用户名: 密码: 验证码:
长江羽流混合与扩散过程和南海海平面低频变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淡水羽(river plume)是淡水从河口入海自然生成的物理现象,研究淡水羽的运动规律和动力机制对于河口附近的泥沙输运与淤积和生态环境的变化趋势具有重要的理论意义和实用价值。淡水从河口入海生成的淡水羽在运动过程中不仅伴随着盐度、温度的水平扩散,因水文环境和海面风的影响,还会产生垂直方向的混合。由于与外海水在盐度、温度及悬浮沉积物浓度差别较大,羽流水会形成性质相近的水团,在水团的交界处形成锋面。影响淡水羽的扩散和混合过程的动力因素具有多样性和多变性的特点。羽流区既受河流径流量变化的影响,如径流的洪、中、枯季的季节变化;又受海洋的动力特征的影响,如潮汐的涨落,大、中、小潮的变化,而且还受风场和陆架环流的影响。这些因素的共同作用使得河口-陆架区的动力过程变得异常复杂,许多羽流区实际上不可能达到一个稳定的状态,因为它们有许多因素在这里相互作用。世界上没有两个河口-陆架羽流系统是相似的,以致人们不知道一些观察到的现象是河口羽流的普遍现象还是个别现象。因此,科学界对羽流动力学的研究一直是方兴未艾。
     本文从最新发展的区域海洋模式ROMS出发,通过历史资料的诊断分析和模式模拟之间的相互印证,建立了适用于中国近海的高分辨率海洋动力模式。由科学问题出发设计模式实验,主要对认识相对薄弱的潮汐和风影响长江羽流扩散和混合过程的物理机制进行了探讨,揭示了潮流混合影响羽流凸起区和浮力沿岸流的物理机制;还发现潮汐混合会对沿岸流的淡水输送和体积输送产生深远影响,并对此进行了理论探讨;潮汐和风相互作用的涨落潮周期不对称会形成沿岸羽流厚度的半日周期变化,这是对潮汐应变理论的有益补充。
     潮流一方面可以调制河口向外的淡水输送,另一方面可以产生湍能混合减小羽流水和陆架水之间的密度差异。研究发现:潮流引起的湍能混合变化在大小潮周期上变化显著,小潮向大潮转化时,潮流增大、混合增强;逐渐增强的湍流混合使小潮时形成的海水层化在近岸区域被均匀混合,低盐羽流水团会从河口羽流凸起区(bulge)脱落,该过程周期性发生,这为观测到的长江低盐羽流水的脱落提供了另外一种可能的解释。此外,潮汐会对沿岸羽流动力学产生重要影响:无潮汐混合存在时,浮力沿岸流呈表层局限型,它和底边界无相互作用;考虑潮汐影响后,潮汐混合产生强的垂向动量输送,下溯的沿陆架流可以达到较深的深度,进而在底边界形成Ekman层,底边界Ekman层的离岸输运将驱动盐度锋向外海发展。因此,潮汐作用使得长江口沿岸淡水羽流从近贴岸界的表层局限型向离岸较远的底部输运型转变。更为重要的是,潮汐混合减弱了羽流水和外海水的密度差异,扩展了沿岸流的宽度和深度,潮汐作用改变了沿岸流的淡水输送量以及驻留在羽流凸起区的淡水量。没有潮汐影响时,只有约35%的淡水进入沿岸流向下游输送,这意味着有更多的淡水驻留在羽流凸起区并向上游扩散;有潮汐影响时,约80%的淡水进入沿岸流区,潮汐羽流也趋于稳定。
     上升流风使得淡水羽向东北方向扩散,由于风生混合的影响,淡水羽盐度在扩散过程中逐渐减弱。研究发现:在没有潮汐强迫时,沿岸淡水羽流以近似定常厚度向外海扩散。有潮汐时,潮汐和风场的相互作用,会产生流场结构的涨落潮不对称。上升流风和潮汐的相互作用在涨潮时会在盐度锋向岸一侧形成辐聚区,使得盐度锋有加深的趋势;落潮时锋区内Ekman平流和潮流同方向,盐度锋厚度变浅。上升流风和潮汐涨落潮周期的不对称使得羽流厚度存在半日周期变化。下降流风时使羽流局限在较窄的范围内并使羽流厚度增加。
     本文还初步讨论了夏季台湾暖流和季风对长江羽流扩散的影响,模式模拟表明:无季风存在时,长江羽流处于斜压不稳定状态,会形成一系列气旋与反气旋涡;反气旋涡旋可以从河口区和沿岸流区脱落并且向东北方向扩散,间歇性发展的南风可以促进脱落的低盐羽流水的扩散。夏季风的强迫对羽流扩散过程的影响更为明显,夏季风的存在减弱了盐度锋的斜压不稳定特性,羽流水在南风强迫下主要向东北方向扩散进入日本海。
     以上研究成果主要揭示了潮流、风和陆架环流对长江羽流混合及扩散过程的影响机理,为认识海洋观测结果提供了一定的理论依据。
     南海海面温度(SST)的变化和ENSO变化密切相关,普遍认为ENSO对南海SST的影响主要是通过大气环流中的“大气桥”。人们早已对南海SST的变化规律展开了广泛而深入的研究。相比之下,对南海海平面变化的研究还比较少,现有的研究也多集中在季节尺度,关于南海海平面年际变化的认识仍非常有限,对于其年际变化的动力学认识更加匮乏。这主要是由于海平面变化不像SST一样更直接受到ENSO的影响,多种动力学过程如海气相互作用、热通量变化、水循环、降水过程等都会影响海平面的时空演变。前人的研究表明SST在ENSO成熟期间和之后会有异常升高,但是SST主要反映的是海表面的热力学过程,关于深层水体在ENSO期间如何变化还需要进一步探讨,以其提高人们对热容海平面和卫星观测实际海平面的认识。
     本文结合南海海域已有的遥感、常规观测和同化模式资料,包括温度、海平面、海流、降水,建立了各环境要素的相对完备的长时间序列,应用多种统计学方法(例如EOF、小波分析等)分析了各环境要素的低频变异特征和相互关系。并从多个角度对南海年际变化的物理机制进行了探讨,揭示了不同物理过程如热容量、风应力、降水、水循环及环流变化对海平面变化的贡献。研究发现:
     (1)南海观测海平面和热容海平面均有明显的年际变化特征。南海海平面在El Nino年时异常升高,在La Nina年时异常下降。观测海平面和热容海平面无论在振幅上还是在位相上都有明显的差别,二者之差的年振幅比南海海平面振幅本身的变化还要大,达到63mm,最大值发生在12月份,表明南海和大气、陆地和周边海区之间有明显的水交换。
     (2)南海SST和海平面对ENSO的响应几乎完全相反,El Nino成熟期过后4个月,海平面达到其最大负异常,但滞后5个月时,SST达到其最大正异常,这个结果和人们的直观认识不同。分析表明SST只表征了上表层的海温特征,而海平面变化和整个水体的热膨胀有关,南海热容海平面主要由南海中下层水体的海温变化控制。
     (3)海平面在El Nino发展阶段的异常降低主要由于南海和周边海区的水交换和异常的Ekman抽吸造成,异常增强的冷平流和Ekman抽吸一起,使南海热容量降低,南海热容海平面冷却下降。El Nino年时异常减弱的对流活动会减少云量进而减少降水速率。异常的降水速率会对海平面的持续降低产生重要影响,可能会造成El Nino年时海平面异常下降约60mm。
River plumes are common features on the continental shelf around the world. They are produced by inflows from a coastal buoyancy source, such as a river or estuary. Plumes of buoyant water emptying into the sea will cause not only the horizontal dispersal of salinity and temperature, but also some vertical mixing process by the effect of the hydrological process and the external forcing. There are remarkable contrasts between plume water and ambient ocean water, such as salinity, temperature and suspending deposit. The plume water has similar property and forms front at the boundary between the plume water and the adjacent ocean water. Many dynamical processes might affect the dispersal and mixing of the river plume, and they are usually characterized by high diversity and variability. The plume region is not only affected by the variation of river runoff, such as the seasonal flood-dry variability of the runoff, but also the ocean dynamical processes, such as the flood-ebb and the spring-neap tidal cycles. Wind forcing and shelf circulation might also play important roles. The interaction of these processes causes the estuary-continental shelf processes to become more complicated. Many plume regions will never reach a steady state, since too many factors are working together on these regions. People don’t know whether the observed phenomena are common features or specific cases, since there are no similar estuary-continental plume systems in the world.
