用户名: 密码: 验证码:
南海陆架坡风致混合及长期混合观测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南海是西北太平洋最大的边缘海,蕴涵着丰富的能量以及各种各样的海洋动力过程,局地风场和潮流产生的内波破碎一般会导致强混合。近岸海洋混合是研究水团物理特征、近岸环流、营养盐通量、近岸环境污染物分布的重要物理过程。南海陆架坡提供了一个很好的实验平台用于研究风致混合及各种决定陆架坡混合变化的动力过程。虽然风致内波、风致混合对海洋内部能量、物质输运等方面的重要作用得到了人们的认可,但是受限于目前的观测手段,很难得到连续的混合观测资料,特别是在极端天气状况下的集成观测数据,使得强风场向海洋内部输运能量、产生强混合的过程仍没有得到很深入的研究。
     在本论文中,我们主要解决的问题包括如下两个大的方面:(1)根据在南海陆架坡得到的连续小尺度观测资料、流场资料等,分析强风暴天气情况下海洋的响应,包括海洋混合的变化过程、海洋内波的能量传播等,目的在于研究风致混合随着时间、空间的演变过程以及产生机制。(2)为了在各种天气情况下进行长时间、连续混合观测,本论文利用一种新的观测仪器提出在惯性-对流子域内计算混合参数的新方法。
     2005年8月在南海陆架坡处19o37' N, 112o04' E进行了一次集成海洋混合观测,包括锚系ADCP(Acoustic Doppler Current Profiler)流场资料、由小尺度垂向剖面仪TurboMap II观测得到的湍动能耗散率ε剖面以及由温盐链得到的温盐资料。这是第一次在南海通过直接观测获取的高分辨率ε分布结果,并且这次观测是在一次风暴天气过程中进行的。通过观测发现,在混合层内风前、风后的平均湍动能耗散率分别为1. 5×10?6Wkg ?1和2. 0×10?6Wkg ?1,并没有发生明显变化,但是平均混合层由风前的12m增加到了风后的22m,即经过风暴之后强混合层厚度大约增加了10m,而且强混合经过风暴后可以穿透到60m或者更深的水层内。风暴过境期间激发了近惯性内波,能持续1.5个惯性周期或者更长的时间。通过旋转谱分析发现近惯性频率内波能量具有下传的趋势,通过垂向模态分解得出高模态近惯性内波更有效地生成剪切不稳定,是海洋内部强混合的能量来源。
     为了能更好地研究各种极端天气情况下海洋的响应,特别是小尺度混合过程的长期变化规律,如何能获取连续的长期观测资料是最大的瓶颈,文中介绍了一种新的混合观测仪器χpod,用于实现混合资料的长期连续观测。利用2005年在赤道太平洋锚系系统TAO上得到的高分辨率、长期观测资料,在惯性-对流子域内通过温度梯度谱的尺度分析估算了热耗散率和湍动能耗散率。得到的结果与通过高波数范围内的温度梯度谱尺度分析得到的混合参数结果进行了比较,结果发现在这两种波数范围内计算的数值在90%置信区间内吻合得比较好,相差在5倍以内。我们建议具有2Hz的采样频率的温度观测资料就可以估算出合理的热耗散率及相关的其他混合参数,远远低于120Hz采样频率,因此大大降低了长时间观测对于数据存储的要求。
The South China Sea (SCS) is one of the broadest marginal seas adjacent to the Northwest Pacific, which contains a variety of oceanic dynamic processes. Breaking of internal waves due to local wind field and tidal currents usually leads to strong turbulent mixing which is an important physics processes to study the water mass properties, continental shelf circulation, nutrition flux and pollution distribution. The continental shelf in the SCS provides a good platform to explore the enhanced mixing by strong wind and the corresponding influences on the dynamic processes in the ocean side when a storm passes by. Despite the importance of internal waves and mixing induced by wind to the energy flux and mass transportation is acknowledged, it is difficult to obtain continous measurements of mixing restricted by means of the present observation, especially for the integrated observation under extreme weather conditions. Thus, the energy propagation and enhanced mixing induced by strong wind is still to open.
