用户名: 密码: 验证码:
土体永久变形与地震荷载特征关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来的大地震一再表明,地震下软弱土地基和土体的大变形是造成工程结构破坏的重要因素。地基基础和土工结构抗震设计的指导思想也已从传统的强度分析为主逐步向以变形控制为主的设计原则过渡,土体变形分析越来越受到重视。
     土动力学和岩土工程抗震研究的基本课题之一是研究地震荷载与土动力响应之间的关系。而土体变形与地震动特征间关系的认识是其基础,但目前二者关系的研究上明显缺少两方面的工作:一是对地震波的不对称和不规则性特征的认识尚少;二是地震波的不对称和不规则性对土变形响应影响的认识还不充分,分析方法也有不少缺欠。
     本文对国内外相关研究进行了系统的总结和深入的分析,指出了主要缺陷和应努力的方向。在此基础上,以实验和实际记录分析为主要手段,对地震荷载与土动力学性能关系中的几个关键问题进行了研究,主要工作和成果如下:
     1.以饱和土-结构动力相互作用这一典型问题为出发点,借助正弦波输入下小型振动台和地震波输入下大型振动台试验,建立了输入波形、建筑物基底动应力、动孔隙水压力、建筑物沉降和土体永久变形间的联系,发现了它们之间的相互关系及其规律。
     2.提出了截断比、峰值不对称比、幅值不对称比和作用次数不对称比的概念,通过实际地震记录的统计分析,给出了地震荷载峰值、幅值和作用次数不对称性特征以及波序和荷载类型等不规则性特征的统计规律;
     3.提出了应变门槛值和有效荷载的概念,通过粘土和砂土两种土类的一系列动三轴试验,明确了地震荷载下土体变形响应的特征,揭示了粘土和砂土应变门槛值与有效荷载下限值的关系,提出了有效荷载的计算公式和推荐值;
     4.通过系统的动三轴试验,研究了不规则地震荷载与定次数等幅荷载作用下土体变形间的相互关系,提出了一个估计地震荷载下土单元变形的简化方法,给出了地震荷载和土性参数对修正系数的影响规律。
In terms of recent catastrophic earthquakes, the earthquake-induced settlement and large deformation of soft subsoils contribute significant effect on the engineering structural damage. The traditional seismic design of structures and foundations has gradually transferred from strength-based philosophies to deformation-controlled philosophies. The analysis of soil deformation has become more and more important.
     The fundamental task of soil dynamics and geotechnical earthquake engineering is to constitute the relationship between earthquake loading and dynamic stresses in the soil, i.e. the constitution of the relationship between the soil deformation and the parameters of ground motions. However, the current research work seldom considers two aspects, i.e. (1) the acquaintance of the asymmetry and irregularity of seismic waves; (2) the influence of the asymmetry and irregularity of seismic waves on the soil dynamic properties and the corresponding effective analytical methods.
     In this thesis, the author systematically summarizes and analyzes the previous research and obtained achievement in China and other countries on the subjects and shows the existing limitations and the direction for future research. Based on the laboratory results and the analyses of actual seismic recordings, moreover, some salient points on the conclusive and creative work can be outlined, including:
     1. In terms of dynamic interaction of saturated soil and structure, using small shaking table tests with sine wave inputting and large shaking table tests with actual seismic wave inputting, the relation of wave shape, dynamic stress under the bases of structure, dynamic pore water pressure, structure settlement and soil permanent deformation has been revealed and developed. The acquaintance of the relationship of soil deformation and ground motion properties comes more and more distinct.
     2. The concepts of cut-off ratio, peak value asymmetry ratio, amplitude asymmetry ratio and loading number asymmetry ratio are proposed. Through statistical analyses of the actual seismic recordings, the asymmetrical and statistical properties of amplitudes, peak values and loading times of seismic waves, loading types and wave series are presented.
     3. The concepts of strain threshold and effective loading have been proposed. According to the results of series of dynamic triaxial tests on clays and sands, the dynamic response of soil deformation to seismic loading is discussed herein. The relationship between the strain thresholds and the lower limits of effective loading for clay and sand is proposed. The formula and recommendation values for effective loading are given.
     4. Through series of dynamic triaxial tests, the soil deformation response under irregular seismic loadings and certain number of uniform-amplitude cyclic loadings has been discussed. A simplified method for evaluating the deformation of soil element under seismic loading and the influence of seismic loading parameters and soil properties on the modified coefficient are presented.
