用户名: 密码: 验证码:
近断层地震动方向性效应及超剪切破裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近断层地震动是造成近断层区工程结构破坏的重要因素,近断层地震动的特征受到诸多因素的影响,其中断层破裂传播的方向性是影响近断层地震动及其分布特征的关键因素之一。方向性效应的影响因素众多,比如断层破裂的速度、破裂的方向、断层的倾角、震源的深度、破裂的模式、破裂起始位置以及断层面上的局部震源参数等,但是这些参数是如何影响方向性效应的呢?特别是一般认为断层的破裂速度接近于剪切波传播速度时,会产生明显的方向性效应,但是当破裂速度超过剪切波传播速度时是否会产生方向性效应?如果存在,又会对近断层地震动的特征产生如何影响?为了回答这些问题,本研究首先分析了方向性效应的相关概念,接着采用数值方法模拟了各种震源相关参数的变化对方向性效应的影响,并且对模拟结果和实际近断层强地震动的方向性特征进行了分析,最后专门研究了地震破裂过程中的超剪切破裂现象及其对近断层地震动方向性效应的影响。研究时分别从地震动的加速度、速度和位移三方面,系统地分析了其三分量的峰值、频谱和持时特征,研究的主要内容和结论如下:
     1.论述了方向性效应的相关概念和影响因素,分析了方向性效应与破裂传播效应以及多普勒效应之间的区别与联系。研究表明:①经典的多普勒效应或所谓的多普勒频移,一般是指由单一频率的波源产生的一列波在介质中传播时,由于波源与观测点的相对位置的改变引起的单位时间内观测点接受到的波的个数的改变,而且波在传播过程中不会出现叠加和干涉现象。②断层的破裂传播效应不能等同于简单的移动源效应或多普勒效应,因为在断层的破裂过程中,断层面上的点有一定的滑动时间继续振动产生地震波,因而波源不止一个,即多波源产生的相同或者相近频率的波在观测点处的叠加和相长干涉。③从实际强震观测数据的角度来分析,由于地震断层破裂过程的复杂性,很难产生与多普勒效应和移动源效应中类似的频移现象。
     2.基于选取的集集地震强震记录,系统地分析了方向性效应对近断层地震动的峰值、反应谱和持时的影响。研究表明方向性效应对近断层地震动的峰值、反应谱和持时的强度以及分布有重要的调制作用,具体表现为:①方向性效应使得破裂前方的峰值增大,使破裂后方的峰值减小。②方向性效应对反应谱的2.0s以后的中长周期段影响更加明显,并且随着周期的增大,方向性效应越来越显著。③方向性效应使得破裂前方的能量持时减小,破裂后方的能量持时增大。④方向性效应对断层垂直分量影响最大,断层平行和竖向分量次之。⑤方向性对加速度、速度和位移地震动的影响依次增大,即方向性效应对长周期地震动影响显著。
     3.数值模拟了各种断层模型下的近断层地震动,分析了震源深度、破裂起始点位置、破裂速度(常破裂速度和变破裂速度)、断层的倾角以及双侧破裂等震源相关参数对方向性效应的影响。以下分别说明:
     (1)方向性效应对地震动峰值、反应谱和持时影响的基本特征:①方向性效应使得断层破裂前方和破裂后方的地震动峰值有极不对称的分布,在破裂前方的很大区域内由于地震辐射的能量在很短时间内几乎同时到达,使得地震动峰值较大,反应谱谱值较高,能量持时较低;而在破裂后方,由于辐射的地震波依次到达,使得能量分布比较均匀,因此地震动的峰值较小、反应谱值较低,能量持时较小。②方向性效应对地震动的不同分量的影响不同,垂直于断层(FN)的分量受到方向性效应影响和控制最为显著,而平行于断层(FP)和竖向(UP)分量受到的影响相对较小。③方向性效应使得沿断层走向的破裂前方有明显的“显著影响区域”,不同分量的显著影响区域不同,对于FN分量,其显著影响区域可从断层末端到达3倍的断层长度距离范围;而对于FP和UP分量,其显著影响区域则明显小于FN分量,约从断层的中段到断层的末端或不超过1.5倍的断层长度的范围。
     (2)震源深度对方向性效应的影响:①随着震源深度的增加,地震动的峰值降低,但是通过对不同震源深度情况下峰值、频谱和持时参数的分析表明,虽然随着震源深度的增加地震动的峰值降低了,但是破裂的前方和后方的地震动的差异依然存在并且比较明显。②随着震源深度的增加,方向性效应的显著影响区域逐渐向破裂前方移动。③随着震源深度的增加方向性显著影响角逐渐增大,也就是说,受到方向性效应影响的范围扩大了,但是其影响的地震动强度并没有增大。
     (3)断层的破裂起始位置对方向性效应的影响:①破裂起始点越靠近地表,地震动的峰值越大,而且破裂起始点的位置对地震动的加速度影响最大,对速度和位移的影响次之。②断层的破裂起始点位置对地震动的FN分量的峰值影响较大,即随着初始破裂位置的下移,地震动FN分量的峰值降低,但是初始破裂点的位置对FP和UP分量的影响很小。③随着破裂初始位置的下移,各观测点的各周期对应的反应谱谱值降低,但是其沿破裂方向的变化趋势没有改变,也就是说断层的初始破裂位置对反应谱沿破裂方向的方向性特征影响不大。④初始破裂位置的变化对持时的影响不大,不同破裂起始位置的持时均在破裂前方的方向性显著影响区域较小且很接近,而后随着破裂起始位置的下移持时略有增大。
     (4)不同破裂速度对方向性效应的影响:①随着破裂速度逐渐接近于剪切波速,在破裂前方的一定区域内,地震动的峰值增大,反应谱值增大,持时略有下降。此区域与不同的分量有关,对于FN分量,此显著影响的区域可达到3倍的断层长度的距离,而对于FP和UP分量,其显著影响区域一般要小于1.5倍的断层长度。②破裂速度对地震动的加速度、速度和位移的影响比较相似,而且不同破裂速度下的显著影响区域并没有太大差别。
     (5)断层的倾角对方向性效应的影响:由于受到震源剪切错位的辐射模式的影响,使得与断层面上滑动方向垂直的分量上的地震动明显大于其它两个方向,因而当断层倾角越大时,与断层面上滑动方向垂直的地震动越接近于地表的FN分量,因此FN分量的方向性效应越明显;当倾角越小时,与断层面上滑动方向垂直的地震动越接近于地表的UP分量,因此UP分量的方向性效应越明显。