     In this paper, we addressed two major questions as follows: (1) Based on the observation obtained on the shelf in the SCS, including small-scale measurements, moored ADCP data and temperature data, we analyzed the processes of ocean mixing indueced by the passing strom, as well as how the engery of internal wave spread to generate turbulent mixing and the evolution of the ehanhacd mixing. (2) In order for long term and continous observation of small-scale processes under a variety of weather conditions, a newly built instrument and computation method are introduced in this paper.
     An integrated observation in August 2005 was unfolded on the SCS shelf at 19o37' N, 112o04' E , including current obtained by mooring ADCP (Acoustic Doppler Current Profiler), turbulent kinetic energy (TKE) dissipation rate by TurboMap II and temperature by thermistor chains. It is the first time to get the direct continuous measurements with high time resolution in the SCS, especially under a storm weather condition. The enhanced mixing depth increased about 10 m after the storm, and the average dissipation rates in the mixed layer of pre-storm and post-storm were 1. 5×10?6Wkg ?1 and 2. 0×10?6Wkg ?1 , respectively. The enhanced mixing can penetrate more than 60 m deep after the storm. Near-inertial currents were excited by the storm and lasted more than 1.5 inertial periods. The energy of near-inertial internal waves generated more shear instabilities in higher modes which are considered as the source of the enhanced mixing.
     In order for better understanding the response in the ocean side to a variety of extreme weather conditions, in particular the evolution of small-scale mixing processes, how to obtain continuous long-term measurements is the biggest bottleneck. A newly built instrument,χpod, is introduced and obtained a series of data of 4-month at equatorial Pacific Ocean. Estimates of dissipation rates of thermal variance and turbulent kinetic energy are made by scaling temperature gradient spectra in the inertial-convective subrange from well-resolved measurements on the equatorial ocean mooring. These are compared to estimates derived from scaling spectra at high wavenumbers. It is found that these values agree to within a factor of 5 on a 90% confidence level. We suggest that reasonable estimates of thermal variance can be made from temperature measurements resampled at 2 Hz, significantly slower than the 120 Hz data sampled for this study, thereby reducing data storage requirements for long deployments.
引文
[1]蔡树群,陈荣裕,邱章,2000:底地形变化对内潮产生影响的数值研究.台湾海峡, 19(1):74-81.
    [2]蔡树群,甘子钧,龙小敏,2001:南海北部孤立子内波的一些特征和演变.科学通报,46(15):1245-1250.
    [3]蔡树群,龙小敏,黄企洲,2003:南海北部孤立子内波生成条件的初步数值研究.海洋学报,25(4):119-124.
    [4]戴德君.若干地形下内波传播及内潮生成问题的理论解: [博士学位论文].青岛:中国海洋大学,2003
    [5]杜岩.南海混合层和温跃层的季节动力过程.[博士学位论文].青岛:中国海洋大学,2002
    [6]邱章,方文东,2000:南海北部大陆坡区斜压海流的垂向结构.台湾海峡,19(4):405-412.
    [7]邱章,徐锡祯,龙小敏,1996:南海北部一观测点内潮特征的初步分析.热带海洋,15(4):63-67.
    [8]孙群.海浪破碎对海洋上混合层影响的数值研究.[博士学位论文].青岛:中国海洋大学,2003.
    [9]徐德伦,于定勇.随机海浪理论[M].北京:高等教育出版社,2001:87-89.
    [10]张效谦.南海北部陆架陆坡区内波与混合研究.硕士学位论文].青岛:中国海洋大学,2005
    [11]张效谦,梁鑫峰,田纪伟,2005:南海北部450 m以浅水层内潮和近惯性运动研究.科学通报,50(18):2027-2031.