引文
[1]薄景山,李秀领,刘德东,刘红帅.土层结构对地表加速度峰值的影响[J].地震工程与工程振动,2003,23(3):11-15.
    [2]蔡晓光,袁晓铭等.近岸水平场地液化侧向大变形机理及软化模量分析方法[J].地震工程与工程振动,2005,25(3):125-131.
    [3]蔡晓光.液化土层两种机制下侧向大变形分析[D].中国地震局工程力学研究所,2003.
    [4]陈晓平,俞季民.地基非均匀沉降的可靠度分析.岩土工程学报[J],1992, (14):56-62.
    [5]陈文化.建筑物地基的地震液化问题[D].中国地震局工程力学研究所,1999.
    [6]陈国兴,谢君斐,张克绪.考虑地基土液化影响的桩基高层建筑体系地震反应分析[J].地震工程与工程振动,1995,15(4):93-103.
    [7]陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[J].地震工程与工程振动,2000,22(1):141-151.
    [8]陈国兴.岩土地震工程学[M].科学出版社,2007.
    [9]戴君武.性态抗震设计中的扭转震动分析方法研究&地震动的脉冲特性与结构破坏之间的关系研究[D].哈尔滨:哈尔滨工业大学,2004.
    [10]董娣,周锡元,徐国栋,杨润林.强震记录频率非平稳特性的若干研究[J].地震工程与工程振动[J],2006,26(1):22-29.
    [11]董娣,桑向国,杨健.地震动强度包络线对称性的研究[J].防灾减灾工程学报,2007,27(2):217-223.
    [12]高玉峰,刘汉龙,朱伟.基于地震危险性分析的场地地震动持时特性研究[J].世界地震工程,2000,16(4):109-112.
    [13]胡进军,谢礼立.地震动幅值沿深度变化研究[J].地震学报,2005,27(1):69-79.
    [14]郝敏,谢礼立.集集地震等震线和PGA、PGV等值线关系的研究[J].地震工程与工程振动,2006,26(1):18-21.
    [15]韩渊明,谢数洪,熊建华,王小章.无粘性土三轴试验初探[J].土工基础,2006, 20(3):73-75.
    [16]胡聿贤.地震工程学[M].地震出版社,1988.
    [17]胡聿贤,时振梁.重要工程中的地震问题[M].地震出版社,1987.
    [18]何广讷,李万明.振动能量下砂土的体变与孔隙水压力[J].地震工程与工程振动,1987,7(2):89-98.
    [19]黄春霞,张鸿儒,隋志龙等.饱和砂土地基液化特性振动台实验研究[J].岩土工程学报,2006,28(12):2098-2103.
    [20]景立平,姚运生,郑志华.饱和粉土液化特性的大型振动台模型试验研究[J].地震工程与工程振动,2007,27(6):160-165.
    [21]景立平,卓旭炀,王祥建.复杂介质对地震波传播的影响[J].岩土工程学报,2005,27(4):393-397.
    [22]柯瀚,陈云敏,周燕国,张民强.动态三轴试验确定砂土抗液化强度[J].土木工程学报,2004,37(9):50-54.
    [23]李欣乐,朱晞.近场地震速度脉冲效应及模拟模型的研究[J].中国安全科学学报,2003,13(12):48-52.
    [24]栾茂田,邵宇,林皋.土体地震反应非线性分析方法比较研究[C].第五届全国土动力学学术会议论文集,大连理工大学出版社,1998:203-208.
    [25]刘惠珊.液化震陷预估的经验公式[C].第九届全国土动力学学术会议论文集.1994:289-292.
    [26]刘惠珊.预估液化震陷经验公式再讨论[J].工程抗震,1997(4):33-37.
    [27]刘惠珊.1995年阪神大地震的液化特点[J].工程抗震,2001(1):22-26.
    [28]刘慧珊,徐凤萍,李鹏程.液化引起的地面大位移对工程的影响及研究现状[J].工程抗震,1997,(2):21-26.
    [29]刘恢先等.唐山大地震震害[M].地震出版社,1985.
    [30]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报, 1999,27(1):6-15.
    [31]刘汉龙,周云冬,高玉峰.砂土地震液化后大变形特性试验研究[J].岩土工程学报, 2002,24(2):142-146.
