用户名: 密码: 验证码:
长江口及邻近海域浮游植物生长的多环境效应因子影响解析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东海长江口及杭州湾附近海域,大约在北纬27-32oN之间,等深线约30-50m之间,盐度26-30范围内,浮游植物的生物量较其邻近海域要高。这一方面造成了某些经济鱼类产卵和索饵场的形成,另一方面也造成了该海域成为我国的赤潮多发区和底层水缺氧区。而海洋浮游植物的生长除了与浮游藻类种群的生态学特点有关外,海水的温度、盐度、营养盐、光照、微量元素等诸多环境因子也会对其生长产生影响。对东海长江口及邻近海域而言,营养盐、温度以及由于由于泥沙含量造成的水体透光性不同等因素似乎是造成该海区浮游植物生物量较高的关键原因。但是,这些环境因子的综合影响尚没有多航次、多季节的大量调查数据来分析总结,尤其是各因子在浮游植物生长的相对影响程度没有直接的相关报道。因此,本论文针对长江口及邻近海域浮游植物生长的多环境效应因子影响程度不甚明确的问题,通过大面调查与培养实验相结合的方式,利用2002-2007年共14个航次的调查数据,应用主成分分析方法,结合多元线性回归分析和效应因子模拟计算方法,解析了营养盐、温度、浊度、盐度、石油烃、Cu、Pb、Zn、Cd等对浮游植物生长的影响程度。论文的研究成果对于揭示长江口及邻近海域赤潮发生的生态学机制具有重要意义。主要工作及结论如下:
     1、总结并分析了20世纪80年代以来长江口及邻近海域浮叶绿素的平面分布特征。
     长江口及邻近海域叶绿素浓度总体上呈现由河口、沿岸向外海先逐渐升高,然后再逐渐降低的趋势。叶绿素高值区既没有出现在营养盐较高的近岸海区,也没有出现在透光性较高的外海海区,其高值区大约在盐度(29.8±1.3)范围出现。在该范围内,叶绿素一般是呈斑块状分布的特点,总体上出现若干个高值中心,但高值中心的个数、数值及位置随季节和年代变化而略有差异。季节变化上,春、夏季较高,秋、冬季较低,且春、夏季的空间分布变异较大,局部海域的叶绿素浓度较高,冬季有向河口回缩的趋势。目前,研究海域的chla浓度整体上处于较高水平,尤其是局部海域的浓度比历史资料要高。
     2、利用2002-2003年共5个航次的现场调查数据,应用主成分分析方法,筛选出了影响长江口及邻近海域浮游植物生长的主要环境因子。
     在提取的5个主成分中,第一主成分的方差贡献率达30.2%,主要反映了长江径流等陆源输入对海区的影响,影响的环境因子主要包括营养盐浓度和水体透光性。第二主成分的方差贡献率达17.4%,主要反映了温度和石油烃的污染状况。结合特征向量矩阵及各主成分的贡献率,可以看出营养盐效应、水体光照及温度可能是影响长江口及邻近海域浮游植物生长的主要环境因子,而重金属等其他污染要素相对影响较小。
     3、利用2002-2007年共14个航次的现场调查数据的主成分分析,进一步证明了营养盐、光照和温度是影响长江口及邻近海域浮游植物生长的主要环境因子,
     在提取的两个主成分中,第一主成分主要反映了长江径流等陆源输入对该海区的影响,解释了方差的50.9%,其中,营养盐和浊度是同源的,且均与盐度的符号相反。第二主成分主要反映了温度的影响,解释了方差的19.7%。因此,长江径流等陆源输入的影响(包括营养盐效应和水体透光性)是浮游植物生长的首要影响因素,其次温度效应的影响。
     4、在非线性转化为线性的基础上,应用多元线性回归方法,进一步分析了各主要环境因子对浮游植物生长的相对重要性。
     根据通径系数(path coefficient,Pi)的大小可以看出,假如不考虑长江径流等陆源输入的影响,各环境因子对研究海域浮游植物生长的影响的相对重要性的顺序依次是:磷酸盐(PO4-P),硅酸盐(SiO3-Si),海水浊度(Turbidity),溶解无机氮(DIN)和温度(ST)。
     5、应用生长效应因子原理模拟计算了长江口及邻近海域叶绿素的平面分布情况。并分析了长江口及邻近海域浮游植物生物量时空分布的主要控制因子。
     在未考虑营养盐输入的情况下,模拟结果与实测结果的平面分布规律的相似性系数SI为(0.67±0.11),从数值上分析,两者在0.01水平上呈显著的正相关,Pearson相关系数为(0.56±0.21)。说明选择的效应因子计算公式及相应的参数基本合理。在影响浮游植物生长的多个环境因子中,营养盐效应、光照效应和温度效应是最重要的影响因子,其中,在不考虑营养盐补充的情况下,营养盐浓度效应和光照效应对浮游植物生长的贡献率相当,分别为45%和46%,温度的贡献率最小,约为9%。进一步分析表明,长江口及邻近海域浮游植物生物量的季节变化规律,主要受营养盐和温度共同控制,而空间分布的差异则主要由光照因子控制。
In the vicinity of the Changjiang Estuary and Hangzhou Bay exists a sea area between 27°N and 32°N where the phytoplankton biomass is higher than its adjacent area. The water depth of this area is of 30-50m and the salinity is of 26-30. Consequently, this leads to the formation of the famous Zhoushan fishery ground, however, this also leads to the frequently occurrence of harmful algal blooms (HABs) and hypoxia area in the bottom water there. In addition to its own ecological characters, the environmental factors such as seawater temperature, salinity, nutrients, solar radiation, trace elements and so on jointly influence the growth of phytoplankton. For the Changjiang Estuary and its adjacent area, it has been widely accepted that the phytoplankton growth is basically controlled by three key factors: nutrients, temperature and the light penetration owing to the concentration of turbidity. However, the combined effect of these environment factors has not been studied through sufficient in situ observations derived from multi-surveys, especially, to which extent of the influence of respective factors on the growth of phytoplankton is seldom reported. To answer this question, based on the observations of all the cruises from 2002 to 2007 the contribution of nutrients, seawater temperature, turbidity, salinity, petroleum carbons, Cu, Pb, Zn and Cd was analyzed in this dissertation using the method of multivariate statistical analysis and simulation of effective factors. This work definitely provides a valuable foundation for revealing the occurrence mechanism of HABs in Changjiang estuary and its adjacent area. The main work and key results are listed bellow:
