用户名: 密码: 验证码:
光学遥感影像中耀斑区内孤立波信息提取模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋内波在边缘海和陆架区域是几乎处处可见的海洋现象。内波在密度跃层附近生成并传播,伴随着等密度面较大的起伏和较强的流速切变,威胁着水下潜艇的航行安全,对海上石油平台的作业也有较大影响。内波还造成声场的起伏,降低了声呐的使用效能。内波的传播可以导致湍流和混合,是海洋能量输送的一种途径,并影响局部海域的水交换、沉积和再悬浮。因此对于内波的研究既有现实应用需求也有重大的科学意义。
     由于内波生成、传播在水下,常规的海洋观测手段观测成本高,且受到环境条件的制约而数据获取困难。遥感是目前唯一有效的大范围的内波观测手段。目前SAR经常用于内波的研究,但是SAR也存在着卫星重访周期长、数据费用高、图像噪声较大等的不足。光学遥感虽然容易受到云的影响,但是以MODIS为代表的中分辨率光学遥感器,其图像覆盖范围大、时间分辨率高、数据公开免费等优势可以弥补其不足成为内波研究的重要数据源。本文的目的是研究内波在光学图像中的特征,建立从光学图像提取内波特征参数的模型,然后在南海海域开展示范应用研究。
     由于内波SAR遥感研究已开展较为深入,本文主要借鉴内波SAR探测的成功经验开展内波光学遥感研究。本文首先研究了内波光学图像的特征,由于内波在光学图像与在SAR成像具有一定的相似性,通过与SAR影像的对比分析,给出了内波在光学图像耀斑区具有与SAR相似的表面特征,只是亮暗顺序与SAR相反,但同样与内波的极性有关。其次,本文针对内波光学图像解译遇到的问题发展了两种均衡化处理方法,有助于整幅图像内波特征的增强显示,便于内波信息的提取;而且应用了二维EMD方法成功实现了内波与海浪的信息分离,为利用较高分辨率光学图像提取内波信息做好了数据准备。然后,在本文的核心部分,即内波光学遥感探测模型的建立上,首先引入了强非线性的KdV3N模型,并给出了数值算法,较为准确的模拟了南海北部真实情况下的大振幅内波,特别是波形与实测更为一致;进一步建立了太阳耀斑区内波光学成像的仿真模型,仿真的结果与真实图像特征吻合;在此基础上,探讨建立了利用光学图像内波条纹亮暗间距进行内波振幅估计的经验模型,在东沙环礁附近的小区域进行了试用,结果比较满意。最后,本文基于大量的MODIS数据进行了南海北部内波特征的统计研究,给出了南海北部内波传播速度的空间分布、内波的时空分布特征等结果,充分发挥了光学数据用于内波研究的优势,加深了对南海北部内波的认识。
     通过以上工作,本文实现了将光学遥感图像太阳耀斑区信息在内波研究中的应用,初步建立了光学遥感在海洋内波研究的应用途径。
Internal solitary waves are ubiquitous at the marginal sea and the continental shelf. Generated and propagating along the pycnocline, internal waves greatly theaten the submarine navigation and the operation of the offshore oil-drilling rigs with the large pycnocline influctuation and the strong speed shear. Furthermore, internal waves can also cause the sound field undulation and reduce the sonar efficiency. As a way of ocean engergy transport, internal waves propagation leads to onflow and sea water mixing and has an effect on the local water exchange, sediment and resuspending. So the research on internal waves has both realistic application aquirements and significant scientific meanings.
     Due to the generation and propagation under the sea surface, regular marine observations cost a lot and are usually difficult to carry out because of the environmental limitations. SAR imagery are usually available at the present research, however SAR are deficient for the long revisit period, high expense and strong noise. Although affected by the cloud, the moderate resolution spectral sensors such as MODIS are able to offset the disadvantage for the wide swath, high temporal resolution and the free data support and become an important data source for internal waves’observation.
