)n(?), D., Bocherens, H., Mariotti, A. & Broutin, J. Isotope reconstruction of plant palaeoecology. Case study of Cenomanian floras from Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002,183:43-70.
    179. Nguyen Tu, T.T., K(?)rschner, W.M., Schouten, S. Van Bergen, P.F. Leaf carbon isotope composition of fossil and extant oaks grown under differing atmospheric CO_2 levels. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2004a, 212: 199-213.
    180. Niinemets (?)., Sonninen E. & Tobias M. Canopy gradients in leaf intercellular CO_2 mole fractions revisited: interactions between leaf irradiance and water stress need consideration. Plant Cell Environment 2004, 27: 569-583.
    181. Niklas, K. J., Giannasi, D. E. The paleobiochemistry of fossil angiosperm floras part Ⅱ: Diagenesis of organic compounds with particular reference to steroids. In: C.J. Smiley (ed.), Late Cenozoic history of the Pacific Northwest. Pacific division, American Association for the Advancement of Science, San Francisco, California, USA. 175-183.
    182. Nip, M., E. W. Tegelaar, H. Brinkhuis, J. W. de Leeuw, P. A. Schenk, and P. J. Holloway. Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py- GC-MS: recognition of a new, highly aliphatic and resistant biopolymer. Organic Geochemistry, 1986a, 10: 769-778.
    183. Nip, M., E. W. Tegelaar, J. W. de Leeuw, and P. A. Schenk. A new nonsaponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften, 1986b, 73: 579-585.
    184. Nip, M., E. W. Tegelaar, J. W. de Leeuw, and P. A. Schenk. A new nonsaponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften, 1986,73: 579-585.
    185. Osborn, J.M., Taylor, T.N. Morphological and ultrastructural studies of plant cuticular membranes. I. sun and shade leaves of Quercus velutina (Fagaceae). Bot. Gaz., 1990, 151(4): 465-476.
    186. Park R, Epstein S. Metabolic fractionation of ~(12)C& ~(13)C in plants. Plant Physiology, 196, 136: 133-138.
    187. Paul N. Pearson and Martin R. Palmer. Atmospheric carbon dioxide concentrations over the past 60 million years. NATURE, 2000, 406: 695-699.
    188. Peulve, S., de Leeuw, J.W., Sicre, M., Baas, M, Saliot, A. Characterization of macromolecular organic matter in sediment traps from the northwestern Mediterranean Sea. Geochimica et CosmochimicaActa, 1996,60:1239-1259.
    189. Poole I, Weyers J D B, Lawson T, Raven J A. Variations in stomatal density and index: implications for palaeoclimate reconstructions. Plant, Cell and Environment, 1996, 19:705-712
    190. Poole, I., K(?)rschner, W.M. Stomatal density and index: the practice. In: Jones, T.P. (Eds.), Fossil plant and spores: modern techniques. The Geological Society, London, 1999. 257-260.
    191. Pulliam, W.M. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecol. Monogr., 1993,63,29-53.
    192. Quan, C., Sun, C. L., Sun, Y. W., Sun, G. High resolution estimates of paleo-CO_2 levels through the Campanian (Late Cretaceous) based on Ginkgo Cuticles. Cretaceous Research, 2009, 30: 424-428.
    193. Ralph, J., Hatfield, R. D. Pyrolysis-GC-MS characterization of Forage materials. J. Agric. Food Chem., 1991,39:1426-1437.
    194. Reeves, J.B., Francis, B.A. Pyrolysis-gas chromatography forthe analysis of proteins: with emphasis on forages. In: Stankiewicz, B.A., van Bergen, P.F. (Eds.), Nitrogen-containing Macromolecules in the Bio- and Geosphere. American Chemical Society, Washington DC, 1998. 44-62.
    195. Retallack, G.J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 2001,411: 287-290.
    196. Roth, J.L., Dilcher, D.L. Some considerations in leaf size and leaf margin analysis of fossil leaves. Cour. Forschungsinst. Senckenberg, 1978,30: 165-171.
    197. Rowland, S. J. Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Organic Geochemistry, 1990, 15: 9-16.
    198. Royer D. J., Wing, S. C., Beerling, D. J., Jolley, D. W., Koch, P. L, Hickey, L. J., Berner, R. A. Palaeobotanical evidence for near present-day levels of atmospheric CO_2 during part of the Tertiary. Science, 2001, 292: 2310-2313.