     1. The horizontal pattern of phytoplankton biomass since 1980s was analyzed and summarized.
     The concentration of chlorophyll a (Chla) increased from coast to certain distance then decreased in further offshore direction. Higher Chla concentrations were observed neither in the inshore waters with higher nutrient concentrations, nor in the offshore waters with higher transparences. It occurred in the sea area with the saliniy of about 29.8psu±1.3psu. The Chla distribution there was normally in patchiness and generally has several higher-concentration centers. The numbers, the value and the location of these centers varied seasonally and annually. For the seasonal scale, the monthly average Chla concentration tended to show a“double-cycled”, higher in spring and summer whereas lower in autumn and winte. In addition, the spatial variation in spring and summer was larger than that of other seasons and the higher Chla concentration water mass withdrew to the estuary in winter. Nowdays, the Chla concentration was generally in a higher level; especially some certain areas are at their historically high level.
     2. Based on the data retrieved from 5 cruises around Changjiang Estuary and its adjacent area during 2002-2003, the main environmental factors that controlling the phytoplankton growth were fixed by means of principal component analysis.
     The first two principal components were retained for further interpretation among the five components extracted. The first principal component (PC1) accounted for 30.2% of the variance and clearly identified as the influence of terrigenous input of Changjiang River et al., which changed the nutrients concentration and water transparence. The second principal component (PC2) explained 17.4% of the variance and identified as the impact of temperature and petroleum hydrocarbons. From the eigenvector matrix and explained variance, the nutrients, light and temperature status of seawater were the main environmental factors that controlling the phytoplankton growth in the study area, while other polluted factors such as heavy metals had relatively minor effect.
     3. Based on the data of 14 field cruises during 2002-2007, it further confirmed that the most important factors that affected the phytoplankton growth are nutrients, light and temperature.
     Two principle components were extracted. The PC1 represented the impact of land runoffs such as Changjiang River and explained 50.9% of the variance. The component matrix showed that the source of nutrients and turbidity was homogenous and both were negatively correlated with salinity. The PC2 represented the impact of seawater temperature and explained 19.7% of the variance. To summarize, the growth of phytoplankton was controlled basically by terrigenous input, which changed the nutrient concentration and light penetration of the Changjiang Estuary and its adjacent area. the seawater temperature played a second role in this respect.
     4. When the relationship between the Chla and the environmental factors changed from the nonlinear to linear, the relative importance of these factors was evaluated by means of multiple linear regressions.
     The quantitative relationship between Chla and the environmental factors was established and the path coefficient (Pi) was calculated. The path analysis showed that phosphorus (PO4-P) had the biggest direct effect on the Chla. Based on the importance of their relationship with phytoplankton growth, the order of the five main growth parameters was concluded as: PO4-P, silicate (SiO3-Si), turbidity, dissolved inorganic nitrogen (DIN) and seawater temperature (ST).
     5. The horizontal pattern of Chla in the Changjiang Estuary and its adjacent area was simulated using the growth–effect-factor theory. Moreover, the controlling factors of the spatial and temporal variation of the Chla concentration were analyzed.
     Without nutrients input, the similarity index (SI) between the simulated distributions and the measured distributions of the Chla was (0.65±0.13). The Pearson correlation coefficients was (0.56±0.21) with P<0.01. This result showed that the calculation of the growth–effect-factor and the parameters chosen was reasonable. Based the analysis of the multiple effect factors, it showed that the contribution of the nutrients and the irradiation to the phytoplankton growth was similar, 45% and 46% respectively. The contribution of the ST was minimum as 9%. Further study showed that the nutrients and seawater temperature controlled the seasonal variation of the Chla, while the irradiation controlled the spatial variation of the Chla.