    [32]刘启方,袁一凡,金星,丁海平.近断层地震动的基本特征[J].地震工程与工程振动,2006,26(1):1-10.
    [33]刘颖,谢君斐等.砂土震动液化[M].地震出版社,1984.
    [34]凌贤长,王丽霞,王东升,王志强,王臣.非自由液化场地地基动力性能大型振动台模型试验研究[J].中国公路学报,2005,18(2):34-39.
    [35]鲁晓兵,谈庆明,余善柄,郑哲敏.垂向荷载作用下饱和砂土液化发展的数值模拟[J].力学学报,2001,33(5):612-620.
    [36]鲁晓兵,郑哲敏,张金来.饱和砂土液化引起的变形研究[J].力学进展.2003,33(1):345-348.
    [37]鲁晓兵,谈庆明,王淑云,张金来.饱和砂土液化研究新进展[J].力学进展.2004,34(1):87-96.
    [38]吕西林,陈跃庆等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [39]孟凡超.液化地基上建筑物不均匀震陷机理初步研究[D].哈尔滨:中国地震局工程力学研究所,2006.
    [40]孟凡超,袁晓铭,孙锐,曹振中.加速度峰值不对称性特征及其影响[J].自然灾害学报,2008,17(1):191-196.
    [41]孟上九,刘汉龙,袁晓铭.可液化地基上建筑物不均匀震陷机制的振动台实验研究[J].岩石力学与工程学报,2005, 24(11):1978-1985.
    [42]孟上九,袁晓铭.建筑物不均匀震陷影响因素研究[J].地震工程与工程振动,2004,24(1):111-116.
    [43]孟上九,刘汉龙,袁晓铭.塘沽新港地区建筑物不均匀震陷计算分析[J].河海大学学报,2004,32(2):175-178.
    [44]孟上九,刘汉龙,袁晓铭.建筑物地基不均匀震陷有限元时程分析方法[J].岩土力学, 2005,26(1):33-36.
    [45]沈智刚,Harder L F等.随机荷载下砂土的动力反应[J].国外地震工程,1981, (1):52-58.
    [46]石兆吉,郁寿松.塘沽新港地区震陷计算分析[J].土木工程学报,1988, 21(4):24-34.
    [47]时振梁,鄢家全,汪素云.建筑物的破坏和断层附近的地面运动[J].地球物理学报,1978,21(3):234-241.
    [48]史宏彦,谢定义.饱和砂土地基动力反应分析的瞬态有效应力分析[C].第5届全国土力学及基础工程学术会议论文选集,北京:建筑工业出版社,1987: 341-356.
    [49]沈珠江.理论土力学[M].北京,中国水利水电出版社,1999.
    [50]孙静,袁晓铭.土动剪切模量和阻尼比的推荐值和规范值的合理性比较[J].地震工程与工程振动,2004,24(2):125-133.
    [51]孙锐.液化土层地震动和场地液化识别方法研究[D].中国地震局工程力学研究所,2006.
    [52]孙锐,袁晓铭等.建筑物地基中地震孔压的计算分析[J].世界地震工程, 1999,15(3):63-68.
    [53]孙锐,袁晓铭.非均等固结下饱和砂土孔压增量简化计算公式[J].岩土工程学报, 2005,27(9):1021-1025.
    [54]孙红,袁聚云,赵锡宏.软土的真三轴试验研究[J].水利学报,2002(12):74-78.
    [55]汤淼兴,周键石,马龙海.略论震陷的成因及震陷的分析评价[C].第四届全国土动力学学术会议论文集,1994:297-300.
    [56]田治米辰雄等著,张振中等译.地基与震害[M].地震出版社,1980.
    [57]田玉红,王培德.200km震中距内的加速度记录和地震动特征[J].地震学报, 1994,16(3): 399-402.
    [58]汪闻昭.往返荷载下的饱和砂[J].岩土工程学报,1981,3(3):61-65.
    [59]汪闻昭.土工抗震研究进展[J].岩土工程学报,1993,15(6):80-82.
    [60]王峻,王兰民.不同地震荷载作用下黄土震陷的试验研究[C].第四届全国土动力学学术会议论文集,1994:138-141.
    [61]王兰民.黄土地震灾害预防与减轻研究[D].中国地震工程力学研究所,2000.