    199. Royer D L, Berner R A, Beerling D J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth-Science Reviews, 2001, 54: 349-392.
    200. Royer, D. L. Stomatal density and stomatal index as indicators of paleoatmospheric CO_2 concentration. Rev. Palaeobot. Palynol., 2001,114:1-28.
    201. Royer, D. L., Wilf, P. Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences, 2006,167(1): 11-18.
    202. Rundgren, M., Loader, N.J., Hammarlund, D. Stable carbon isotope composition of terrestrial leaves: inter- and intraspecies variability, cellulose and whole-leaf tissue difference, and potential for climate reconstruction. Journal of Quaternary Science, 2003,18(7): 583-590.
    203. Salisbury, E.J. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos. Trans. R. Soc. London B, 1927, 216: 1-65.
    204. Sarijeva, G., Knapp, M., Lichtenthaler, H. K. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. Journal of Plant Physiology, 2007, 164: 950-955.
    205. Saurer, M., Siegenthaler, U., Schweingruber, F. The climate-carbon isotope relationship in tree rings and the significance of site conditions. Tellus B, 1995,47(3): 320-330.
    206. Schleser, G.H., Frielingsdorf, J., Blair, A. Carbon isotope behaviour in wood and cellulose during artificial aging. Chemical Geology, 1999,158: 121-130.
    207. Schoenhut, K., Lepage, B. A., Vann, D. R. Identification of Sun and Shade Leaves of Metasequoia occidentalis (Newberry) Chaney from the Middle Eocene of the Canadian High Arctic. Bulletin of the Peabody Museum of Natural History, 2007,48(2):301-315.
    208. Smiley, C.J., Gray, J., Huggins, L.M. Preservation of Miocene fossils in unoxidized lake deposits, Clarkia, Idaho; With a section on fossil insecta by W.F.Barr and J.M. Gillespie. Journal of Paleontology, 1975,49(5): 833-844.
    209. Smiley, C.J., Rember, W. C. Composition of the Miocene Clarkia flora, In: C.J. Smiley (ed.), Late Cenozoic history of the Pacific Northwest. Pacific division, American Association for the Advancement of Science, San Francisco, California, USA, 1985, 95-112.
    210. Smith, R.F. The leaf dimorphism of Liquidambar styraciflua L. Amer. Midl. Nat., 1967, 77:42-50.
    211. Spicer, R.A. Plant taphonomic processes. In: Allison P.A., Briggs D.E.G. (Eds.), Taphonomy: releasing the data locked in the fossil record. Plenum Press, New York, NY, USA, 1991. 71-113.
    212. Spiker E. C., Hatcher, P. G. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood. Geochimica et Cosmochimica Acta, 1987, 51: 1385-1391.
    213. Stankiewicz, B. A., Briggs, D. E. G., Michels, R. et al. Alternative origin of aliphatic polymer in Kerogen. Geoloogy, 2000, 28: 559-562.
    214. Stankiewicz, B.A., Briggs, D.E.G., Evershed, R.P., Flannery, M.B., Wuttke, M. Preservation of chitin in 25-million-year-old fossils. Science, 1997a, 276: 1541-1543.
    215. Stankiewicz, B.A., Mastalerz, M., Hof, C.H.J., Bierstedt, A., Flannery, M.B., Briggs, D.E.G., Evershed, R.P. Biodegradation of the chitin-protein complex in crustacean cuticle. Organic Geochemistry, 1998,28: 67-76.
    216. Stankiewicz, B.A., Mastalerz, M., Kruge, M.A., van Bergen, P.F., Sadowska, A. A comparative study of modern and fossil cone scales and seeds of conifers: a geochemical approach. New Phytologist, 1997b, 135: 375-393.
    217. Stankiewicz, B.A., Scott, A.C., Collinson, M.E., Finch, P., Mfsle, B., Briggs, D.E.G., Evershed, R.P. Molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America: implication for the origin of kerogen. Journal of the Geological Society, 1998, 155: 453-462.
    218. Strauss-Debenedetti, S., Berlyn, G.D. Leaf anatomical responses to light in five tropical Moraceae of different successional status. Am. J. Bot., 1994, 81: 1582-1591.