引文
[1]蔡文贵,李纯厚,林钦,贾晓平,杨美兰,张汉华. GIS支持下考洲洋养殖水域浮游植物数量的时空分布及其与营养盐的相关性研究.生态学杂志,2005,24(5):513~517
    [2]柴超,俞志明,宋秀贤,沈志良.长江口水域富营养化特征的探索性数据分析.环境科学,2007,28(1):53~58
    [3]柴心玉.叶绿素-a含量的分布和初级生产力的估算.山东海洋学院学报,1986,16(2):1~26
    [4]陈炳章,王宗灵,朱明远,李瑞香.温度、盐度对具齿原甲藻生长的影响及其与中肋骨条藻的比较.海洋科学进展,2005,23(1):60~64
    [5]陈慈美,包建军,吴瑜端.纳污海域营养物质形态及含量水平与浮游植物增殖竞争关系.海洋环境科学,1990,9(1):6~12
    [6]陈清潮,陈亚瞿,胡雅竹.南黄海和东海浮游生物群落的初步探讨.海洋学报,1980,2(2):149~157
    [7]陈兴群,陈其焕,庄亮钟.南海中部叶绿素a分布和光合作用及其与环境因子的关系.海洋学报,1989,11(3):349~355
    [8]邓光,李夜光,胡鸿钧,齐雨藻,耿亚红,李中奎.温度、光照和pH值对锥状斯氏藻和塔玛亚历山大藻光合作用的影响及光暗周期对其生长速率和生物量的影响.武汉植物学研究,2004,22(2):129~135
    [9]邓宁宁.无机溶解态营养盐组成对东海典型赤潮藻生长的影响:[硕士学位论文].青岛:中国海洋大学,2004
    [10]费尊乐,毛兴华,吕瑞华,李冰,管永红,李宝华,张新胜,牟敦彩. 1987.东海黑潮区叶绿素a和初级生产力的分布特征. In:孙湘平,editor.黑潮调查研究论文集.北京:海洋出版社. p 256~265
    [11]顾新根.东海赤潮研究概况.现代渔业信息,1989,4(2~8):40~43
    [12]顾新根,袁骐,杨蕉文,华棣.长江口羽状锋海区浮游植物的生态研究.中国水产科学,1995,2(1):1~15
    [13]国家海洋局. 2008年中国海洋环境质量公报. 2009年1月
    [14]国家质量技术监督局. GB 17378.4-1998.中华人民共和国国家标准-海洋监测规范.北京:中国标准出版社,1998-6-22
    [15]郭瑾,杨维东,刘洁生,樊振华.温度、盐度和光照对球形棕囊藻生长和产毒的影响研究.环境科学学报,2007,27(8):1341~1346
    [16]郭玉洁,潘友联.长江口区初级生产力的研究.海洋科学集刊,1992,33:191~199
    [17]海洋图集编委会. 1991.渤,黄,东海海洋图集(生物分册).张金标,宁修仁,江锦祥,editors:北京:海洋出版社
    [18]韩秀荣,王修林,孙霞等.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究.应用生态学报,2003,14(7):1097~1101
    [19]何青,孙军,栾青杉,宋书群,沈志良,王丹.长江口及其邻近水域冬季浮游植物群集.应用生态学报,2007,18(11):2559~2566
    [20]何文珊,陆健健.高浓度悬沙对长江河口水域初级生产力的影响.中国生态农业学报,2001,9(4):24~27
    [21]何振平,王秀云,樊晓旭,王冬冬.温度和光照对塔胞藻生长的影响.水产科学,2007,26(4):218~221
    [22]胡明辉,杨春林.长江口浮游植物生长的磷酸盐限制.海洋学报,1998,11(4):439~443
    [23]黄邦钦,刘媛,陈纪新,王大志,洪华生,吕瑞华,黄凌风,林以安,魏皓.东海、黄海浮游植物生物量的粒级结构及时空分布.海洋学报,2006,28(2):156~164
    [24]黄贯虹,黄伟健,方刚,徐宁,陈菊芳,江天久,谢隆初,骆育敏.大鹏湾优势藻引发赤潮的灰分析.生态学报,2002,22(6):822~827
    [25]黄良民.南海不同海区叶绿素a和海水荧光值的垂向变化.热带海洋,1992,11(4):89~95
    [26]黄秀清,蒋晓山,王桂兰,洪君超.长江口中肋骨条藻赤潮发生过程环境要素分析:水温、盐度、DO和pH特征.海洋通报,1994,13(4):35~40
    [27]黄秀清,蒋晓山,陶然,洪君超.长江口海区一次骨条藻赤潮发生过程的多元分析.海洋环境科学,2000,19(4):1~5
    [28]黄奕华,楚建华,齐雨藻.南海大鹏湾盐田海域骨条藻数量的多元分析.海洋与湖沼,1997,28(2):121~127
    [29]黄自强,暨卫东.长江口水中总磷、有机磷、磷酸盐的变化特征及相互关系.海洋学报,1994,16(1):51~60。
    [30]霍文毅,郝建华,俞志明,李全生.有害赤潮数值分析研究进展.海洋与湖沼,1999,30(5):568~574
    [31]霍文毅,俞志明,邹景忠,宋秀贤,郝建华.胶州湾中肋骨条藻赤潮与环境因子的关系.海洋与湖沼,2001,32(3):311~318
    [32]吉田阳一.赤潮-发生机制と对策.东京:恒星社厚生阁,1980. 90~104
    [33]金德祥,陈贞奋,刘师成,吴省三.温度和盐度对三种海洋浮游硅藻生长繁殖的影响.海洋与湖沼,1965,7(4):373~384
    [34]李宝华,傅克忖,荒川久辛.南黄海叶绿素a与初级生产力之间的相关分析.黄渤海海洋,1998,16(2):48~53
    [35]李超伦,栾凤鹤.东海春季真光层分级叶绿素a分布特点的初步研究.海洋科学,1998,4:59~62
    [36]李红山,黎松强.赤潮形成与富营养化及生化防治机理—污水深度处理与脱氮除磷.海洋技术,2002,21(2):69~73
    [37]李继龙,唐援军,郑嘉淦,贾静,李小恕.利用MODIS遥感数据探测长江口及邻近海域赤潮初步研究.海洋渔业,2007,29(1):25~30
    [38]李金涛,赵卫红,杨登峰,王江涛.长江口海水盐度和悬浮体对中肋骨条藻生长的影响.海洋科学,2005,29(1):34~37
    [39]李克强,王修林,韩秀荣,石晓勇,祝陈坚,李瑞香.莱州湾围隔浮游生态系统氮、磷营养盐迁移-转化模型研究.中国海洋大学学报,2007,37(6):987~994
    [40]李绪兴.赤潮及其对渔业的影响.水产科学,2006,25(1):45~47
    [41]李雁宾.长江口及邻近海域季节性赤潮生消过程控制机理研究:[博士学位论文].青岛:中国海洋大学,2008
    [42]李云,李道季,唐静亮,王益鸣,刘志刚,丁平兴,何松琴.长江口及毗邻海域浮游植物的分布与变化.环境科学,2007,28(4):719~729