     In order to understand the plume dynamics, we developed a ROMS model for the Changjiang estuary-East China Sea region. Based on diagnostic analysis of the historic data and the comparisons with model simulations, we have established a high resolution hydrodynamic model for the China Seas. We have conducted many numerical simulations to investigate the little known physical mechanisms of tide and wind effects on the dispersal and mixing processes of the Changjiang River plume. The physical mechanism of tidal mixing affecting the bulge region and the buoyancy coastal current is revealed. We also found that tidal mixing will substantially change the freshwater and volume transport of the buoyancy coastal current and discussed the possible mechanisms. The flood-ebb asymmetry of the interaction between wind and tide generate a semi-diurnal variability of the plume thickness, which provides some new insights to the tidal-straining theory.
     Tidal currents can affect plume dispersal by modulating estuarine outflow or generating turbulent mixing that reduces the density contrast between the fresh plume water and ambient shelf water. It is found that tidal induced turbulent mixing show large variability over the spring-neap tidal cycle. During the neap tides, the turbulent mixing is relatively weaker and the freshwater plume can spread horizontally and maintains its buoyancy contrast. As the tide transitions from the neap to spring tides, tidal current gets stronger and thus the turbulent mixing. The plume detachment occurs when tidally generated turbulent mixing is strong enough to break down the stratification outside the river mouth, thus causing the disintegration of the river plume into two distinct regions. This might provide another explanation of the observed freshwater patch outside the river mouth. Tide also modifies the structure and dynamics of the buoyancy-driven coastal current on the continental shelf. In the absence of tide, the buoyancy-driven coastal current downstream is a surface-trapped plume attached to the coast. In the presence of tide, however, tidal mixing generates strong vertical momentum flux and leads to the development of an offshore bottom Ekman layer that pushes the plume front away from the coast. Therefore the tide transforms the Changjiang River plume from a surface-trapped plume hugging the coast to a bottom-advected current shifting to an offshore location. More importantly, the tide changes the transport of the buoyancy-driven coastal current and the water accumulation in the bulge region substantially. In the absence of tide, the freshwater transport by the coast current accounts for about 35% of freshwater export from the Changjiang River, suggesting significant freshwater accumulation in the bulge region. In the presence of tide, however, the coastal current carries about 80% of the freshwater export from Changjiang River.
     In the presence of upwelling favorable wind, the freshwater spreads in the northeastward direction and the density contrast reduces with time due to the wind-induced mixing. It is found that the buoyancy water spread offshore in a quasi-steady uniform thickness in the absence of tide. In the presence of tide, the interaction of wind and tide will produce the current asymmetry over the flood-ebb tidal cycle. The offshore transport is enhanced at ebb but weakened at flood. The flood-ebb asymmetry causes water to accumulate at seaward side of the plume and deepens the front. The plume thickness varies over the flood-ebb tidal cycle, especially under strong wind forcing conditions. Downwelling favorable winds confine the plume to the coast and increase the plume thickness.
     The effects of Taiwan Warm Current and the summer monsoon wind on the Changjiang River plume have also been investigated. The numerical modeling shows that: in the absence of summer monsoon, the downstream buoyancy current and the upstream Taiwan Warm Current will produce shear-instability at the boundary and forms a chain of anticyclonic and clonic eddies. The anticyclonic eddies will detach from the bulge region and spread in the northeastward direction. The episodic northward winds will spread the freshwater patches further offshore. The summer monsoon will change the dispersion trajectory substantially. In the presence of summer monsoon, the baroclinic instability of the plume front is suppressed; the plume water spreads northeastward and enters into the Japan Sea.
     The research result outlined above mainly revealed effects of tide, wind and shelf circulation on the dispersal and mixing processes of the Chanjiang River plume through some process-oriented numerical modeling, which provide some theoretical evidence to understand the observations.