    [12]周磊.风对海洋低频运动的能量输运与能量的垂向传播.[硕士学位论文].青岛:中国海洋大学,2005.
    [13]周磊,田纪伟,王东晓,2005:斜压海洋水平尺度波动各模态能量分布对风的响应。中国科学:D辑,35(10),997-1006.
    [14] Abarbanel H. D. I., D. D. Holm, J. E. Marsden, and T. Ratiu, 1984: Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Phys. Rev. Lett., 52, 2352-2355.
    [15] Alford M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed-layer near-inertial motions, J. Phys. Oceanogr., 31(8), 2359-2368.
    [16] Alford M. and M.C. Gregg, 2001a: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude, J. Geophys. Res., 106(C8), 16,947-16,968.
    [17] Apel J. R., L. A. Ostrovsky, Y. A. Stepanyants, and J. F. Lynch, 2007: Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am., 121, 695-722,doi:10.1121/1.2395914.
    [18] Baines P. G., 1973: The generation of internal tides by flat-bump topography. Deep-Sea Res., 20, 179–205.
    [19] Baines, P.G., 1974: The generation of internal tides over steep continental slopes, Philos. Trans. R. Soc. London A, 277, 27–58.
    [20] Batchelor G. K., 1959: Small-scale variation of convected quantities like temperature in turbulent fluid. J. Fluid. Mech., 5, 113–139.
    [21] Bell T. H. 1975a: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705–722.
    [22] Bell T. H., 1975b: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320–327.
    [23] Bryan F.O., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970-985.
    [24] Burgers G. and V. Makin, 1993: Boundary-Layer Model Results for Wind-Sea Growth, J. Phys. Oceanogr., 23, 372-385.
    [25] Bye J. A. T., 1988: The coupling of wave drift and wind velocity profiles. J. Mar. Res., 46, 457-472.
    [26] Chant R., 2001: Evolution of near-inertial waves during an upwelling event on the New Jersey inner shelf. J. Phys. Oceanogr., 31, 746–764.
    [27] Chang S. W. and R. A. Anthes, 1978: Numerical simulations of the ocean’s nonlinear, baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468–480
    [28] Chang S. W., and R. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128–135.
    [29] Chen C., R. O Reid and W. D. Nowlin, 1996: Near-inertial oscillations over the Texas–Louisiana shelf, J. Geophys. Res., 101 (C2), 3509–3524.
    [30] Chriss T. M. and D. R. Caldwell, 1982: Evidence for the influence of form drag on bottom boundary layer flow, J. Geophys. Res., 87, 4148–4154.
    [31] Colosi J. A., R.C. Beardsley, J. F. Lynch, G. Gawarkiewicz, C.-S. Chiu and A. Scotti, 2001: Observations of nonlinear internal waves on the outer New England continental shelf during the summer Shelfbreak Primer study, J. Geophys. Res., 106, 9587–9601.
    [32] Craig P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 2546-2559.
    [33] Cummins P. F., G. Holloway and A. E. Gargett, 1990: Sensitivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Oceanogr. 20, 817–830.
    [34] D’Asaro E. A., 1995: Upper ocean inertial currents forced by a strong storm. Part III: Interaction of inertial currents and mesoscale eddies. J. Phys. Oecanogr., 25, 2953-2958.
    [35] D’Asaro E. A., 2003: The Ocean Boundary Layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561-579.
    [36] D'Asaro E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oecanogr., 15, 1043-1059.
    [37] D'Asaro, E. A., C. C. Eriksen, M. A. Levine, P. Niiler, C. A. Paulson and P. van Meurs, 1995: Upper ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 2909-2936.
    [38] D’Asaro E. A. and R. C. Lien, 2000: Lagrangian Measurements of Waves and Turbulence in Stratified Flows. J. Phys. Oceanogr., 30, 641-655.
    [39] Davis, R. E., R. de Szoeke and P. Niiler, 1981: Variability in the upper ocean during MILE. Part II. Modelling the mixed layer response. Deep-Sea Res., 28A, 1453-1475.