    [43]梁松,钱宏林,齐雨藻.中国沿海的赤潮问题.生态科学,2000,19(4):44~50
    [44]林学举,黄邦钦,洪华生,王大志,肖天.东、黄海典型海域叶绿素a含量的垂向变化与周日波动.海洋科学,2002,26(11):57~63
    [45]林昱,陈孝麟,庄栋法,唐森铭,林荣澄.围隔生态系内富营养引起赤潮的初步研究.海洋与湖沼,1992,23(3):312~317
    [46]林昱,庄栋法,陈孝麟,唐森铭.浮游植物群落演替与甲藻赤潮.应用生态学报,1994,5(3):314~318
    [47]林昱.甲藻赤潮与水体中营养盐的关系初探.台湾海峡,2001,20(1):77~79
    [48]柳丽华.黄海及长江口毗邻海域浮游植物群落结构和多样性分析:[硕士学位论文].青岛:中国海洋大学,2007
    [49]刘雪芹,韦路.舟山近岸海域赤潮优势种中肋骨条藻的生长模型.中国环境监测,2005,21(2):77~79
    [50]刘子琳.浙江潮下带海域秋季初级生产力和叶绿素a的分布.东海海洋,1989,7(1):57~65
    [51]刘子琳,宁修仁.浙江海岛邻近海域叶绿素a和初级生产力的分布.东海海洋,1997, 15(3):21~28
    [52]刘子琳,宁修仁,蔡昱明.杭州湾-舟山渔场秋季浮游植物现存量和初级生产力.海洋学报,2001,3(2):93~99
    [53]鲁北伟,王荣.春季东海表层水叶绿素a含量分布特征.海洋与湖沼,1996,27(5):487~492
    [54]鲁北伟,王荣,王文琪.春季东海不同水域的表层叶绿素含量.海洋科学,1997,5:53~55
    [55]卢敏,张龙军,李超,邹立,张经. 1999年7月胶州湾东部赤潮生消过程生态环境要素分析.黄渤海海洋,2001,19(4):43~50
    [56]陆赛英.东海北部叶绿素a极大值的分布规律.海洋学报,1998,20(3):64~75
    [57]栾青杉.长江口及其邻接水域浮游植物群集生态学研究:[硕士学位论文].青岛:中国海洋大学,2007
    [58]栾青杉,孙军,宋书群,沈志良,俞志明.长江口夏季浮游植物群落与环境因子的典范对应分析.植物生态学报,2007,31(3):445~450
    [59]罗民波,陆健健,王云龙,沈新强,晁敏.东海浮游植物数量分布与优势种.生态学报,2007,27(12):5076~5085
    [60]茅华,许海,刘兆普.温度、光照、盐度及pH对旋链角毛藻生长的影响.生态科学,2007,26(5):432~436
    [61]毛兴华,管永红.东海PN断面1978-1982年叶绿素a含量分布特征及其与环境因子的关系.海洋湖沼通报,1987,1:58~63
    [62]宁修仁,刘子琳,胡钦贤.浙江沿岸上升流区叶绿素a和初级生产力的分布特征.海洋学报,1985,7(6):751~762
    [63]宁修仁,史君贤,刘子琳,陈忠元,刘镇盛.长江口及浙江近海夏季叶绿素a和ATP的分布特征.海洋学报,1986,8(5):603~610
    [64]宁修仁,史君贤,蔡昱明,刘诚刚.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报,2004,26(6):96~106
    [65]逄勃越,王学魁,孙之南,王广测.不同影响因子对裸甲藻生长的影响.生物技术,16(1):63~65
    [66]蒲新明.长江口区浮游植物营养限制因子的研究:[硕士学位论文].青岛:中国科学院海洋研究所,2000
    [67]齐雨藻,洪英,吕颂辉,楚建华,张家平,朱从举,李雅琴,梁松,李锦荣.南海大鹏湾海洋褐胞藻及其成因.海洋与湖沼,1994,25(2):132~138
    [68]乔方利,袁业立,朱明远等.长江口海域赤潮生态动力学模型及赤潮控制因子研究.海洋与湖沼,2000,31(1):93~100
    [69]邵秘华,张素香,马嘉蕊.略论浊度标准、单位和测量仪器的研究与进展.海洋技术,1997,16(4):50~61
    [70]沈新强,胡方西.长江口外水域叶绿素a分布的基本特征.中国水产科学,1995,2(1):71~80
    [71]沈新强,蒋玫,袁骐.长江河口区叶绿素a分布的研究.中国水产科学,1999,6(5):1~5
    [72]沈志良.长江口海区理化环境对初级生产力的影响.海洋湖沼通报,1993,1:47~51
    [73]宋书群.长江口富营养化水域浮游植物生物量研究:[硕士学位论文].青岛:中国海洋大学,2007
    [74]苏纪兰.中国的赤潮研究.科技与社会(中国科学院院刊),2001,5:339~342
    [75]孙百晔.长江口及邻近海域浮游植物生长的光照效应研究:[博士学位论文].青岛:中国海洋大学,2008
    [76]孙军,刘东艳,王威,陈凯彪,秦玉涛. 1998年秋季渤海中部及其邻近海域的网采浮游植物群落.生态学报,2004,24(8):1644~1656
    [77]孙霞,王保栋,王修林,祝陈坚,韩秀荣.东海赤潮高发区营养盐时空分布特征及其控制要素.海洋科学,2004,28(8):28~32
    [78]孙霞.光照对东海赤潮高发区赤潮藻类生长的影响:[博士学位论文].青岛:中国海洋大学,2005
    [79]唐洪杰.长江口及邻近海域富营养化近30年变化趋势及其与赤潮发生的关系和控制策略研究:[博士学位论文].青岛:中国海洋大学
    [80]汤琳,张锦平,许兆礼,陈亚瞿.长江口邻近水域浮游植物群落动态变化及其环境因子的研究.中国环境监测,2007,23(2):97~101
    [81]王爱军,王修林,韩秀荣,李雁宾,祝陈坚.光照对东海赤潮高发区春季赤潮藻种生长和演替的影响.海洋环境科学,2008,27(2):144~148
    [82]王保栋.长江口及邻近海域富营养化状况及其生态效应:[博士学位论文].青岛:中国海洋大学,2006
    [83]王金辉.长江口3个不同生态系的浮游植物群落.青岛海洋大学学报,2002,32(3):422~428
    [84]王金辉,黄秀清.具齿原甲藻的生态特征及赤潮成因浅析.应用生态学报,2003,14(7):1065~1069
    [85]王金辉,秦玉涛,刘材材,孙亚伟,程祥圣,徐韧.长江口及邻近海域有毒藻类和赤潮毒素的本地调查.海洋湖沼通报,2007,1:52~61
    [86]王俊,陈瑞盛,左涛.三峡工程截流后长江口邻近海域的网采浮游植物群落结构特征.水生态学杂志,2009,2(2):80~87
    [87]王年斌,周遵春,马志强,韩家波,薛克,宛立,邓欢,王世胜.大连湾丹麦细柱藻赤潮的主成分分析.水产研究,2004,23(7):9~11