    [62]王景明.地面建筑物倾倒方向与强震地面运动[J].地震学报, 1982,4(1):90-97.
    [63]王天颂,刘颖,同筠,齐心.地震荷载作用下饱和砂层孔隙水压力的增长与消散[J].岩土工程学报,1983,5(3):87-102.
    [64]王键华,要明伦.循环应变下饱和砂土液化动力特性研究[J].水利学报, 1987(7):24-30.
    [65]吴再光,林皋,韩国城.随机地震作用下砂土液化概率分析[J].岩土工程学报,1990,12(5): 1-8.
    [66]温瑞智,周正华,孙平善,杨柏坡,李山有.断层场地地震动分析[J].地震工程与工程振动,2002,2(1):21-27.
    [67]谢定义,巫志刚.不规则动荷脉冲波对砂土液化特性的影响[J].岩土工程学报,1987,9(4):1-12.
    [68]谢定义.动荷载下土的强度特性[J].水利学报,1987(12):17-32.
    [69]谢定义,张建民.周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型[J].土木工程学报,1990,23(2):51-60.
    [70]徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1981,9(3):1-14.
    [71]徐志英,沈珠江.土坝地震孔隙水压力产生、扩散和消散的有限元法动力分析[J].华东水利学院学报,1990,23(2):51-60.
    [72]徐学燕,徐春华,李晓稚.冻土场地地震加速度反应谱研究[J].岩土工程学报,2003,25(6):680-683.
    [73]徐龙军,谢礼立.近断层脉冲型地震动耦合效应特征[J].防灾减灾工程学报,2008,28(2):135-142.
    [74]徐龙军,谢礼立,胡进军.地下地震动工程特性分析[J].岩土工程学报, 2006,28(9):1106-1121.
    [75]杨树才,邓学钧.软土地基沉降机理与计算方法分析[J].东南大学学报, 1998,28(3):73-78.
    [76]袁晓铭,孙锐,孟上九.土体地震变形分析中有效循环次数方法的可行性分析[C].第九届全国土力学及岩土工程会议论文集,清华大学出版社, 2003:1160-1163.
    [77]袁晓铭,孙锐,孟上九.软弱地基土上建筑物不均匀震陷机理研究[J].土木工程学报,2004,37(2): 67-72.
    [78]袁晓铭,孙锐,孟上九.土体地震大变形分析中Seed有效循环次数方法的局限性[J].岩土工程学报,2004,26(2):207-211.
    [79]郁寿松,石兆吉,谢君斐,丰万玲.上海地铁隧道振陷的计算分析[J].地震工程与工程振动,1986,6(3):51-59.
    [80]翟长海,李爽,谢礼立,孙亚民.近场脉冲型地震动位移比谱特征研究[J].土木工程学报,2008,41(10):1-5.
    [81]张克绪,谢君斐.土动力学[M].北京,地震出版社,1989.
    [82]张永华,谢定义.不规则动应力条件下孔压的发展规律及其预测方法研究[C].第四届全国土动力学学术会议论文集,1994:7-12.
    [83]张建民,时松孝次,田屋欲司.饱和砂土液化后的剪切吸水效应[J].岩土工程学报,1999,21(4):398-402.
    [84]张敏政.地震模拟试验中相似率应用的若干问题[J].地震工程与工程振动,1997,17(2):52-58.
    [85]张楚汉.结构-地基相互作用问题:结构与介质相互作用的分析模型与方法[C].河海大学出版社,1993:43-66.
    [86]周正华,周雍年,卢滔,杨程.竖向地震动特征研究[J].地震工程与工程振动, 2003,23(3):25-29.
    [87]周键,蔡宏英,许朝阳.软粘土地基震陷分析[J].工程抗震,2000(1):39-42.
    [88]周键,白冰,徐建平.土动力学理论与计算[M].北京,中国建筑工业出版社,2001.
    [89]周键,吴晓峰,沈季文,章熙海,陈圣生.砂土门槛应变值的新认识[J].大坝观测与土工测试,1995,19(2):36-40.
    [90]郑大同,王惠昌.循环荷载作用下土的非线性应力应变模型[J].岩土工程学报,1980,5(1):65-76.
    [91]赵成刚,尤昌龙.饱和砂土的液化与稳态强度[J].土木工程学报,2001,34(3):90-96.
    [92]赵艳,郭明珠等.场地条件对地震动持时的影响[J].震灾防御技术,2007,2(4):417-424.