    [40] Dewey R. K., J. N. Moum, and D. R.Caldwell, 1993: Microstructure Activity within a mini-filament in the coastal transition zone. J. Geophys. Res., 98, 14,457-14,470.
    [41] Dewey R. K. and W. R. Crawford, 1988: Bottom stress estimates from the vertical dissipation rate profiles on the continental shelf. J. Phys. Oceanogr., 18, 1167–1177.
    [42] Dillon T. M. and D. R. Caldwell, 1980: The batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res., 85, 1910–1916.
    [43] Egbert G. D. and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter data, J. Geophys. Res., 106, 22475–22502.
    [44] Emanuel K. A., 1985: An air–sea interaction theory for tropical cyclones. Part I. J. Atmos. Sci., 42, 1062–1071..
    [45] Gargett A., 1985: Evolution of scalar spectra with the decay of turbulence in a stratified fluid. J. Fluid. Mech., 159, 379–407.
    [46] Gibson C. H. and W. H. Schwarz, 1963: The universal equilibrium spectra of turbulent velocity and scalar fields. J. Fluid. Mech., 16, 365–384.
    [47] Gill A. E., 1984: On the behaviour of internal waves in the wakes of storms. J. Phys. Oceanogr. 14, 1129–1151.
    [48] Gregg M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 (C7), 9686–9698.
    [49] Hazel P., 1972: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 39-62.
    [50] Henyey F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field. J. Geophys. Res., 91, 8487–8495.
    [51] Hibiya, T., 1986: Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91, 7697–7708.
    [52] Hibiya T., M. Nagasawa and Y. Niwa, 2002: Nonlinear energy transfer within the oceanicinternal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207,doi:10.1029/2002JC001376.
    [53] Hibiya T. and M. Nagasawa, 2004: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31, L01301, doi:10.1029/2003GL017998.
    [54] Hibiya T., M. Nagasawa and Y. Niwa, 2006: Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys. Geophys. Res. Lett., 33, L03611, doi:10.1029/2005GL025218
    [55] Hibiya T., Y. Niwa, K. Nakajima and N. Suginohara, 1996: Direct numerical simulation of the roll-off range of internal wave shear spectra in the ocean. J. Geophys. Res., 101, 14123–14129.
    [56] Hibiya T., Y. Niwa and K. Fujiwara, 1998: Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res., 103, 18715–18722.
    [57] Holloway J. M., R. A. Dahlgren and W. H. Casey, 2001: Nitrogen release from rock and soil under simulated field conditions. Chem. Geol. 174, 403–414
    [58] Howard L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509-512.
    [59] Jones I. S. F., and B. C. Kenney, 1977: The scaling of velocity fluctuations in the surface mixed layer. J. Geophys. Res., 82, 1392–1396.
    [60] Kase R. H. and R. A. Clarke, 1978: High frequency internal waves in the upper thermocline during GATE. Deep Sea Res., 25, 815-825.
    [61] Klymak J. M. and J. N. Moum, 2007: Oceanic isopycnal slope spectra. Part ii: Turbulence. J. Phys. Ocean., 37, 1232–1245.
    [62] Kraichnan R., 1968: Small-scale structure of a scalar filed convected by turbulence. Phys. Fluids., 11, 945–953.
    [63] Kunze E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15, 544-565.
    [64] Kunze E., A. J. Williams III, and M. G. Briscoe, 1990: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95, 18127-18142.
    [65] Large W. G., and G. B. Crawford, 1995: Observations and simulations of upper ocean response to wind events during the Ocean Storms Experiment, Part I. J. Phys. Oceanogr., 25 (11), 2831-2852.
    [66] Leaman K. D. and Sanford T. B., 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profile, J. Geophys. Res., 80(15), 833- 846.
    [67] Ledwell J. R., A. J. Watson and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open ocean tracer-release experiment. Nature 364: 701-703.