    [88]王年斌,周遵春,马志强,韩家波,薛克,宛立,邓欢,宋伦.大连湾赤潮异弯藻赤潮的多元分析.海洋学报,2006,28(3):151~156
    [89]王荣,焦念志,李超伦,沈志良,吉鹏.胶州湾的初级生产力和新生产力.海洋科学集刊,1995,36:181~194
    [90]王寿松,冯国灿,夏综万,史键辉,齐雨藻,吕颂辉.大鹏湾夜光藻赤潮发生要素的结构分析.海洋与湖沼,1994,25(2):146~151
    [91]王修林,李克强,石晓勇.胶州湾主要化学污染物海域环境容量.北京:科学出版社,2006a. 48~59
    [92]王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社,2006b. 85~105
    [93]王玉衡,蒋国昌,董恒霖.春季浙江南部海区溶解氧、pH值和营养盐分布特征及相互关系研究.海洋学报,1990,12(5):654~660
    [94]王云龙,袁骐,沈新强.长江口及邻近水域春季浮游植物的生态特征.中国水产科学,2005,12(3):300~306
    [95]王云龙,袁骐,沈新强.长江口及邻近海域夏季浮游植物分布现状与变化趋势.海洋环境科学,2008,27(2):169~172
    [96]王朝晖,齐雨藻,尹伊伟等. 1998年春深圳湾环节环沟藻赤潮及其发生原因的探讨.海洋科学,2001,25(5):47~50
    [97]王正方,张庆,龚敏.海洋原甲藻增殖最适起始密度及其同温度的关系.海洋环境科学,1993,12(2):44~47
    [98]韦桂峰,王肇鼎,练键生.大亚湾大鹏澳水域春季浮游植物优势种的演替.生态学报,2003,23(11):2285~2292
    [99]武宝玕,蒋海鹰,齐雨藻.两种赤潮藻对温度、氮、磷营养的反应及活体荧光特性的研究.暨南大学学报(自然科学),1993,14(1);73~83
    [100]吴荣军,吕瑞华,朱明远,夏滨,胡正华.海水混合和层化对叶绿素a垂直分布的影响.生态环境,2004,13(4):515~519
    [101]夏滨,吕瑞华,孙丕喜. 2000年秋季黄、东海典型海区叶绿素a的时空分布及其粒径组成特征.黄渤海海洋,2001,19(4):37~42
    [102]夏静.长江口浮游植物变化及影响因子初步研究:[硕士学位论文].上海:上海师范大学,2005
    [103]谢文玲.东海典型海域浮游硅藻群落结构与动态研究:[博士学位论文].厦门:厦门大学,2006
    [104]徐宁,陈菊芳,王朝晖,王艳,黄伟健,齐雨藻.广东大亚湾藻类水华的动力学分析Ⅰ.藻类水华的生消过程及其与环境因子的关系.海洋环境科学,2001,20(2):1~12
    [105]徐宁,齐雨藻,陈菊芳,黄伟建,吕颂辉,王艳.球形棕囊藻(Phaeocystis globosa Scherffel)赤潮成因分析.环境科学学报,2003(1):113~118
    [106]徐宁,吕颂辉,段舜.营养物质输入对赤潮发生的影响.海洋环境科学,2004,23(2):20~24
    [107]徐兆礼,白雪梅,袁骐,蒋玫,顾新根.长江口浮游植物生态研究.中国水产科学,1999,6(5):52~54
    [108]徐兆礼,沈新强,陈亚瞿.长江口悬沙对牟氏角毛藻(Chaetoceros muelleri)生长的影响.海洋环境科学,2004,
    [109]颜天,周名江,钱培元.赤潮异湾藻Heterosigma akashiwo的生长特性.海洋与湖沼,2002a,33(2):209~214
    [110]颜天,周名江,钱培元.环境因子对塔玛亚历山大藻生长的综合影响.海洋学报,2002b,24(2):114~120
    [111]杨波,储昭升,金相灿,阎峰,曾清如. CO2/pH对三种藻生长及光合作用的影响.中国环境科学,2007,27(1):54~57
    [112]杨顶田,陈伟民,张运林.太湖梅梁湾水体中可见光的衰减、吸收及散射.上海环境科学,2003,22(9):591~656
    [113]杨东方,陈生涛,胡均,吴建平,黄宏.光照、水温和营养盐对浮游植物生长重要影响大小的顺序.海洋环境科学,2007,26(3):201~207
    [114]杨海丽,郑玉龙,黄稚.海南近海海域浊度与悬浮颗粒物粒径的分布特征.海洋学研究,2007,25(1):34~43
    [115]杨清良,林更铭.厦门海域浮游植物夏季赤潮期间分布变异的多元分析.生态学报,2007,27(2):465~476
    [116]叶属峰,纪焕红,曹恋,黄秀清.长江口海域赤潮成因及其防治对策.海洋科学,2004,28(5):26~32
    [117]尤爱民,陈绍勇,周伟华,徐继荣,孙翠慈.南海北部秋季营养盐、溶解氧、pH值和叶绿素a分布特征及相互关系.海洋通报,2006,25(5):9~16
    [118]于萍,张前前,王修林,祝陈坚,韩秀荣,王磊.温度和光照对两株赤潮硅藻生长的影响.海洋环境科学,2006,25(1):38~40
    [119]袁骐,王云龙,沈新强. N和P对东海中北部浮游植物的影响研究.海洋环境科学,2005,24(4):5~8
    [120]曾艳艺,黄翔鹄.温度、光照对小环藻生长和叶绿素a含量的影响.广东海洋大学学报,2007,27(6):36~40
    [121]战玉杰.渤海重金属污染状况及对典型浮游植物生长影响初步分析: [博士学位论文].青岛:中国海洋大学,2005
    [122]张传松.长江口及邻近海域赤潮生消过程特征及其营养盐效应分析: [博士学位论文].青岛:中国海洋大学,2008
    [123]张春雷.东海围隔实验中营养盐对浮游植物生长的影响及其动力学研究:[硕士学位论文].青岛:中国海洋大学,2006
    [124]张金标,宁修仁,江锦祥. 1991.渤,黄,东海海洋图集(生物分册).北京:海洋出版社
    [125]张蕾,王修林,韩秀荣,祝陈坚,石晓勇,蒋凤华,杨汝君.石油烃污染物对海域浮游植物生长的影响-实验与模型.中国海洋大学学报,2002,32(5):804~810
    [126]张丽旭,张小伟.用于海洋环境科学的一种新方法——影响因子分析法.海洋环境科学进展,2004,22(1):55~61
    [127]赵水东.温度、盐度和营养盐对东海原甲藻生长的影响:[硕士学位论文].广州:暨南大学,2006
    [128]赵卫红,王江涛,李金涛,崔鑫,吴玉霖,苗辉.长江口及邻近海域东夏季浮游植物营养盐限制及其比较.海洋学报,2006,28(3):119~126
    [129]郑元甲,陈雪忠,程家骅,王云龙,沈新强,陈卫忠,李长松等.东海大陆架生物资源与环境.上海:上海科学技术出版社,2003. 116~129