    219. Sullivan, J.H., Howells, B.W., Ruhland, C.T., Day, T.A. Changes in leaf expansion and epidermal screening effectiveness in Liquidambar styraciflua and Pinus taeda in response to UV-B radiation. Physiologia Plantarum, 1996., 98: 349-357.
    220. Sun, B.-N., Dilcher, D.L., Beerling, D.J., Zhang, C.-J., Yan, D.-F., Kowalski, E. Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. PNAS, 2003, 100(12), 7141-7146.
    221. Sun, X. J., Wang, P. X. How old is the Asian monsoon system?-Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222: 181-222.
    222. Swerhone, G. D. W., Hobson, K. A., Van Kessel, C, Boutton, T. W., An economical method for the preparation of plant and animal tissue for δ~(13)C anaysis. Communications in Soil Science and Plant Analysis, 1991,22: 177-190.
    223. Tanai, T. On the Hamamelidaceae from the Palaeogene of Hokkaido, Japan. Trans. Proc. Palaeont. Sco. Japan, N.S. 1967, 66: 56-62.
    224. Tanai, T. Revision of the Pliocene Mogi flora, described by Nathorst (1883) and Florin (1920). J. Fac. Sci., Hokkaido Univ., Ser. 4,1976,17: 277-346.
    225. Tegelaar, E.W., de Leeuw, J.W., Holloway, P.J. Some mechanisms of flash pyrolysis of naturally occurring higher plant polyesters. Journal of Analytical and Applied Pyrolysis, 1989, 15: 289-295.
    226. Tegelaar, E.W., Hollman, G., van der Vegt, P., de Leeuw, J.W., Holloway, P.J. Chemical characterization of the periderm tissue of some angiosperm species: recognition of an insoluble, non-hydrolyzable, aliphatic biomacromolecule (Suberan). Organic Geochemistry, 1995, 23: 239-251.
    227. Tegelaar, E.W., Kerp, H., Visscher, H., Schenck, P.A., de Leeuw, J.W. Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology, 1991, 17: 133-144.
    228. Terashima, I., Miyazawa, S.-I., Hanba, Y. T. Why are sun leaves thicker than shade leaves? -Consideration based on analyses of CO_2 diffusion in the leaf. J. Plant Res., 2001, 114: 93-105.
    229. Ticha I. Photosynthetic characteristic during ontogenesis of leaves Ⅷ. Stomatal density and sizes. Photosynthetica, 1982, 16: 375-381.
    230. Tissot B. P., Welte D. H. Petroleum Formation and Occurrence, 2nd edn. Springer, Berlin., 1984.
    231. Troughton, J. H. Carbon isotope fractionation by plants. Proceedings of the 8~(th) International Congress on Radiocarbon. The Royal Society of New Zealand, Wellington, 1972.420-457.
    232. Tsuge, S. and Ohtani, H. Structural characterization of polymeric materials by Pyrolysis-GC/MS. Polymer Degradation and Stability, 1997,58: 109-130.
    233. Turney, C. S. M. Lacustrine bulk organic δ~(13)C in the British Isles during the Last Glacial-Holocene transition (14-9 ka ~(14)C BP). Arctic, Antarctic and Alpine Research, 1999, 31: 71-81.
    234. Turney, C.S.M., Hunt, J.E., Burrows, C. Deriving a consistent δ~(13)C signature from tree canopy leaf material for palaeoclimatic reconstruction. New Phytologist, 2002,155: 301-311.
    235. Uemura, K. Late Neogene Liquidambar (Hamamelidaceae) from the southern part of northeast Honshu, Japan. Mem. Natn. Sci. Mus., Tokyo, 1983, 16: 25-36.
    236. Uhl D., Walther H. Sun leaf or shade leaf? - Known facts in the light of new data with implications for palaeobotany. Feddes Repertorium, 2000, 111(3-4): 165-174.
    237. Van Bergen, P. F., Collinson, M. E., Briggs, D. E. G, de Leeuw, J. W., Scott, A. C, Evershed, R. P., Finch, P. Resistant biomacromolecules in the fossil record. Acta Botanical Neerlandica, 1995, 44:319-342.
    238. Van Bergen, P. F., Collinson, M. E., de Leeuw, J. W. Characterizationof the insoluble constituents of propagule walls of fossil and extant water lilies: implication for the fossil record. Ancient Biomolecules, 1996, 1: 55-81.