    [68] Levine M. D., 2002: A modification of the Garrett?Munk internal wave spectrum. J. Phys. Oceanogr., 32, 3166–3181.
    [69] Levine E. R. and R. G. Lueck, 1999: Turbulence measurements with an autonomous underwater vehicle. J. Atmos. Oceanic Technol., 1533–1544.
    [70] Lombardo C. P., and M. C. Gregg, 1989: Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophys. Res., 94 (C5), 6273–6284.
    [71] Luketina D. A. and J. Imberger, 2001: Determining turbulent kinetic energy dissipation from batchelor curve fitting. J. Atmos. Oceanic Technol., 18, 100–113.
    [72] Mackinnon, J. A., and M. C. Gregg, 2003: Shear and Barocilinic Energy Flux on the Summer New England Shelf. J. Phys. Oceanogr., 33, 1462-1475.
    [73] MacKinnon J. A. and M. C. Gregg, 2005a: Near-Inertial Waves on the New England Shelf: the role of evolving stratification, turbulent dissipation, and bottom drag, J. Phys. Oceanogr., 35 (12), 2408-2424.
    [74] MacKinnon J. A. and M. C. Gregg, 2005b: Spring Mixing on the New England Shelf. J. Phys. Oceanogr., 35(12), 2425-2443.
    [75] Malkus J. S., 1962: Large-scale interactions. The Sea: Ideas and Observations on Progress in the Study of the Seas, John Wiley and Sons, 88–294.
    [76] Marotzke J. and J. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr. 21, 1372–1385.
    [77] McComas C. H., and P. Müller, 1981: The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970–986.
    [78] Mellor G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851-875.
    [79] Melville W. K., 1994: Energy dissipation by breaking waves, J. Phys. Oceanogr., 24, 2041-2049.
    [80] Melville W. K., 1996: The role of surface-wave breaking in air–sea interaction. Ann. Rev. Fluid Mech., 28, 279–321.
    [81] Miles J. W., 1961: On the stability of heterogeneous shear flow. J. Fluid Mech., 10, 496-508. [] Moehlis J. and S. G. Llewellyn Smith, 2001: Radiation of mixed layer near-inertial oscillations. J. Phys. Oceanogr., 31, 1550-1560.
    [82] Moum J. N., D. R. Caldwell, J. D. Nash and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr. 32, 2113–2130.
    [83] Moum J. N. and J. D. Nash, 2000: Topographically induced drag and mixing at a small bank on the continental shelf, J. Phys. Oceanogr. , 35 (8), 2049–2054.
    [84] Moum J. N. and J. D. Nash, 2009: Mixing measurements on an equatorial ocean mooring. J. Atmos. and Oceanic Tech., 26, 317-336
    [85] Moum J. N., and W. D. Smyth, 2001: Upper ocean mixing. Encyclopedia of Ocean Sciences, 6, Academic Press, 3093–3100.
    [86] Munk W., and C. Wunsch, 1998: Abyssal recipes II, energetics of tidal and wind mixing. Deep-Sea Res., 45, 1977–2010.
    [87] Nash J. D. and E. Kunze, J. M. Toole and R.W. Schmitt, 2004: Internal Tide Reflection and turbulent mixing on the Continental Slope. J. Phys. Oceanogr., 34, 1117-1134.
    [88] Nash J. D. and J. N. Moum, 1999: Estimating salinity variance dissipation rate from conductivity microstructure measurements. J. Atmos. Oceanic Technol., 16, 263–274.
    [89] Nash J. D.and J. N. Moum, 2001: Internal hydraulic flows on the continental shelf: high drag states over a small bank. J. Geophys. Res. 106 (C3), 4593–4611.
    [90] O’Brien J. J., and R. O. Reid, 1967: The non-linear response of a two-layer baroclinic ocean to a stationary, axially-symmetric hurricane. Part I: Upwelling induced by momentum transfer. J. Atmos. Sci., 24, 197–207..