     The thesis focuses on the internal waves optical remote sensing based on the successful SAR detetion of internal waves. It first discusses the internal waves features in the optical images and the comparison between the MODIS and SAR images suggests the internal waves in the sun glint has the same features as that in the SAR images, but the dark and bright bands are ranked inversely which are also related to the polarity. Then, it presents two image equalization methods to solve the internal waves identification problem, which enhance the internal waves characteristics in the whole image and facilitate the informateion extraction. The second section also decomposes the internal waves and surface waves using the two-dimensional EMD methods, providing the internal waves information retrieval from high resolution optical images. The critical section, the simulating of internal waves optical remote sensing dection, introduces the strong nonlinear KdV3N model and numerical arithmetic and similates the large-amplitude internal waves in the northern South China Sea accurately with the wave form consistent with the in-situ measurment. What’s more, it establishes the experical model of sun glint internal waves and gets results similar to the real image features. On the basis of these models, the thesis further discusses the experimential model to estimate the amplitude from the distance between the dark and bright bands in optical images. The application of the model in the small area near the Dongsha corral reef produces satisfying estimation. At last, it makes full use of the advantages of optical images in internal waves research to present the statistical characteristics of internal waves in the northern South China Sea, including the internal waves speed distribution and the spatio-temporal distribution. The thesis realizes the application of sun glint information of the optical images in internal waves study, and presents the preliminary use of optical remote sensing in internal waves research.
引文
[1] Alpers W. Theory of radar imaging of internal waves. J. Nature, 1985, 314: 245-247
    [2] Alvarez-Borrego J, Amalia Martinez. Statistics of rough surfaces via remote sensing an experiment, Journal of Modern Optics, 1995, 42(11):2347-2355
    [3] Alvarez-Borrego J, Marco A Machado, Optical analysis of a simulated image of the sea surface, Applied Optics, 1985, 24(7):1064-1072
    [4] Alvarez-Borrego J. 1D rough surfaces: glitter function for remote sensing, Optics Communication, 1995, 1:353-356.
    [5] Alvarez-Borrego J. Optical analysis of two simulated images of the sea surface, SPIE Vol.804 Advances in Image Processing, 1987, 192-200
    [6] Alvarez-Borrego J. Some statistical properties of surface heights via remote sensing. Journal of Modern Optics, 1995, 42(2):279-288
    [7] Alvarez-Borrego J. Two-dimensional glitter function in the study of rough surfaces via remote sensing, Journal of Modern Optics, 1993, 40(11):2081-2086
    [8] Alvarez-Borrego J. Wave height spectrum from sun glint patterns: an inverse problem, J. Geophys. Res., 1993, 98(C6):10245-10258
    [9] Alvarez-Borrego J. Wave spectra from sun glint patterns, SPIE Vol.1794 Optics of the Air-Sea Interface, 1992, 186-194
    [10] Apel J R, Gasparovic R F, Thompson D R, et al. Signatures of surface wave/internal wave Interactions: Experiment and Theory. J. Dyn. Atmos. Oceans, 1988, 12:89-106
    [11] Apel J R, Holbrook J R. Tsai J, Liu A K. The Sulu Sea internal soliton experiment. J. Phys. Oceanogr.,1985, 15(12): 1625-1651
    [12] Apel J R, and H M Byrne, J R Proni, and R L Charnell, Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite, J. Geophys. Res., 1975, 80: 865-881
    [13] Benjamin T B, Internal waves of finite amplitude and permanent form. J. Fluid Mech., 1966, 25:241-270
    [14] Benjamin T B, Internal waves of permanent form in fluids of great depth. J. Fluid Mech., 1967, 29:559-592
    [15] Bhandari S M, W J Prakash, et al. INSAT-VHRR based measurements and interpretation of sunglintsignatures for the estimation of near-surface wind speeds over oceans. OCEANS'94. Oceans Engineering for Today's Technology and Tomorrow's Preservation, Proceedings 1, 1994
    [16] Bole J B, Ebbesmeyer C C, Romea R D. Soliton currents in the South China Sea: measurements and theoretical modeling. Proceeding of the 26th offshore technology conference, Houston, Texas, 1994, 367-376
    [17] Brandt P, Rubing A, Alpers W. Backhaus J O. Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar images from the ERS 1/2 satellites. J. Phys. Oceanogr., 1997, 27:648-663
    [18] Chen Y, Liu P L-F. The unified Kadomtsev-Petviashvili equation for interfacial waves. J. Fluid Mech., 1995, 396:1-36
    [19] Choi W, Camassa R. Fully nonlinear solitary waves in a two-fluid system. J. Fluid Mech.,1999, 396:1-36
    [20] Choi W, Camassa R. Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 1996, 313:83-103
    [21] Colosi J A, R C Beardsley, et al. Observations of nonlinear internal waves on the outer New England continental shelf during the summer Shelfbreak Primer study. Journal of Geophysical Research, 2001, 106 (C5): 9587-9602
    [22] Cox C, W Munk. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Am., 1954, 44(11):838-850
    [23] Cummins, P F, Cherniawsky J Y, and Foreman Michael G G. North Pacific internal tides from the Aleutian Ridge: Altimeter observations and modeling. J. Marine Res., 2001, 59: 167-191.