     Sea surface temperature (SST) in the South China Sea (SCS) is closely related to El Ni?o and Southern Oscillation (ENSO). Possible mechanisms have also been widely discussed. The influence of ENSO on the SCS SST is considered to be through the atmospheric bridge of atmospheric circulations. Compared to SST, investigations of sea level in the SCS have mainly been focused on seasonal scale. Until now, our understanding of interannual sea level variability in the SCS is still very poor. In particular, the mechanisms that are responsible for the SCS interannual sea level variations are not clear. SST anomalies are found to be increased during and after the mature phase of El Ni?o. However, since SST data reflects mainly the sea surface thermal phenomena, deep layer water temperature must be investigated in order to enhance our understanding obtained from interpretation of altimeter observations. The main purpose of this study is to examine the interannual variability of the SCS sea level and its relationship with ENSO.
     We have gathered the available data of the South China Sea, including Sea level observed by altimeter, seawater temperature, ocean circulation data, thermosteric sea level, and tide gauge records and established relatively long time series for each component. Based on multiple statistical methods, including EOF and wavelet coherence, we investigate the interannual variability of these environmental components in the SCS and their relationship with ENSO. We have also investigated the possible physical mechanisms from the perspective of volume transports between the SCS and adjacent oceans, air-sea interaction, and water mass cycle. The main and new results are listed as flows:
     (1) Both the interannual variations of the observed sea level and the thermosteric sea level are closely related to ENSO. The SCS sea level anomalies are negative during El Ni?o years and positive during La Ni?a years. Both the amplitude and the phase show difference between the observed and thermosteric sea level anomalies. The annual variation of the altimeter observed sea level corrected for thermosteric effect has amplitude of 63mm with a maximum in December. This variation should result from ocean mass exchange between the atmosphere and the continent via precipitation, evaporation and runoff. Since the SCS is not a closed basin, the water mass exchange between the SCS and the adjacent oceans may also play a role.
     (2) An‘enigma’that the SST and sea level in the SCS have inverse response to ENSO is revealed. While SST reaches its maximum with a lag of five months behind the mature phase of El Ni?o, sea level reaches its minimum with a lag of four months. Such an‘enigma’is revealed by calculating the heat expansion of seawater in the 0~700m layer. The SST is mainly determined by seawater temperature in the surface layer. The sea level is related to the heat expansion of seawater in all the layers. The thermosteric sea level anomalies are dominantly controlled by seawater temperature anomalies of the intermediate layers.
     (3) The volume transports between the SCS and the adjacent oceans and the anomalous Ekman pumping contribute a lot for the sea level fall in the developing stage of El Ni?o, while the mass exchange, which is dominated by precipitation, plays a more significant role in the following continuous negative sea level anomalies, which will account for about 60mm sea level fall during El Ni?o years.
引文
[1]龚政.长江口三维斜压流场及盐度场数值模拟:[博士学位论文].南京:河海大学, 2002.
    [2]匡翠萍.长江口拦门沙冲淤及悬沙沉降规律研究和水流盐度泥沙数学模型:[博士学位论文].南京:南京水利科学研究院,1993.
    [3]罗小峰.长江口水流盐度数值模拟:[博士学位论文].南京:南京水利科学研究院,2003.
    [4]赵章元.中国近岸海域环境分区分级管理战略。北京:中国环境科学出版社.2000.
    [5]沈焕庭等.长江口盐水入侵的初步研究-兼谈南水北调.人民长江,1980,3; 20~26.
    [6]顾伟浩等.长江口南北槽咸水入侵-兼谈开挖北槽为深水航槽.水运工程, 1985, 2:1~3.
    [7]沈焕庭,贺松林,潘定安.长江河口最大浑浊带研究.地理学报,1992,47(5):272~279
    [8]陈宝冲.长江口北支河势变化与水、沙、盐的输移.地理科学,1993(4):346~352.
    [9]杨桂山,朱季文.全球海平面上升对长江口盐水入侵的影响研究.中国科学(B辑),1993,23(1):69~76.
    [10]茅志昌.长江河口盐水入侵锋研究.海洋与湖沼, 1995, 6: 643~649 .
    [11]茅志昌,沈焕庭.常见分汊河口盐水入侵类型探讨.华东师范大学学报(自然科学版),1995,2: 77~85.
    [12]肖成猷,沈焕庭.长江河口盐水入侵影响因子分析.华东师范大学学报(自然科学版),1998(3):74~80.
    [13]茅志昌,沈焕庭,陈景山.长江口北支进入南支净盐通量的观测与计算.海洋与湖沼,2004,35(1):30~34.
    [14]陶学为.长江口海水入侵研究.水利学报,1991,9:36~41.
    [15]徐建益,袁建忠.长江口南支河段盐水入侵规律的研究.水文,1994,83(5):1~6.
    [16]周济福,李家唇,刘清泉.河口混合过程研究.中国科学A辑,1999,29(9): 835~843.
    [17]姚运达,沈焕庭,潘定安,等.河口最大混浊带若干机理的数学模型研究.泥沙研究,1994,4:10~20.
    [18]肖成猷.长江河口盐水入侵规律及数学模型研究. [博士学位论文].上海:华东师范大学,1995.
    [19]肖成猷,朱建荣,沈焕庭.长江口北支盐水倒灌的数值模型研究.海洋学报,2000, 22(5): 124~132.
    [20]韩乃斌,蒋星科.长江南北支二维氯度数学模型.海洋工程,1996,14(1):47~54.
    [21]宋元平,胡方西,谷国传.长江口外海海滨盐度扩散分层数学模型.华东师范大学学报,1990,4:73~83.
    [22]朱建荣,沈焕庭.长江冲淡水扩展机制.上海:华东师范大学出版社,1997.
    [23]朱建荣,李永平,沈焕庭.夏季风场对长江冲淡水扩展影响的数值模拟.海洋与湖沼,1997a, 28 (1): 72~79.
    [24]郑金海,诸裕良.长江河口盐水混合的数值模拟计算.海洋通报,2001,20(4):1~10.
    [25]朱建荣,朱首贤. ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用.海洋与湖沼,2003,34(4):364~388.
    [26]罗小峰,陈志昌.长江口水流盐度数值模拟.水利水运工程学报,2004(2):29~33.
    [27]吴辉,朱建荣.长江河口北支倒灌盐水输送机制分析.海洋学报,2007,29(1):18~25.
    [28]胡辉等.长江口外海滨余流特征分析,华东师范大学学报(自然科学版),1985,4:79~90.