    [91] Ooyama K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.
    [92] Osborn T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanor., 10, 83–89.
    [93] Osborn T. R. and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid. Dyn., 3, 321–345.
    [94] Osborn T., D. M. Farmer, S. Vagle, S. A. Thorpe, and M. Cure, 1992: Measurements of bubble plumes and turbulence from a submarine. Atmos.-Ocean, 30 (3), 419–440..
    [95] Park Y. G. and K. Bryan, 2000: Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. Part I: Scaling-law sensitivity to vertical diffusivity, J. Phys. Oceanogr., 30, 590–605.
    [96] Pierson W. J., and L. Moskowitz, 1964: A proposed spectral form for fully-developed wind seas based on the similarity theory of S. A. Kitaigorodsky. J. Geophys. Res., 69, 5181-5190.
    [97] Pingree R. D. and A. L. New, 1989: Downward propagation of internal tidal energy into the Bay of Biscay. Deep-Sea Res. 36, 735–758.
    [98] Pollard R. T., 1970: On the generation by winds of inertial waves in the ocean, Deep-Sea Res. 17 (4), 795–812.
    [99] Pollard R. T., and R. C. Millard Jr., 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. 17 (4), 813–821.
    [100] Polzin K., 1996: Statistics of the Richardson number: mixing model and finestructure. J. Phys. Oceanogr., 26, 1409-1425.
    [101] Polzin K. L., J. M. Toole and R.W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306–328
    [102] Price J. F., R. A. Weller and R. Pinkel, 1986: Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411–8427.
    [103] Rattray M., 1960: On the coastal generation of internal tides. Tellus, 12, 54–61.
    [104] Ray R. D. and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 1259–1263.
    [105] Rippeth T. P. and M. E. Inall, 2002: Observations of the internal tide and associated mixing across the Malin Shelf. J. Geophys. Res., 107(C4), 3028, doi:10.1029/2000JC000761.
    [106] Rippeth T. P., N. Fisher and J. H. Simpson, 2001: The semi-diurnal cycle of turbulent dissipation in the presence of tidal straining, J. Phys. Oceanogr., 31, 2458–2471.
    [107] Rudnick D. L., T.y J. Boyd, R. E. Brainard, et al., 2003: From Tides to Mixing Along the Hawaiian Ridge. Science, 301, 355-357.
    [108] Sandstorm H., J. and A. Elliott, 1984: Internal tide and solitons on the Scotian Shelf: A nutrient pump at work.. J. Geophys. Res., 89, C10: 6415-6424.
    [109] Sandstorm H., and N. S. Oakey, 1995: Dissipation in internal tides and solitary waves. J. Phys. Oceanogr., 25, 604-614.
    [110] Sanford T. B. and R. C. Lien, 1999: Turbulent properties in a homogeneous tidal bottom boundary layer. J. Geophys. Res., 104, 45-1257.
    [111] Scott J. R., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32, 3578-3595.
    [112] Scotti R. S., and G. M. Corcos, 1972: An experiment on the stability of small disturbances in a stratified free shear layer. J. Fluid Mech., 52, 499-528.
    [113] Sharples J., C. M. Moore and E. R. Abraham. 2001: Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand. J. Geophys. Res. , 106: 14069–14081.
    [114] Shearman R. K., 2005: Observations of near-inertial current variability on the New England shelf, J. Geophys. Res., 110 (C02012), 10.1029/2004JC002341.
    [115] Simpson J. H., T. P. Rippeth and A. R. Campbell, 2000: The Phase Lag of Turbulent Dissipation in Tidal Flow. In: Interactions between Estuaries, Coastal Seas and Shelf Seas. Ed: T. Yanagi. Pub: Terra Scientific Publishing Company (TERRAPUB), Tokyo, 2000. 57-67.
    [116] Simpson J. H., W. R. Crawford, T. P. Rippeth, A. R. Campbell and J. V. S. Choak, 1996: Vertical Structure of turbulent dissipation in shelf seas. J. Phys. Oceanogr., 26(8), 1580-1590.