    [93]中国赴日考察团.日本阪神大地震考察[M].地震出版社,1995.
    [94]中国石油化工总公司抗震办公室译.洛马普里埃塔地震考察[M].地震出版社,1991.
    [95] Bozorgnia Y. ,Niazi M. and Campbell K.W. Characteristics of free-field vertical ground motion in the 1994 Northridge Earthquake[J]. Earthquake Spetra, 1995,11(4):515-525.
    [96] CM. Cubrinovski. Interpretation from Large-Scale Shake Table Tests on Piles Subjected to Spreading of Liquefied Soils[C]. 11th SDEE, Berkeley USA, 2004.
    [97] C.S.Chang. Residual Undrained Deformation form Cyclic Loading[J]. Journal of the Geotechnical Engineering,ASCE,1982,108(4):637-646.
    [98] Chiru D M, Juang C II, Christopher R A, et al. Eatimation of liauefaction induced horizontal displacements using artificial neural networks[J]. Can Geotech J,2001(38):200-207.
    [99] D.P.Stewat,R.R.Settgast,et al. Cyclic Settlement and Sliding of Caisson Seawalls[C]. 12th WCEE,2000(5):27-36.
    [100] Harada N., etc. Development of new drain method for protection of existing pile foundation from liquefaction effects[C]. 11th SDEE, Berkeley USA, 2004.
    [101] H.B.Seed,I.M.Idriss,K.L.Lee.Dynamic Analysis of the Slide in the Lower SanFernando Dam during the Earthquake of February 9,1971[J]. Journal of the Geotechnical Engineering,ASCE,1975,101(9):889-911.
    [102] Haldar, A., et al. Probabilistic Evaluation of Liquefation Potential[J]. ASCE, 1979,105(2):145-163.
    [103] Hamada M, Yasuda S, etc. Observation of permanent displacements induced by soil liquefaction[J]. Proc.JSCE, 1986.
    [104] Housner, G .W .,Jennings, P .Earthquake design spectra[J]. EERI Nomograph Series,1982.
    [105] Idriss,J.M. and Kennedy,R.P. Report by the Ad Hoc Group on Soil-Structcure Interaction of the Committee on Nuclear Structures and Materials of the Structures Division of ASCE[J]. Analysis for Soil-Structcure Interaction Effects for Nuclear Power Plants.1980.
    [106] Ishihara. K,Yasuda S.Sand liquefaction under random earthquake loading condition[C].5th WCEE,1973:329-341.
    [107] Ishihara. K,Yasuda S.Sand liquefaction in Hollow cylinder Torsion under Irregular Excitation[J]. Soils and Foundations,1975:45-49.
    [108] Ishihara, K. and Yamazaki, F. Cyclic Simple Shear Tests on Saturated Sand in Multi-Directional Laoding[J]. Soils and Foundations,1980,20(1):45-59.
    [109] Ishihara, K., Silver, M. L. and Kitagawa, H. Cyclic strengths of undisturbed sands obtained by large diameter sampling[J]. Soils and Foundations, 1978,18(4):61-76.
    [110] Ishihara, K., Iwamoto, S., Yasuda, S. and Takatsu, H. Liquefaction of anisotropically consolidated sand[C]. Proc, 9th International Conference on Soil Mechanics and Foundation Engineering, 1977(2):251-264.
    [111] K.L.Lee,A.Albaisa. Earthquake Induced Settlement in Saturated Sand[J]. Journal of the Geotechnical Engineering,ASCE,100(4):387-406.
    [112] Luco,J.E. Linear Soil-Structure Interaction:A Review,Earthquake Grourd Motin and Its Effects on Structures[J]. ASME,1982:41-57.
    [113] Lysmer,j. Analytical Procedures in Soil Dynamics[J]. UCB/EERC 1978: 78-29.
    [114] M.Hatanaka,Y.Suzuki,et al. Some Factors Affecting the Settlement of Structures due to Sand Liquefaction in Shaking Table Tests[J]. Soils and Foundations,1987,27(1):97-101.
    [115] Martin G.R., Lian W.D. and Seed H.B. Foundamentals of Liquefaction under Cyclic Loading[J]. Journal of the Geotechnical Engineering division, ASCE, 1975, 101(5).