    [29]杨许候,金成法.长江口南港水道潮流特征分析.海洋通报,1999,18(1):1~11.
    [30]于东生,田淳,严以新.长江口水流运动特性分析.水运工程,2004,1: 49~53.
    [31]唐苓,缪国平.边界元法计算长江口二维平面潮波.水动力学研究与进展(A辑),1992,7(4):377~381.
    [32]黄世昌,沈焕庭,潘定安.长江河口南槽流场模拟与最大浑浊带分析.中国海洋工程学术讨论会论文集,海洋出版社,1994,1421~1431.
    [33]刘子龙,王船海.长江口三维水流模拟.河海大学学报(自然科学版),1996,24(5):108~110.
    [34]李褆来,窦希萍,黄晋鹏.长江口边界拟合坐标的三维潮流数学模型.水利水运科学研究,2000,3:1~6.
    [35]刘烨,袁建忠.长江口水环境数值模拟研究-水动力数值模拟.水动力学研究与进展,2000,15(1):17~30.
    [36]谢军.二维潮流数模在长江口深水航道治理工程一期工程中的应用.水运工程,2000,12:13~17.
    [37]杨陇慧,朱建荣等.长江口杭州湾及邻近海区潮汐潮流场三维数值模拟.华东师范大学学报(自然科学版),2001,3:74~84.
    [38]马进荣,陈志昌.长江口风暴潮流场的计算.水利水运工程学院,2002,1:35~39.
    [39]于凤香,宋志尧,李瑞杰.长江口三维潮流数值计算及动力分析.海洋湖沼通报,2003,3:14~23.
    [40] Shi, Z., S. S. Li and O. S. Petersen. A vertically moving grid finite element modeling of tidal flow in the Changjiang Estuary, China. International Journal for Numerical Methods in Fluids, 2003, 43: 115~127.
    [41]陈祖军,韦鹤平,陈美发.淡水转向机制的数值试验.海洋与湖沼,2003,34(6):593~603.
    [42]龚政,张长宽,金勇等.长江口斜压诊断模式三维流场数值模拟.水科学进展,2004a,15(3):300~306.
    [43]龚政,张长宽,金勇等.长江口正压斜压诊断及斜压预报模式-三维流场数值模拟.海洋工程,2004b,22(2):39~45.
    [44]毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨.海洋与湖沼,1963,5(3):183~206.
    [45]浦泳修.夏季长江冲淡水扩展机制的初析.东海海洋,1983,1:43~51.
    [46] Su J. L. and K. S. Wang. Changjiang River plume and suspended sediment transport in Hangzhou Bay. Continental Shelf Research, 1989, 9(1): 93~111.
    [47] Wang K. S., R. Z. Ru and L. X. Dong. The water masses in the Changjiang River Estuary and adjacent water area and their effects in the distribution of biological and chemical elements. China Ocean Press (Beijing), 19~35.
    [48]胡方西,胡辉,谷国传等.长江河口盐度锋.海洋与湖沼增刊,1995,26(5):23~31.
    [49]袁耀初,苏纪兰,赵金三.东中国海陆家环流的单层模式.海洋学报,1982,4(1):1~11.
    [50]朱建荣,沈焕庭,周健.夏季苏北沿岸流对长江冲淡水扩展影响的数值模拟.华东师范大学学报(自然科学版) ,1997b,2: 62~67.
    [51]朱建荣,沈焕庭,朱首贤.三维陆架模式及其应用—一个三维陆架模式及其在长江口外海区的应用.青岛海洋大学学报,1997c,27 (2): 145~156.
    [52]朱建荣,肖成猷,沈焕庭.夏季长江冲淡水扩展的数值模拟.海洋学报,1998a,20 (5): 13~22.
    [53]朱建荣,肖成猷,沈焕庭等.黄海冷水团对长江冲淡水扩展的影响.海洋与湖沼,1998b,29 (4): 389~394.
    [54]白学志,王凡.淡水转向机制的数值试验.海洋与湖沼, 2003, 34 (6): 593~603.
    [55] Bang, I. and H. J. Lie. A numerical experiment on the dispersion of the Changjiang River plume. Journal of the Korean Society of Oceanography, 1999, 34 (4): 185~199.
    [56] Beardsley R. C., R. Limeburner and H. Yu et al. Discharge of the Changjiang into the East China Sea. Continental Shelf Research, 1985, 4: 57~76.
    [57] Lie. H. J., C. H. Cho and J. H. Lee et al. Structure and eastward extension of the Changjiang River plume in the East China Sea. Journal of Geophysical Research, 108(C3): 3077~3090.
    [58] Isobe A., M. Ando and T. Watanabe et al. Freshwater and temperature transports through the Tsushima-Korea straits. J. Geophys. Res., 2002, 107(C7), 3065, doi: 10.1029/2000JC000702.
    [59] Chang, P. H. and A. Isboe. A numerical study on the Changjiang diluted water in the Yellow and East China Seas, J. Geophys. Res., 2003, 108(C9), 3299, doi: 10.1029/2002JC001749.
    [60] Chen, C., P. F. Xue and P. X. Ding et al. Physical mechanisms for the offshore detachment of the Changjiang Diluted Water in the East China Sea. J. Geophys. Res., 2008, 113, C02002, doi: 10.1029/2006JC003994.
    [61] Boicourt, W. C. The circulation of water on the continental shelf from Chesapeake Bay to Cape Hatteras. Ph.D. thesis, 1973, The Johns Hopkins University, MD, 183pp.
    [62] Lentz, S. J. and J. Largier, 2006: The influence of wind forcing on the Chesapeake Bay buoyant coastal current. J. Phys. Oceanogr., 36, 1305~1316.
    [63] Whitney, M. M., and R. W. Garvine. Simulating the Delaware Bay buoyant outflow: comparison with observations. J. Phys. Oceagr., 2006, 36: 3~21.
    [64] MacCready, P., N. S. Banas, B. M. Hickey, E. P. Dever and Y. Liu. A model study of tide- and wind- induced mixing in the Columbia River estuary and plume. Cont. Shelf Res., doi:10.1016/j.csr.2008.03.015.
    [65] Choi, B. J. and J. L. Wilkin. The effect of wind on the dispersal of the Hudson River plume. J. Phys. Oceanogr., 2007, 37: 1878~1897.