    [117] Smith S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15467-15472.
    [118] Smith Llewellyn S. G. and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 1554–1566.
    [119] Smyth W. D., 1999: Dissipation range geometry and scalar spectra in sheared, stratified turbulence. J. Fluid. Mech., 401, 209–242.
    [120] Soloviev A. and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res., 50, 371-395.
    [121] Soloviev A. V., N. V. Vershinsky, and V. A. Bezverchnii, 1988: Small scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res., 35, 1859–1874.
    [122] Sreenivasan K. R., 1996: The passive scalar spectrum and the obukhovcorrsin constant. Phys. Fluids., 8, 189–196.
    [123] Stewart R. W. and H. L. Grant, 1962: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves, J. Geophys. Res., 67, 3177–3180.
    [124] St. Laurent L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 2882–2899.
    [125] Sun H., and E. Kunze, 1999: Internal wave–wave interactions. Part II: Spectral energy transfer and turbulence production rates. J. Phys. Oceanogr., 29, 2905–2919.
    [126] Terray, E. A., M. A. Donelan, Y. C. Agrawal, et al., 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792-807.
    [127] Thorpe S. A., 1971: Experiments on the instability of stratified shear flows: Miscible flows. J. Fluid Mech., 46, 299-319.
    [128] Thorpe S. A., 1973: Turbulence in stabley stratified fluids: A review of laboratory experiments. Bound.–Layer Meteor., 5, 95-119.
    [129] Thorpe S. A., 1974: Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech., 61, 731-751.
    [130] Thorpe S. A., 1978: On the shape and breaking of finite amplitude internal gravity waves in a shear flow. J. Fluid Mech., 85, 7-32.
    [131] Thorpe S. A., 1995: Vertical Dispersion of Oil Droplets in strong winds: the Braer Oil Spill. Marine Pollution Bulletin, 30(11), 756-758.
    [132] Thorpe S. A., 1998: Estimating internal waves and diapycnal mixing from conventional mooring data in a lake. Limnol. Oceanogr., 43, 936-945.
    [133] Thorpe S. A., T. Osborn, J. Jackson, A. J. Hall and R. G. Lueck 2003: Measurements of turbulence in the upper ocean mixing layer using Autosub. J. Phys. Oceanogr. 33, 122-145.
    [134] Tian J. W., L. Zhou X. Q. Zhang, et al., 2003: Estimates of M2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett., 30(17): 1889, doi:10.1029/2003GL018008.
    [135] Toole J. M., and R. W. Schmitt, 1987: Small-scale structures in the north-west Atlantic subtropical front. Nature, 327, 47-49.
    [136] Tsujino H., H. Hasumi and N. Suginohara, 2000: Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depths, J. Phys. Oceanogr., 30 , 2853–2865.
    [137] van Haren H., 2000: Properties of vertical current shear across stratification in the North Sea, J. Mar. Res., 58,465–491.
    [138] Watanabe M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux toinertial motions in the surface mixed layer. Geophys. Res. Lett., 29, doi:10.1029/2001GL014422.
    [139] Webster F., 1968: Observations of inertial-period motions in the deep sea. Reviews of Geophysics, 6 (4): 473–490.
    [140] Wolk F., H. Yamazaki, L. Seuront and R.G. Lueck, 2002: A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19, 780–793.
    [141] Young W. R., and M. Ben Jelloul, 1997: Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735-766.
    [142] Zhang J., R. W. Schmitt, and R. X. Huang, 1998: Sensitivity of GFDL Modular Ocean Model to the parameterization of double-diffusive processes. J. Phys. Oceanogr., 28, 589–605.
    [143] Zhang X. Q., X. F. Liang, J. W. Tian, 2005: Estimates of mixing on the South China Sea shelf. Acta Oceanologica Sinica, 24(3), 1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700