    [130]周凯,黄长江,姜胜,黄文魁,董巧香. 2000~2001年柘林湾浮游植物群落结构及数量变动的周年调查.生态学报,2002,22(5):688~698
    [131]周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展,2006,21(7):673~679
    [132]周名江,于仁成.有害赤潮的形成机制、危害效应与防治对策.自然杂志,2007,29(2):72~77
    [133]周淑青,沈志良,李峥,姚云.长江口最大浑浊带及邻近水域营养盐的分布特征.海洋科学,2007,31(6):34~42
    [134]周伟华,霍文毅,袁翔城,殷克东.东海赤潮高发区春季叶绿素a和初级生产力的分布特征.应用生态学报,2003,14(7):1055~1059
    [135]周伟华,袁翔城,霍文毅,殷克东.长江口邻域叶绿素a和初级生产力的分布.海洋学报,2004,26(3):143~150
    [136]周伟华,殷克东,朱德第.舟山海域春季浮游植物生物量及东海原甲藻赤潮频发机制初探.应用生态学报,2006,27(5):887~893
    [137]朱根海,许卫忆,朱德第,施青松,张健.长江口赤潮高发区浮游植物与水动力环境因子的分布特征.应用生态学报,2003,14(7):1135~1139
    [138]朱建荣.长江口外海区叶绿素a浓度分布及其动力成因分析.中国科学D辑(地球科学),2004,34(8):757~762
    [139]朱建荣,王金辉,沈焕庭,吴辉. 2003年6月中下旬长江口外海区冲淡水和赤潮的观测及分析.科学通报,2005,50(1):59~65
    [140]朱明,张学成,茅云翔,阎斌伦,滕亚娟,陆正和.温度、盐度及光照强度对海链藻(Thalassiosira sp.)生长的影响.海洋科学,2003,27(12):58~61
    [141] Anderson, D.M., Kulis, D.M., Orphanos, J.A., Ceurvels, A.R. Distribution of toxicdinoflagellate Gonyaulax tamarensis in the southern New England region. Estuar. Coast. Shelf. Sci., 1982, 14(4): 447~458
    [142] Arhonditsis, G.B., Brett, M.T. Eutrophication model for Lake Washington (USA) PartⅠ. Model description and sensitivity analysis. Ecol. Model., 2005, 187: 140~178
    [143] Arnold, K.E., Murray, S. N. Relationships between irradiance and photosynthesis for marine benthic green algae (Chlorophyta)of differing morphologies. J. exp. Mar. Bio. Ecol., 1980, 43: 183~192
    [144] Balachandran, K.K., Jayalakshmy, K.V., Laluraj, C.M., Nair M., Joseph, T., Sheeba, P. Step-up multiple regression model to compute Chlorophyll a in the coastal waters off Cochin, southwest coast of India. Environ. Monit. Assess., 2008, 139(1-3): 217~226
    [145] Bissinger, J.E., Montagnes, J.S., Sharples, J., Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 2008, 53(2): 487~493
    [146] Blanchard, G.F., Guarini, J.M., Richard, P, Gros, P., Mornet, F. Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar. Ecol. Prog. Ser., 1996, 134: 309~313
    [147] Bouman, H., Platt, T., Sathyendranath, S., Stuart, V. Dependence of light-saturated photosynthesis on temperature and community structure. Deep-Sea Res., 2005, 52: 1284~1299
    [148] Briand, J.F., Robillot, C., Quiblier-Llobéras, C., Humbert, J.F., Couté, A., Bernard, C. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res., 2002, 36: 3183~3192
    [149] Caperon John & Judith Meyer. Nirogen-limited growth of marine phytoplankton-Ⅱ. Uptake kinetics and their role in nutrient limited growth of phytoplankton. Deep-Sea Res., 1972, 19:619~632.
    [150] Chen, Y.L.L., Chen, H.Y., Gong, G.C., Lin, Y.H., Jan, S., Takahashi, M. Phytoplankton production during a summer coastal upwelling in the East China Sea. Cont. Shelf Res., 2004, 24(12):1321~1338
    [151] Chung, S.W., Sen, J., Liu, K.K. Nutrient fluxes through the Taiwan Strait in spring and summer 1999. J. Oceanogr. Tokyo, 2001, (57)1: 47~53.