    [66] De Boer, G. J., J. D. Pietrzak, and J. C. Winterwerp. SST observations of upwelling induced by tidal straining in the Rhine ROFI. Cont. Shelf Res., 2009, 29: 263~277.
    [67] Fong, D. A. and W. R. Geyer. The alongshore transport of freshwater in a surface-trapped river plume. J. Phys. Oceanogr., 2002, 32, 957~972.
    [68] Chao, S. Y. and W. C. Boicourt. Onset of estuarine plumes. J. Phys. Oceanogr., 1986, 16, 2137~2149.
    [69] Chao, S. Y. River-forced estuarine plumes. J. Phys. Oceanogr. , 1998a 18 (1): 72~88.
    [70] Chao, S. Y. Wind-driven motion of estuarine plumes. J. Phys. Oceanogr., 1998b, 18(8): 1144~1166.
    [71] Chao, S. Y. Tidal modulation of estuarine plumes. J. Phys. Oceanogr., 1990, 20(7): 1115~1123.
    [72] Garvine, R. W. Estuary plumes and fronts in shelf waters: A layer model. J. Phys. Oceanogr., 1987, 17: 1877~1896.
    [73] Garvine, R. W. A dynamical system fro classifying buoyant coastal discharge. Contin. Shelf Res., 1995, 15: 1585~1596.
    [74] Garvine, R. W. Penetration of buoyant coastal discharge onto the continental shelf: a numerical model experiment. J. Phys. Oceanogr., 1999, 29, 1892~1909.
    [75] Garvine, R. W. The impact of model configuration in studies of buoyant coastal discharge. J. Mar. Res., 2001, 59, 193~225.
    [76] Yankovsky, A. E. and D. C. Chapman. A simple theory for the fate of buoyant coastal discharges. J. Phys. Oceanogr., 1997, 27, 1386~1401.
    [77] Chapman, D. C. and S. J. Lentz. Trapping of a coastal density front by the bottom boundary layer. J. Phys. Oceanogr., 1994, 24: 1464~1479.
    [78] Lentz, S. J. and K. R. Helfrich, 2002: Buoyant gravity currents along a sloping bottom in a rotating fluid. J. Fluid Mech., 464, 251~278.
    [79] Masse, A. K. and C. R. Murthy. Analysis of the Niagara River plume dynamics. J. Geophys. Res., 1992, 97: 2403~2420.
    [80] Oey, L. Y., and G. L. Mellor. Subtidal variability of estuarine outflow, plume, and coastal current: A model study. J. Phys. Oceanogr., 1993, 23: 164~171.
    [81] Nof, D., and T. Pichevin. The ballooning of outflows. J. Phys. Oceanogr., 2001, 31: 3045~3058.
    [82] Nof, D., S. Van Gorder, and T. Pichevin. A different outflow length scale? J. Phys. Oceanogr., 2004, 34: 793~804.
    [83] Nof D. The momentum imbalance paradox revisited. J. Phys. Oceanogr., 2005, 35:1928~1939.
    [84] Avicola, G. and P. Huq. The characteristics of recirculating bulge region in coastal buoyant outflows. J. Mar. Res., 2003, 61, 435~463.
    [85] Horner-Devine, A. R., D. A. Fong, and S. G. Monismith et al. Laboratory experiments simulating a coastal river inflow. Journal of Fluid Mechanics, 2006, 555: 203~232.
    [86] Chant, R. J., S. M. Glenn, E. Hunter, J. Kohut, R. F. Chen, R. W. Houghton, J. Bosch, and O. Schofield. Bulge Formation of a Buoyant River Outflow, J. Geophys. Res., 2008, 113, C01017, doi:10.1029/2007JC004100.
    [87] Yankovsky, A. E. The cyclonic turning and propagation of buoyant coastal discharge along the shelf. Journal of Marine Research, 2000, 58: 585~607.
    [88] Isobe, A. Ballooning of river plume bulge and its stabilization by tidal currents. J. Phys. Oceanogr., 2005, 35, 2337~2351.
    [89] Fong, D. A., W. R. Geyer, and R. P. Signell. The wind forced response of a buoyant coastal current: observations of the western gulf of Maine plume. J. Mar. Syst., 1997, 12: 69~81.
    [90] Hickey, B. M., L. J. Pietrafesa, D. A. Jay, and W. C. Boicourt. The Columbia River plume study: subtidal variability in the velocity and salinity fields. J. Geophys. Res., 1998, 103: 10339~10368.
    [91] Rennie, S., J. L. Largier, and S. J. Lentz. Observation of low salinity coastal current pulses downstream of Chesapeake Bay. J. Geophys. Res., 1999, 104: 18227~18240.
    [92] Johnson, D. R., A. Weidemann, R. Arnone, and C. O. Davis. Chesapeake Bay outlow plume and coastal upwelling events: physical and optical properties. J. Geophys. Res., 2001, 106: 11613~11622.
    [93] Sanders, T. M., and R. W. Garvine. Freshwater delivery to the continental shelf and subsequent mixing: an observational study. J. Geophys. Res., 2001, 206: 27087~27101.
    [94] Hallock, Z. R., and G. O. Marmorino. Observations of response of a buoyant estuarine plume to upwelling favorable winds. J. Geophys. Res. 2002, 107, 3066, doi:10.1029/2000JC000698.
    [95] Johnson, D. R., J. Miller, and O. Schofield. Dynamics and optics of Hudson River outflow plume. J. Geophys. Res., 2003, 108, 3323, doi:10.1029/2002JC001485.
    [96] Lentz, S. J. The response of buoyant coastal current plumes to upwelling favorable winds. J.Phys. Oceanogr., 2004, 34: 2458~2469.
    [97] Fong, D. A., and W. R. Geyer. Response of a river plume during an upwelling favorable wind event. J. Geophys. Res., 2001, 106: 1067~1084.
    [98] Warner, J. C., W. R. Geyer and J. A. Lerczak. Numerical modeling of an estuary: A comprehensive skill assessment. J. Geophys. Res., 2005a, 110, C05001, doi:10.1029/2004JC002691.
    [99] Chant, R. J., S. Glenn, E. Hunter, J. Kohut, R. F. Chen, and J. Wilkin. Bulge formation and cross-shelf transport of the Hudson estuarine discharge. Eos. Trans. Amer. Gephys. Union,2006, 87 (Ocean Science Meeting Suppl.), Abstract OS34I-01.