    [116] Mavroeidis G P, A S Papageorgiou. A mathematical representation of near-fault ground motions[J]. Bull. Seism. Soc. Am. 2003(93):1099-1131.
    [117] Nagase H,Ishihara K.Effects of load Irregularity on the Cyclic Behavior of Sand[J]. Soil Dynamics and Earthquake Engineering, 1987,6(4):239-248.
    [118] Ohsaki, Y. et al. Analyses of seismic ground motion parameters including vertical components[C]. 7th WCEE, 1980,(2):97-104.
    [119] Pyke, R. M., Seed, H. B. and Chan, C. K. Settlement of sands under multi-derectional shaking[J]. Proc.,ASCE, 1975,101(4):370-398.
    [120] P.Negro,R.Paolucci. Large Scale Soil-Structure Interaction Experiments on Sand under Cyclic Loading[C].12thWCEE,2000(5):1191-1201.
    [121] R.Siddharthan,G.M.Norris. Residual Pore water Pressure and Structure Response[J]. Soil Dynamics and Earthquake Engineering,1990,9(5):265-271.
    [122] Seed H.B. Use of SPT and CPT test for evaluating liquefaction resistance of sands[C]. Proc of specialty conference, Blacksburg, USA, 1986.
    [123] Seed, H. B., Pyke R. M. and Martin, G. R. Effect of multi-directional shaking on pore pressure development in sands[J]. Proc.,ASCE, 1978,104(1):27-44.
    [124] Seed H B,Idriss I M.Simplified procedure for evaluating soil liquefaction potential[J].Soil Mechanics and Foundations Division, ASCE, 1971, (SM9):1249-1273.
    [125] Shen. C. K., Harder, L F., Vrymoed, J. L. and Bennett, W. J. Dynamic Response of a Sand under Random Loadings[C]. Proc. ASCE Geotechnical Engineering Division, Special Conference on Earthquake Engineering and Soil Dynamics,1978(2):852-863.
    [126] Sherif, M.A. etc. Pore-water Pressure Prediction during Earthquake Loadings[J]. Soils and Foundations, 1978,18(4).
    [127] Sun R, XM Yuan, SJ Meng. A semi-empirical formula for estimating residual strain of cohesive soils under random earthquake loads[C]. the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
    [128] Sun R, XM Yuan, A simplified method for evaluating shear strain increment of soil surfaceconsidering vertical seismic motion[C], the 3rd Inter. Conference on Continental Earthquakes, Beijing, China, 2006.
    [129] S.Sawada,O.Ozutsumi,S.Iai. Analysis of Liquefaction Induced Residual Deformation for Two Types of Quay Walls: Analysis by“FLIP”[C].12thWCEE, 2000(5): 2486-2495.
    [130] S.Drabkin,H.Lacy,D.S.Kim. Estimating Settlement of Sand Caused by Construction Vibration[J]. Journal of the Geotechnical Engineering, ASCE, 1996, 105(6):715-725.
    [131] Takada S. Tanabe K. Estimation of 8152earquake induced settlement for lifeline engineering[C]. 9th WCEE,1988:292-298.
    [132] T.Orita,I.Towhata,A.Ghalandarzadeh. Shaking Table Tests on Permanent Displacement of Caisson Quay Wall during Earthquake[C]. 12th WCEE, 2000(5):2476-2482.
    [133] T.Kimura,K.Saitoh. The Influence of Strain Rate on Pore Pressures in Consolidated Undrained Triaxial Tests on Cohesive Soils[J]. Soils and Foundations,1983,23(1):80-90.
    [134] Whitman, J. T. Probabilistic Soil Dynamics: State-of-the-Art[J]. ASCE, 1980,106(4):385-397.
    [135] XM Yuan, Sun R. and SJ Meng. Effect of asymmetry and irregularity of seismic waves on earthquake-induced differential settlement of buildings on natural subsoil[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(2):107-114.
    [136] XM Yuan, et al, Dynamic shear modulus of sand under different consolidation ratios and itseffects on surface ground motion[C]. The 11th Int. Conf. on Soil Dynamics & Earthq.Enging.and the 3rd Int. Conf. on Earthq. Geotechnical Engng, Berkeley, USA, 2004.
    [137] Y.Yoshimi,K.Tokimatsu. Settlement of Buildings on Saturated Sand during Earthquakes[J]. Soils and Foundations,1977,17(1):23-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700