    [24] da Silva J C, Ermakov S A, Robinson I S, Jeans D R G, Kijashko S V. Role of surface films in ERS SAR signatures of internal waves on the shelf. 1. Short-period internal waves. J. Geophys. Res., 1998, 103(C4): 8009-8031
    [25] da Silva J, A L New, et al. On the observability of internal tidal waves in remotely-sensed ocean colour data. Geophysical Research Letters, 2002, 29 (12): 10-1.
    [26] Davis R E, Acrivos A. Solitary internal waves in deep water. J. Fluid Mech., 1967, 29:593-607
    [27] Djidjeli K, Price W G., Twizell E H, Wang Y. Numerical methods for the solution of the third and fifth-order dispersive Korteweg-de Vries equations. J. Comp. Appl. Math., 1995, 58:307-336
    [28] Duda Timothy F, Lynch James F. Internal tide and nonlinear internal wave behavior at the continental slope in the Northern South China Sea. J. Oceanic Eng., 2004,29(4):1105-1130
    [29] Elachi C, Apel J R. Internal wave observations made with an airborne synthetic aperture imaging radar. J. Geophys. Res. 1976, Lett., 3, 647
    [30] Ermakov S A, S J da, et al. Role of surface films in ERS SAR signatures of internal waves on the shelf. 2. Internal (tidal) waves. J. Geophys. Res., 1998, 103(C4): 8033-8043
    [31] Fett R W, Rabe K., Satellite observation of internal wave refraction in the South China Sea, Geophys. Res. Lett., 4(5), 1977,189-191
    [32] Fu, L L, Holt B. Seasat Views Oceans and Sea Ice with Synthetic-Aperture Radar. JPL publication, 1982, 81-120
    [33] Gasparovic R F, Apel J R, Kasischke E S. An overview of the SAR internalwave signature experiment. J. Geophys. Res., 1988, 93(12):304-316
    [34] Halpern D. Observations on short period internal waves in Massachusetts Bay. J. Marine Res., 1971, 29: 116-132
    [35] Helfrich K R. On long nonlinear internal waves over bottom topography. [PhD thesis]. MIT., 1984, 272
    [36] Helfrich K R, Melville W K. Long Nonlinear Internal Waves. Annual Review of Fluid Mechanics, 2006, 38:395-425
    [37] Hennings I, J Matthews, et al. Sun glitter radiance and radar cross-section modulations of the sea bed. Journal of Geophysical Research, 1994, 99 (C8): 16303-16326
    [38] Hsu M K, Liu A K, Nonlinear internal waves in the South China Sea. Can. J. Remote Sens., 2000, 26:72–81
    [39] Hsu S A, Meindl E A, Gilhousen D B. Determining the power-law wind-profile exponentunder near-neutral stability conditions at sea. J. Appl. Meteor., 1994, 33:757-765
    [40] Huang N E, Z Shen, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903-995.