    [100] Hunter, E., R. J. Chant, J. Kohut, L. Bowers, and S. Glenn. Sea breeze forcing on the New Jersey shelf. Eos. Trans. Amer. Geophys. Union, 2006, 87(Ocean Science Meeting Suppl.), Abstract OS35J-01.
    [101] Garvine, R. W. Physical features of the Connecticut River outflow during high discharge. J. Phys. Oceanogr., 1974, 79(6): 831~846.
    [102] O’Donell, J. Observations of near surface currents and hydrography in the Connecticut River plume with the SCUD array. J. Geophys. Res., 1997, 102: 25021~25033.
    [103] O’Donell, J., G. O. Marmorino, and C. L. Trump. Convergence and downwelling at a river plume front. J. Phys. Oceanogr., 1998, 28: 1481~1495.
    [104] O’Donell, J., S. G. Ackleson, and E. R. Levine. On the spatial scales of a river plume. J. Geophys. Res., 2008, 113, C04017, doi:10.1029/2007JC004440.
    [105] Garvine, R. W. Subtidal frequency estuary-shelf interaction: Observations near Delaware Bay. J. Geophys. Res. 1991, 96: 7049~7064.
    [106] Munchow, A., and R. W. Garvine. Dynamical properties of a buoyancy-driven coastal current. J. Geophys. Res., 1993a, 98, 20063~20077.
    [107] Munchow, A., and R. W. Garvine. Buoyancy and wind forcing of a coastal current. J. Mar. Res., 1993b, 51: 293~322.
    [108] Whitney, M. M. Simulating the Delaware coastal current. Ph. D. dissertation, 2003, University of Delaware, 284pp.
    [109] Whitney, M. M., and R. W. Garvine. Wind influence on a coastal buoyant outflow. J. Geophys. Res., 2005, 110, C03014, doi:10.1029/2003JC002261.
    [110] Whitney, M. M., and R. W. Garvine. Estimating tidal current amplitudes outside estuaries and characterizing the zone of estuarine tidal influence. J. Continent. Res., 2007, 28, 280~290.
    [111] Guo, X. and A. Valle-Levinson. Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay. Continental Shelf Research, 2007, 27: 20~42.
    [112] Hickey, B., S. Geier, N. Kachel, and A. MacFadyen. A bi-directional river plume: The Columbia in summer. Continental Shelf Research, 2005, 25: 1631~1656.
    [113] Pan J. Y., D. A. Jay, and P. M. Orton. Analyses of internal solitary waves generated at the Columbia River plume front using SAR imagery. J. Geohpys. Res., 2007, 112, C07014, doi:10.1029/2006JC003688.
    [114] Banas N. S., P. MacCready, and B. M. Hickey. The Columbia River plume as cross-shelf exporter and along-coast barrier. Continental shelf Research, 2008, doi:10.1016/j.csr.2008.03.011.
    [115] McCabe, R., B. M. Hickey, and P. MacCready. Observational estimates of entrainment and vertical salt flux in the interior of a spreading river plume. J. Geophys. Res., 2008 doi:10.1029/2007JC004361, in press.
    [116] Simpson, J. H., W. G. Bos, F. Schirmer, A. J. Souza, T. P. Rippeth, S. E. Jonesand, and D. Hydes. Periodic stratification in the Rhine ROFI in the North Sea. Oceanologica Acta, 1993, 16(1), 23~32.
    [117] Vesser, A. W., A. S. Souza, K. Hessner, and J. H. Simpson. The effect of stratification on tidal current profiles in a region of freshwater influence. Oceanologica Acta, 1994,17(4): 369~381.
    [118] Simpson, J. H., and A. J. Souza. Semidiurnal switching of stratification in the region of freshwater influence of the Rhine. J. Geophys. Res., 1995a, 100(C4): 7037~7044.
    [119] Simpson, J. H., and A. J. Souza. The modification of tidal ellipses by stratification in the Rhine ROFI. Cont. shelf Res., 1995b, 16(8): 997~1007.
    [120] Simpson, J. H. Physical processes in the ROFI regime. J. Mar. Sys., 1997, 12: 3~15.
    [121] Souza, A. J., and I. D. James. A two dimension (x-z) model of tidal straining in the Rhine ROFI. Cont. Shelf Res., 1996, 16(7): 949~966.
    [122] Souza, A. J., and J. H. Simpson. Controls on stratification in the Rhine ROFI system. J. Mar.Sys., 1997, 12, 311~323.
    [123] De Kok, J. M. Baroclinic eddy formation in a Rhine plume model. J. Mar. Syst., 1997, 8(3-4): 269~284.
    [124] De Boer, G. J., J. D. Pietrzak, and J. C. Winterwerp. On the vertical structure of the Rhine region of freshwater influence. Ocean Dynamics, 2006, 56(3-4), 198~216.
    [125] Ezer, T., H. Arangoand and A. F. Shchepetkin. Developments in terrain-following ocean models: intercomparisons of numerical aspects. Ocean Modelling, 2002, 4(3-4): 249~267.
    [126] Shchepetkin, A. F., and J. C. McWilliams. A method for computing horizontal pressure-gradient force in an oceanic model with nonaligned vertical coordinate. Journal of Geophysical Research, 2003, 108(C3), doi:10.1029/201JC001047.
    [127] Haidvogel, D. B., H. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. Shchepetkin. Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 2000, 32, 239~281.
    [128] Marchesiello, P., J. C. McWilliams, and A. Shchepetkin. Equilibrium Structure and Dynamics of the California Current System. J. Phys. Oceanogr., 2003, 33: 753~783.
    [129] Fennel, K., J. Wilkin, J. Levin, J. Moisan, J. O’Reilly, and D. Haidvogel. Nitrogen cycling in the Middle Atlantic Bight and implications for the North Atlantic nitrogen budget: Results from a three-dimensional model. Global Biogeochemical Cycles. 2006, 20, GB3007, doi:10.1029/2005GB002456.
    [130] Li, M., L. Zhong and L.W. Harding. Seasonal cycle and regional distribution of plankton biomass and productivity in Chesapeake Bay: results from a coupled 3D biological-physical model. Mar. Ecol. Prog. Ser., 2007a (submitted).