    [152] D`Adamo, R., Pelosi, S., Trotta, P., Sansone, G. Bioaccumulation and biomagification of polycyclic aromatic hydrocarbons in aquatic organisms. Mar. Chem., 1997,56(1/2): 45~49
    [153] Damuth, J.E., Kolla, V., Flood, R.D., Kowsmann, R.O., Monteiro, M.C., Gorini, M.A., Palma, J.J.C., Belderson, R. Distribuition channel mendering and bifurcation patterns on the Amoson deep-sea fan as revealed by long-range side-scan sonar (GLORIA). Geology, 1983, 11(2): 94~98
    [154] Dodds, W.K. Availability, uptake and regeneration of phosphate in mesocosms with varied levels of P deficiency. Hydrobiologia, 297: 1~9
    [155] Egge, J.K. & Aksnes, D.L. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser., 1992, 83: 281~289
    [156] Elena Litchman, Christopher A. Klausmeier et al. Phytoplankton nutrient competition under dynamic light regimes, Limnol.Oceanogr., 2004, 49 (4): 1457~1462
    [157] Eppley, R.W. Temperature and phytoplankton growth in the Sea. Fish Bulletin, U.S., 1972, 70: 1063~1085
    [158] Fraga S., Anderson, D. M., Bravo, I. et al. Influence of upwelling relaxation on dinoflagellates and shellfish toxicity in Ria de Vigo, Spain. Est. Coast and Shelf Sci., 1988,27, 349~361
    [159] Fujii, M., Yamanaka, Y., Nojiri, Y., Kishi, M.J., Chai, F. Comparison of seasonal characteristics in biogeochemistry among the subarctic North Pacific stations described with a NEMURO-based marine ecosystem model. Ecol. Model., 2007, 202: 52~67
    [160] Gao, X., Song, J. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Mar. Pollut. Bull., 2005, 50: 327~335
    [161] Carstensen, J., Heiskanen, A. Phytoplankton responses to nutrient status: application of a screening method to the northern Baltic Sea. Mar. Ecol. Prog. Ser., 2007, 336: 29~42
    [162] Gecek, S., Legovic, T. Nutrient and grazing in modeling the deep chlorophyll maximum. Ecol. Model., 2001, 138: 143~152
    [163] Giacobbe, M.G., Penna, A., Gangemi, E., Maso, M., Garces, E., Fraga., S., Bravo., I., Azzaro, F., Penna., N. Recurrent high-biomass blooms of Alexandrium taylorii (Dinophyceae), a HAB species expanding in the Mediterranean. Hydrobiologia, 2007, 580(1): 125~133
    [164] Gong, G., Wen, Y., Wang, B., Liu, G. Seasonal variationof chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Res.Ⅱ, 2003, 50: 1219~1236
    [165] Grasshoff, K., Kremling, K., Ehrhardt, M. Methods of Seawater Analysis. Third Edition. Weinheim: WILEY-VCH Verlag GmbH, 1999.160~223
    [166] Handan, C., Nilsun, D., Arzu, K., Syddyk, K. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecol. Model., 2005, 181: 581~589
    [167] Harrison, P.J., Hu, M.H., Yang, Y.P., et al. Phosphate limitation in estuarine and coastal water of China. Exp. Mar. Biol. Ecol., 1990, 140(1-2): 79~87
    [168] Hecky R. E. & Kilham P. Nurtient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment, Limnol. Oceanogr., 1988, 33: 796~822
    [169] Hodgkiss, I., Lu, S. The effect of nutrient and their ratios on phytoplankton abundance in Junk Bay, Hong Kong. Hydrobiologia, 2004, 512(1-3): 215~229
    [170] Iriarte, J.L., González, H.E., Liu, K.K., Rivas, C., Valenzuela, C. Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile(41.5-43oS). Estuar. Coast. Shelf. Sci., 2007, 74: 471~480
    [171] Isobe, A., Matsuno, T. Long-distance nutrient-transport process in the Changjiang river plume on the East China Sea shelf in summer. J. Geophys. Res., 2008, 113: C04006, doi:10.1029/2007JC004248
    [172] Iwasaki, H. Physiological ecology of red tide flagellates. In: Biochemistry and Physiology of Protozoa, Ed. By M. Levandousky and S. H. Hutner, Academic Press, New York, 1979, 1, 357~393
    [173] Jitts, H. R., Morel, A., Saijo, Y. The relation of oceanic primary production to available photosynthetic irrandiance. Aust. J. mar. freshwater Res., 1976, 27: 441~454
    [174] Justic, D., Rabalais, N.N., Turner, R.E. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull., 1995,30(1): 41~46
    [175] Kalnay, E., Kistler, R., Saha, S. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 1996, 77: 437~470
    [176] Kangro, K., Olli, K., Tamminen, T., Lignell, R. Species-specific responses of a cyanobacteria-dominated phytoplankton community to artificial nutrient limitation in the Baltic Sea. Mar. Ecol. Prog. Ser., 2007, 336 15~27
    [177] King, R. L., Schramm, W. Photosynthetic rates of benthic marine algae in relation to light intensity and seasonal variations. Mar. Biol., 1976, 37: 215~222
    [178] Kirk, J.T.O. Light and photosynthesis in aquatic ecosystems. Cambridge University Press Cambridge London New York New Rochelle Melbourne Sydney,1983.32~36,195~200, 219~234
    [179] Lagus, A., Suomela, J., Helminen, H., Sipura, J. Impacts of nutrient enrichment and sediment on phytoplankton community structure in the northern Baltic Sea. Hydrobiologia, 2007, 579(1): 351~368
    [180] Lehman, P.W. The influence of climate on phytoplankton community biomass in San Francisco Bay Estuary. Limnol. Oceanogr., 2000, 45(3): 580~590
    [181] Li, Y., Wang, X., Han, X., Li, K., Zhao, X., Shi, X. An ecosystem model of the phytoplankton competition in the East China Sea, as based on field experiments. Hydrobiologia, 2008, 600:2832~96
    [182] Lionard, M., Muylaert, K., Tackx, M., Vyverman, W. Evaluation of the performance of HPLC-CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuar. Coast. Shelf Sci., 2008, 76(4): 809~817
    [183] Liu, K., Tang, T.Y., Gong, G.C. et al. Cross-shelf and along-shelf nutrient fluxes derived from flow fields and chemical hydrography observed in the southern East China Sea off northern Taiwan. Cont. Shelf Res., 2000, 20: 493~523
    [184] Longhurst, A.R. Significance of spatial variabilityv. In: Analysisi of marine ecosystems, 1981.