    [41] Hughes B A, Dawson T W, et al. Ocean Investigation Project: An overview of the Georgia Strait Experiment. J. Geophys. Res., 1988, 93(12):219–234
    [42] Jackson C. Internal wave detection using the Moderate Resolution Imaging Spectro- radiometer (MODIS). Journal of Geophysical Research, 2007, 112 (C11): C11012
    [43] Jackson, C R., and Apel, J. R., An Atlas of Internal Solitary-like Waves and their Properties, Global Ocean Associates, 2004
    [44] Jo T, Choi W. Dynamics of strongly nonlinear internal solitary waves in shallow water. J. St. Appl. Math. 2002, 109:205-227
    [45] Joseph R I. Solitary waves in finite depth fluid. J. Phys. A. Math. Gen. 1977, 10:L255-L227
    [46] Kakutani T, Yamasaki N. Solitary waves on a two-layer fluid. J. Phys. Soc. Jpn,1978,45:674-79
    [47] Kantha L H, Clayson C A. Small scale processes in geophysical fluid flows. San Diego: Academic Press, 2000, 616-684
    [48] Klymak J M, R Pinkel, C-T Liu, A K Liu, L David. Prototypical solitons in the South China Sea, Geophys. Res. Lett., 2006, 33:L11607, doi:10.1029/2006GL025932.
    [49] Koop C G, Butler G. An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 1981, 112:225-251
    [50] Kubota T, Ko D R S, Dobbs L D. Propagation of weakly nonlinear internal waves in a straitified fluid of finite depth. AIAA J. Hydronautics. 1978, 12:157-165
    [51] Lee C Y, Beardsley R C. The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res., 1974, 79: 453-462
    [52] Li X, Clemente-Colon P, Friedman K S. Estimating oceanic mixedlayer depth from internal wave evolution observed from Radarsat-1 SAR, Johns Hopkins APL Tech. Dig., 2000, 21: 130-135
    [53] Liu A K, Chang Y S, Hsu M-K, Liang N K. Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res., 1998, 103:7995-8008
    [54] Lynett P J, Liu P L-F. A two-dimensional, depth-averaged model for internal wave propagation over variable bathymetry. J. Wave Motion. 2002, 36:221-240
    [55] Matsuno Y. Two-dimensional evolution of surface gravity waves on a fluid of arbitrary depth. J. Phys. Rev. E., 1993, 47:4593-4596
    [56] Maxworthy T. A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 1979, 84 (C1): 338-346.
    [57] Melsheimer C, Keong K L. Sun glitter in spot images and the visibility of oceanic phenomena. Proceeding of the 22nd Asian conference on remote sensing, Singapore, 2001
    [58] Miles J W. On internal solitary waves. Tellus, 1979, 31:456-62
    [59] Moum J N, D M Farmer, et al. Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward over the Continental Shelf. Journal of Physical Oceanography, 2003, 33(10): 2093-2112
    [60] Ono H. Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan, 1975, 39 (4):1082-1091
    [61] Osborne A R, Burch T L. Internal solitons in the Andaman Sea. J. Science, 1980, 208(4443): 451-460
    [62] Ostrovsky L A, Stepanyants Y A. Do internal solitons exist in the ocean? Rev. Geophys., 1989, 27:293-310
    [63] Perenne N, Renouard D P. Internal waves and rectification in a linearly stratified fluid. J. Dyn. Atmos. Oceans, 1999, 29: 65-84.
    [64] Pierini S. A model for the Alboran Sea internal solitary waves, J. Phs. Oceanogr., 1989, 11:755-772
    [65] Pingree R D, Mardell G T, New A L. Propagation of internal tides from the upper slope of the Bay of Biscay. Nature, 1986, 321(6066): 154-158
    [66] Porter D L, Thompson D R. Continental Shelf Parameters Inferred from SAR Internal Wave Observations. J. Atmos. Ocean. Tech., 1999, 16 (4): 475-487
    [67] Ramirez C, Renouard D. Generation of internal waves over a shelf. J. Dyn. Atmos. Oceans, 1998, 28: 107-125
    [68] Richez C. Airborne Synthetic Aperture Radar tracking of internal waves in the Strait of Gibraltar. Progress in Oceanography, 1994, 33 (2): 93-159
    [69] Richez C. Airborne Synthetic Aperture Radar tracking of internal waves in the Strait of Gibraltar. Progress in Oceanography, 1994, 33 (2): 93-159
    [70] Sakai T, Redekopp L G. Models for strongly-nonlinear evolution of long internal waves in a two-layer stratification. J. Nonliear Proc. Geophys., 2007, 14:31-47
    [71] Shand J A. Internal waves in the Georgia Strait, Trans. Amer. Geophys. Union, 34, 849-856, 1953.