    [131] Li, M., L. Zhong, W. C. Boicourt, S. Zhang and D.-L. Zhang. Hurricane-induced stormsurges, currents and destratification in a semi-enclosed bay. Geophys. Res. Lett., 2006, 33, L02604, doi:10.1029/2005GL024992.
    [132] Li, M., L. Zhong, W. C. Boicourt, S. Zhang and D.-L. Zhang. Hurricane-induced destratification and restratification in a partially-mixed estuary. J. Mar. Res., 2007b, Accepted for publication.
    [133] Phillips, N. A. A coordinate system having some special advantages for numerical forecasting. J. Meteor., 1957, 14, 184~185.
    [134] Song, Y. and D. B. Haidvogel. A semi-implicit ocean circulation model using a generalized topography-following coordinate system, J. Comp. Phys., 1994, 115 (1), 228~244.
    [135] Mellor, G. L., and Yamada T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 1982, 20: 851~875.
    [136] Rodi, W. Examples of calculation methods fro flow and mixing in stratified fluids. J. Geohpys. Res., 1987, 92: 5305~5328.
    [137] Wilox, D. C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J., 1988, 26(11): 1299~1310.
    [138] Umlauf, L., H. Burchard, and K. Hunter. Extending the k- model towards oceanic applications. Ocean Modelling, 2002, 5, 195~218.
    [139] Umlauf, L., and H. Burchard. A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 2003, 61: 235~265.
    [140] Warner, J. C., C. R. Sherwood, H. G. Arango, B. Butman, and R. P. Signell. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling., 2005b, 8: 81~113.
    [141] Wilox, D. C. Turbulence modeling for CFD. DCW industries, Inc, La Canada, CA. 1998, P. 540.
    [142] Large, W. G., J. C. Williams, and S. C. Doney Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 1994, 32(4): 363~403.
    [143] Deardorff, J. W. Theoretical expression for the counter-gradient vertical heat flux. J. Geophys. Res., 1972, 77: 5900~5904.
    [144] Burchard, H., O. Petersen, and T. Rippeth. Comparing the performance of the Mellor-Yamada and the k-εtwo equation turbulence models. J. Mar. Syst., 1998, 21: 29~53.
    [145] Burchard, H. On the q2l equation by Mellor and Yamada (1974). Notes and correspondence. J. Phys. Oceanogr., 2001, 31: 1377~1387.
    [146] Blumberg, A. F., B. Galperin and D. J. O’Connor. Modeling vertical structure of open-channel flows. J. Hydr. Eng., 1992, 118(H8): 1119~1134.
    [147] Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 1988, 45: 55~62.
    [148] Kantha, L. H., and C. A. Clayson. An improved mixed layer model for geophysical applications. J. Geophys. Res., 1994, 99: 25235~25266.
    [149] Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov. Ocean turbulence I: one-point closure model. Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 2001, 31: 1413~1426.
    [150] Burchard, H., K. Bolding, and M. R. Villarreal. GOTM-a general ocean turbulence model. Thoery, applications and test cases. Technical Report EUR 18745 EN, 1999, European Commission
    [151] Egbert, G. D., A. Bennett and M. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99(C12), 24821~24852.
    [152] Egbert, G. D. and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183~204.
    [153] Spitz, Y. H., and J. M. Klinck. Estimate of bottom and surface stress during a spring-neap tide cycle by dynamic assimilation of tide gauge observations in the Chesapeake Bay. J. Geophys. Res., 1998, 103(C6): 12761~12782.
    [154] Larsen, L. H., G. A. Cannon and B. H. Choi, 1985: East China Sea tide currents. Cont. Shelf Res., 4, 77~103.
    [155] Ogura, S. The tides in the sea adjacent to Japan. Bulletin of the Hydrographic Department, Imperial Japanese Nay, 1993, 7: 1~189.
    [156] Fang, G. Y. Tide and tidal current charts for the marginal seas adjacent to China. C. J. of Oceanology and Limnology, 1986, 4(1): 1~16.
    [157] Guo, X. and T. Yanagi. Three-dimensional structure of tidal current in the East China Sea and the Yellow Sea. J. Oceanogr., 1998, 54, 651~668.
    [158] Choi, B. H. A three dimensional model of East China Sea. Ocean Hydrodynamics of Janpan and East China Seas. 1984, ed. by T. Ichiye, Elevier, Amsterm.
    [159] Choi, B. H. A fine-grid three-dimensional M2 tidal model of the East China Sea. Modeling Marine systems., 1989, ed. by Davies A. M., P167~185.
    [160] Yanagi, T., and K. Inoue. Tide and tidal current in the Yellow/East China Seas. La mer, 32: 153~165.
    [161] Yankovsky, A. E., B. M. Hickey and A. K. Munchow. Impact of variable inflowon thedynamics of a coastal buoyanct plume. J. Geophys. Res., 2001, 106(C9), 19809~19824.
    [162] Hetland, R. D. Relating river plume structure to vertical mixing. J. Phys. Oceanogr., 2005, 35, 1667~1688.
    [163] Blanton, J. O., L. Y. Oey, J. Amft and T. N. Lee. Advection of momentum and buoyancy in a coastal frontal zone. J. Phys. Oceanogr., 1989, 19: 98~115.
    [164] Simson, J. H., J. Brown, J. Matthews, and G. Allen. Tidal straining, density currents and stirring control of estuarine stratification. Estuaries, 1990, 13(2): 125~132.
    [165] Jay, D. A., J. D. Smith. Residual circulation in shallow estuaries. II. Weakly stratified and partially mixed, narrow estuaries. Journal of Geophysical Research, 1990, 95: 733~748.
    [166] Geyer, W. R., J. H. Trowbridge and M. M. Bowen, 2000: The dynamics of a partially mixed estuary. J. Phys. Oceanogr., 30, 2035~2048.
    [167] Li M., L. Zhong. Flood-ebb and spring-neap variations of mixing, stratification and circulation in Chesapeake Bay. Continental Shelf Research, 2008, doi:10.1016/j.csr.2007.06.012
    [168] Stacey, M. T., J. R. Burau, S. G. Monismith. Creation of residual flows in a partially stratified estuary. Journal of Geophysical Research, 2001, 106: 17013~17043.
    [1]丁一汇,李崇银.南海夏季风爆发和演变及其与海洋的相互作用,气象出版社,北京,1999.