    239. Van Bergen, P. F., Gonni, M., Collinson, M.E., Barrie, P.J., Sinninghe Damste, J.P., de Leeuw, J.W. Chemical and microscopical characterization of outer seed coats of fossil and extant water plants. Geochimica et Cosmochimica Acta, 1994,58: 3823- 3844.
    240. Van Bergen, P.F., Bland, H.A., Horton, M.C., Evershed, R.P. Chemical and morphological changes in archaeological seeds and fruits during preservation by desiccation. Geochimica et Cosmochimica Acta, 1997,61: 1919-1930.
    241. Van de Brugh, J., Visscher, H., Dilcher, D.L., Kurschner, W.M. Paleoatmospheric signatures in Neogene fossil leaves. Science, 1993, 260(5115): 1788-1790.
    242. Van de Water, P. K. The effect of chemical processing on the δ13C value of plant tissue. Geochimica et Cosmochimica Acta, 2002,66 (7): 1211-1219.
    243. Van de Water, P. K., Leavitt, S. W., Betancourt, J. L. Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia, 2002, 132: 332-343.
    244. Van der Merwe, N.J., Medina, E. Photosynthesis and ~(13)C/~(12)C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta, 1989,53: 1091-1094.
    245. Van der Water, P. K., Leavitt, S. W., Betancourt, J. L. Trends in stomatal density and ~(13)C/~(12)C ratios of Pinus flexilis needles during the last glacial-interglacial cycle. Science, 1994, 264: 239-243
    246. Van Hoof, T.B., Kurschner, W.M., Wagner, F., Visscher, H. Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO_2 increase. Plant Ecology, 2006, 183:237-243.
    247. Wagner F, Below R, De Klerk P, Dilcher D L, Joosten H, K(?)rschner W M, Visscher H. A natural experiment on plant acclimation:lifetime stomatal frequency response of an individual tree on annual atmospheric CO_2 increase. PNAS, 1996,93: 11705-11708.
    248. Wagner, F., Kouwenberg, L.L.R., Van Hoof, T.B., Visscher, H. Reproducibility of Holocene atmospheric CO_2 records based on stomatal frequency. Quat. Sci. Rev., 2004,23: 1947-1954.
    249. Walther, H. Die Terti(?)rflora von Hammerunterwiesenthal (Freistaat Sachsen). - Abh. Staatl. Mus. Mineral. Geol. Dresden 43/44:239-264.
    250. Wang, Y. F. Li, C. S., Collinson, M. E., Lin, J., Sun, Q. G., Eucommia (Eucommiaceae), a potential biothermometer for the reconstruction of paleoenvironments. American Journal of Botany, 2003,90(1): 1-7.
    251. Weyers, J. D. B., Lawson, T. Heterogeneity in stomatal characters: Advances in Botanical Research, 1997,26:317-352.
    252. Wijninga, V. M. Paleobotany and palynology of Neogene sediments from the high plain of Bogota (Colombia), Chapter 2. Geochemical characterisation of Neogene Organic deposits from Colombia. Ph.D. thesis. University of Amsterdam, Amsterdam. Printed in Wageningen. Published by the author. 1996, ISBN 90-9009414-8.
    253. Wolfe, J. A. Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature, 1990,343(6254): 153-156.
    254. Wolfe, J. A. Temperature parameters of humid to mesic forests of Eastern Asia and relation to forest of other regions of the Northern Hemisphere and Australasia. U. S. Geol. Survey Prof. paper., 1979,1106: 1-37.
    255. Wolfe, J. A., 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemispheres. Am. Scientists, 66: 694-703.
    256. Wolfe, J. A., Spicer, R. A. Fossil leaf character states: Multivariate analysis, in Fossil plants and Spores: Modern Techniques, T. P. Jones and N. P. Rowe, Editors. Geological Society: London,1999.233-239.
    257. Woodward, F. I. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels.Nature, 1987,327:617-618.
    258. Xie, S. P., Sun, B. N. Yan, D. F., Xiao, L., Wei, L. J. Leaf cuticular characters of Ginkgo and implications for paleoatmospheric CO_2 in the Jurassic. Progress In Natural Science, 2006, 16:258-263.
    259. Yang, H., Huang, Y. S., Leng, Q., LePage, B. A., Williams, C. J. Biomolecular preservation of Tertiary Metasequoia fossil Lagerstatten revealed by comparative pyrolysis analysis. Review of Palaeobotany and Palynology, 2005, 134:237-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700