    [72] Small J, Zack Hallock, Gary Pavey and John Scott, Observations of large amplitude internal waves at the Malin Shelf edge during SESAME 1995. Contin. Shelf Res., 1999, 19: 1389-1436
    [73] Su F C, C R Ho, et al. Estimating amplitudes of internal waves using satellite ocean colour imagery of the South China Sea. International Journal of Remote Sensing, 2008, 29(21): 6373-6380
    [74] Thurman H V. Introductory Oceanography, Fifth Edition, Merrill Publishing Company, 1988
    [75] Vlasenko V, Stashchuk N, Hutter K. Water exchange in fjords induced by tidally generated internal lee waves. J. Dyn. Atmos. Oceans, 2002, 35: 63-89
    [76] Weidemann A D, D J Johnson et al. Remote imaging of internal solitons in the coastal ocean. Remote Sensing of Environment, 2001, 76 (2): 260-267
    [77] Wolanski E, Delesalle B. Upwelling by internal waves, Tahiti, French Polynesia. Contin. Shelf Res., 1995, 15: 357-368.
    [78] Wunsch C. Internal tides in the ocean. Rev. of Geophys. Space Phys., 1975, 13: 167-182
    [79] Zappa C J, A T Jessup, et al. High-resolution airborne infrared measurements of ocean skin temperature. Geoscience and Remote Sensing Letters, IEEE 2005, 2(2): 146-150
    [80] Zhao Z X, Klemas V, Zheng Q A, et al. Estimating parameters of a two-layer stratified ocean from polarity conversion of internal solitary waves observed in satelite SAR images. Remote Sensing Environment. 2004, 92:276-287
    [81] Zhao Z X, Klemas V, Zheng Q A, Yang X H. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett.2004, 31, L06302, doi:10.1029/2003GL019077
    [82] Zheng Q-A, Yuan Y-L, Klemas V, Yan X-H. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. J. Geophys. Res., 2001, 106(C12): 31415-31423
    [83] Zheng Q-A, Susanto Dwi R, Ho Chung-Ru et al. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. J. Geophys. Res. Oceans, 2007, 112, C03021, doi:10.1029/2006JC003551
    [84] Zheng Q-A, Yan X-H, Klemas V. Statistical and dynamical analysis of internal waves on the continental shelf of the middle Atlantic bight from space shuttle photographs. J. Geophys. Res. 1993, 98 (C5): 8495-8504
    [85]蔡树群,陈荣裕,邱章.底地形变化对内潮产生的影响的数值研究.台湾海峡,2000,19(1):74-81
    [86]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999,90-195
    [87]孟俊敏.利用SAR影像提取海洋内波信息的技术研究:[博士论文].青岛:中国海洋大学,2002
    [88]申辉.海洋内波的遥感与数值模拟研究:[博士论文].青岛:中国科学院海洋研究所, 2005
    [89]宋平舰,张杰.二维经验模分解在海洋遥感图像信息分离中的应用.高技术通讯,2001,11(9):62-67
    [90]谢志宏.利用SAR及MODIS卫星影像研究安达曼海非线性内波之发源及演变,[硕士论文].基隆:台湾海洋大学,2004
    [91]杨劲松,周长宝,黄韦艮.合成孔径雷达图像内波参数提取及方法研究,遥感技术与应用. 2000, 15(1):6-9
    [92]袁业立.海波高频谱形式及SAR影像分析基础.海洋与湖沼,1997, 28(增刊):1-5
    [93]张天德,鲁统超.高阶广义方程和KP方程的数值解法.系统科学与数学,2005,25(6):658-668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700