    [2] Klein, S. A., Soden B. J., Lau N. C. Remote sea surface temperature variations during ENSO: Evidence for a tropical Atmospheric bridge. J. Clim., 1999, 12, 917~932.
    [3] Wang, W., Wang D., Qi Y. Large scale characteristics of interannual variability of sea surface temperature in the South China Sea. Acta Oceanologica Sinica, 2000, 22, 8~16.
    [4] Wang C., Wang W., Wang D., Wang Q. Interannual variability of the South China Sea associated with El Ni?o. J. Geophys. Res., 2006 , 111, C030203, doi: 10.1029/2005JC003333.
    [5] Wang, C. Atmospheric circulation cells associated with the El Ni?o -South Oscillation, J. Clim., 2002,15, 399~419.
    [6] Qu, T., Kim, Y. Y., Yaremchuk, M., Tozuka, T., Ishida, A., Yamagata, T. Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Clim., 2004,17, 3644~3657
    [7] Ho, C.R., Zheng Q., Soong Y. S., Kuo N. J., Hu J. H. Seansonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. J. Geophys. Res., 2000a,105, C6, 13981~13990.
    [8] Liu, Q., Jia Y., Wang X., Yang H. On the annual cycle characteristics of the sea surface height in South China Sea. Advances in Atmospheric Sciences, 2001, 18(4), 613~622
    [9] Hu, J., Kawamura H., Hong H., Kobashi F., Wang D. 3~6 months variation of sea surface height in the South China Sea and its adjacent ocean. Journal of Oceanography, 2001,57(1), 69~78.
    [10] Li, L., Xu J., Jing C., Wu R., Guo X. Annual variation of sea surface height, dynamics topography and circulation in the South China Sea. Science in China (Series D), 2003, 46(2), 127~138.
    [11] Hwang, C. Interannual variation of sea level of South China Sea and its relationship with ENSO, paper presented at the ASPG Fourth Workshop, ASPG Management board and theShanghai Astronomical Observatory, CAS, Shanghai, P. R. China, 2001,14-19 May
    [12] Ho, C.R., Kuo N. J., Zheng Q., Soong Y. S. Dynamically active areas in the South China Sea detected from TOPEX/Poseidon satellite altimeter data. Remote Sens. Environ., 2000b, 71, 320~328.
    [13] Ishii, M., Kimoto M., Kachi M. Historical ocean subsurface temperature analysis with error estimates. Mon. Wea. Rev., 2003, 131, 51~73
    [14] Ishii, M., Kimoto M., Sakamoto K., Iwasaki S.-I. Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. Journal of Oceanography, 2006, 62(2), 155~170.
    [15] Cheng X., Qi Y. Trends of sea level variations in the South China Sea from merged altimetry data. Global and Plantary Change, 2007, 57, 371-382.
    [16] Ducet, N., Le Traon P. Y., Reverdin G. Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 2000,105, C8, 19477~19478.
    [17] Boyer, T. P., Conkright M. E., Antonov J. I., Baranova O. K., Garcia H., Gelfed R., Johnson D., Locarnini R., Murphy P., Brien T. O., Smolyar I., Stephens C. World Ocean Database 2001, Volume 2: Temporal Distribution of Bathythermograph Profiles. NOAA Atlas NESDIS 43, CD-ROMs, U.S. Government Printing Office, Washington, D.C.,2001, 119pp.
    [18] Ishii, M., Shouji A., Sugimoto S., Matsumoto T. Objective analyses of SST and marine meteorological variables for the 20th century using COADS and the Kobe Correction. Int. J. Climatol., 2005, 25, 865~879.
    [19] Gill, A. E. Atmosphere-Ocean Dynamics. Academic Press, San Diego, 1982,662pp.
    [20] Lombard, A., Cazenave A., Le Traon P. Y., Ishii M. Contribution of thermal expansion to present-day sea-level change revisited. Global and Planetary Change, 2005, 47, 1~16.
    [21] Preisendorfer, R. Principal Component Analysis in Meteorology and Oceanography. Elsevier, New York, 1988,425pp.
    [22] Wang, C., Weisberg, R. H., Virmani, J. I. Western Pacific interannual variability associated with the El Ni?o -Southern Oscillation. J. Geophys. Res., 1999, 104, 5131~5149
    [23] Grinsted, A., Moore J. C., Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonliear Process in Geophysic., 2004,11, 561~566.
    [24] Trenberth, K. E. Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon. Wea. Rev., 1984, 112, 2359~2368
    [25] Wyrtki, K. Physical oceanography of the southeast Asian waters. Naga Rep. 2, Scripps Institution of Oceanography, La Jolla, CA, 1961,195pp.
    [26] Metzger, E. J., Hurlburt, H. E. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 1996, 101, 12331~12352.
    [27] Qu, T., Mitsudera, H., Yamagata, T. Intrusion of the North Pacifica waters into the South China Sea. J. Geophys. Res., 2000, 105, 6415~6424.
    [28] Lebedev, K. V., Yaremchuk, M. I. A diagnostic study of the Indonesian Throughflow. J. Geophys. Res., 2000, 105, 11243~11258
    [29] Chu, P. C., Li, R. South China Sea isopycnal-surface circulation. J. Phys. Oceanogr., 2000, 30, 2419~2438.
    [30] Qu, T. Upper-layer circulation in the South China Sea. J. Phys. Oceanogr., 2000,30, 1450~1460
    [31] Yaremchuk, M., Qu, T. Seasonal variability of the large scale currents near the coast of the Philippines. J. Phys. Oceanogr., 2004, 34, 844~855.
    [32] Qu, T. Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J. Geophys. Res., 2001, 106, 6943~6955
    [33] Carton, J. A., Giese, B. S. SODA: A reanalysis of Ocean Climate. J. Geophys. Res., 2005 (submitted).
    [34] Huang, R., Chen, W., Yang B., Zhang, R. Recent advances in studies of the interaction between the East Asian Winter and Summer Monsoons and ENSO cycle. Advances in Atmospheric Sciences, 2004, 21(3), 407~424
    [35] Weisberg, R. H., Wang, C. A western Pacific oscillator paradigm for the El Ni?o -Southern Oscillation. Geophys. Res. Lett., 1997, 24, 779~782
    [36] Xie, P., Arkin P. A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 1997, 78, 2539~ 2558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700