    [185] Lonsdale, D.J, Cosper, E.M., Doall, M. Effects of zooplankton grazing on phytoplanktonsize-structure and biomass in the lower Hudson River estuary. Estuaries, 1996, 19: 874~889
    [186] Mudie, P.J., Rochon, A., Levace, E. Palynological records of red tide– producing species in Canada: past trends and implications for the future. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 180: 159~186
    [187] Muylaert, K., Tackx, M., Vyverman, W. Phytoplankton growth rates in the freshwater tidal reaches of the Schelde estuary (Belgium) estimated using a simple light-limited primary production model. Hydrobiologia, 2005, 540: 127~140
    [188] Nicklisch, A., Shatwel, T., Kohler, J. Analysis and modelling of the interactive effects of temperature and light on phytoplankton growht and relevance for the spring bloom. J. Plankton Res., 2008, 30(1): 75~91
    [189] Ning, X., Daniel, V., Liu, Zh., Liu, Z. Standing stock and production of phytoplankton in the estuary of the Changjiang (Yangtse River) and the adjacent East Chian Sea. Mar. Ecol. Prog. Ser., 1988, 49: 141~150
    [190] Nomura, H., Yoshida, M. Recent occurrence of phytoplankton in the hyper—eutrophicated inlet, Tokyo Bay, central Japan. La mer, Bull. Soc. fr. jap. oceanogr. 1997, 35:107~121 (in Japanese with English abstract)
    [191] Officer, C. B., Ryther, J. H. The possible importance of silicon in marine eutrophication. Mar. Ecol. Prog. Ser., 1980, 3: 182~198
    [192] Paerl, H.W. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as "new" nitrogen and other nutrient sources. Limnol. Oceanogr., 1997, 42(5): 1154~1165
    [193] Platt T, Jassby, A. D. The relationship between photosynthesis and light for natural assemblage of coastal marine phytoplankton, J. Phycol., 1976, 12: 421~430
    [194] Probyn, T. A. Size-fractionated measurements of nitrogen uptake in aged upwelled waters: Implication for pelagic food webs. Limnol. Oceanogr., 1990, 35(1): 202~210
    [195] Quchi, A, Takayama, H. A red tide map study by the principal component anaylsis. Bull. Jap. Soc. s Fish, 1981, 47(10): 1275~1279
    [196] Ramus, J., Beale, S. I., Mauzerall, D. Correlation of changes in pigment content with photosynthetic capacity of seaweeds as a function of depth. Mar. Biol., 1976, 37: 231~238
    [197] Reid, P. C., Lancelot, C., Gieskes, W., Hagmeier, E., Weichart, G. Phytoplankton of the North Sea and its dynamics: A review. Neth. J. Sea Res., 1990, 26, 295~331
    [198] Riegman R., Kuipers, B.R. Resource competition and selective grazing of plankton in a multispecies pelagic food web model. Mar. Ecol., 1994,15: 153~164
    [199] Riley, G. A. Factors controlling phytoplankton population on Georges. J. Mar. Res., 1962, 6: 54~75
    [200] Schnoor, J. L. Environmental Modeling. New York: John Wiley & Sons Inc., 1996. 185~229
    [201] Smayda, T.J. Global epidemic of noxious phytoplankton blooms and food chain consequenced. 156. Natl. Meet. of the American Assoc. for the Advancement of Science,New Orleans, LA(USA), 15-20 Feb, 1990.
    [202] Spilling, K. Dense sub-ice bloom of dinoflagellates in the Baltic Sea, potentially limited by high pH. J. Plankton Res., 2007, 29: 895~901
    [203] Steele, J.H. Environmental control of photosynthesis in the sea. Limnol. Oceanogr., 1962, 7:137~150
    [204] Steemann, N. E. Marine Photosynthesis. Amsterdam: Elsevier, 1975, 225~279
    [205] Suzuki, Y., Takahashi, M. Growth responses of several diatom species isolated from various environments to temperature. J. Phycol., 1995, 31: 880~888
    [206] Talahashi, M., Tujii, K., Parsons, T. R. Simulation study of phytoplankton photosynthesis and growth in the Fraser River Estuary. Mar. Biol. 1973, 19: 102~116
    [207] Taylor, F.J.R. The Biology of Dinoflagellates. London: Blackwell Scientific Publications, 1987, 1~785
    [208] Wallentinus I. Productivity studies on Baltic macroalgae. Bot. Mar.1978, 21:365~380
    [209] Wang, S. & Chen, C.T. Bottom water at the center of the north East China Sea in summer: Remant winter water. Cont. Shelf Res., 1998, 18: 1573~1580
    [210] Wong, G.T.F., Gong, G.C., Liu, K.K. et al. Excess nitrate in the East China Sea. Estuar. Coast. Shelf. Sci., 1998, 46:411~418
    [211] Yamochi, S. Nutrient factors involved in controlling the growth of red tide flagellates: Prorocentrum micans, Eutresphella sp, and Ghattonella marina in Osaka Bay. Bull. Plankton Soc. Jap., 1984, 31(2): 97-106
    [212] Yunev, O.A., Carstensen, J., Moncheva, S., Khaliulin, A., AErtebjerg, G., Nixon, S. Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes. Estuar. Coast. Shelf. Sci., 2007, 74(1-2): 63~76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700