     (6)变破裂速度(非均一的破裂速度)对方向性效应的影响:①变化的破裂速度也能产生方向性效应,但是与常破裂速度相比,变破裂速度引起的方向性效应的峰值要明显小于常破裂速度。②变破裂速度使得在断层末端到破裂后方的观测点的各周期的反应谱值均大于均一的破裂速度情况下的值;而在断层末端到破裂前方的广大范围内观测点的各周期的反应谱值均小于均一破裂速度情况下的值。③常破裂速度和变破裂速度都会产生方向性效应,但是变破裂速度情况下破裂前、后方的持时差异比常破裂速度时的小;而且,一般说来,除了FN分量的破裂后方的观测点外,同一观测点在常破裂速度下的持时要小于变破裂速度情况下。
     (7)双侧破裂方向性效应分析:①双侧破裂对FN和FP、UP分量的影响不同,对于FN分量,随着震中距的增大,在断层长度范围内的地震动峰值逐渐增大,并且在断层的末端峰值逐渐下降,但是靠近断层的观测点的峰值最大。对于FP分量,观测点越靠近震中峰值越大,并且随着震中距的增加峰值逐渐减小。②双侧破裂时反应谱以破裂开始点为中心,在两个破裂方向分别出现方向性效应,使得在破裂末端区域的地震动的反应谱谱值加大,但是相比而言,方向性效应对FN分量反应谱的影响更为明显,并且在破裂的方向上,FN分量要比FP和UP分量衰减的慢得多。③方向性效应对于不同分量的持时影响程度不同,并且持时场的空间变化很复杂。
     4.引入了超剪切破裂的概念,从实际地震观测、实验室实验以及理论和数值模拟方面给出了地震超剪切破裂的证明,并简述了超剪切破裂产生的原因。通过数值方法模拟了不同超剪切破裂速度下的近断层地震动,分析结果表明:超剪切破裂也能产生方向性效应,但是超剪切破裂引起的方向性效应与常规破裂速度(即破裂速度小于剪切破裂)时有不同的特点:①在峰值方面,超剪切破裂速度的变化对地震动三分量的影响不同。对于FN分量,随着超剪切破裂速度的增大,地震动的峰值逐渐减小,而且显著影响区域也逐渐减小,并且随着超剪切破裂速度的增大,方向性显著影响角逐渐增大;对于FP和UP分量,随着超剪切破裂速度的增大,地震动的峰值并没有减小,反而有增大的趋势,但显著影响区域逐渐减少,方向性显著影响角逐渐增大。另外,随着超剪切破裂速度的增大,FN分量峰值大于FP分量峰值的观测点逐渐减少。②在反应谱方面,对于FN分量,随着超剪切破裂速度的增大,反应谱的谱值逐渐减小;但是对于FP和UP分量,随着超剪切破裂速度的增大,其反应谱却出现增大的趋势。③在持时方面,对于FN分量,随着超剪切破裂速度的增大,破裂前方的持时显著影响区域在逐渐减少,并且破裂前方的持时值逐渐增大,破裂后方的持时值逐渐减少,但是破裂后方的持时仍然大于破裂前方,并且根据断层距不一样,相差的程度也不相同;对于FP和UP分量,随着超剪切破裂速度的增大,破裂后方的持时变化不大,但是破裂前方的变化显著,明显不同于FN分量的就是,随着超剪切破裂速度的增大,破裂前方的持时逐渐增大,甚至超过了破裂后方的持时。
     5.简述了汶川地震的震源参数、断层模型和烈度分布的特点,分析了汶川地震的近断层地震动方向性特征,并从房屋震害和人员伤亡的分布特征间接佐证了方向性效应。研究表明:①在峰值方面,破裂前方场点的峰值要比破裂后方的大,而且随着断层距的增大,破裂前方和后方的差距逐渐减小。②在反应谱方面,破裂前方场点的平均反应谱显著高于破裂后方的平均反应谱,并且当周期大于2s时,破裂前、后的谱比最高可以达到4倍左右。③在持时方面,破裂后方场点的持时明显大于破裂前方的,差别可达2~4倍。最后,通过工程震害和人员伤亡特征佐证了此次地震的破裂方向性效应。
The nature of rupture directivity caused by a predominately unilateral propagating fault with similar rupture speed to the local shear-wave velocity is a key factor in characterizing the near-fault ground motions. This study focuses on the fault related parameters that contribute to the directivity effect, including the fault rupture speed, rupture direction, fault dip, focal depth, rupture model and the local parameters on the fault plane. Among all the factors mentioned above, the super-shear rupture speed is the one that this study paid special attention to. So is there still exist rupture directivity under super-shear rupture speed of the fault? And in what extent will the super-shear rupture affect the strong ground motions? To answer these questions, three aspects of studies were conducted, including the theoretical analysis, numerical modeling and analysis of the real near-fault recordings and simulated ground motions. Through analysis of peak ground motion, response spectra and significant duration of the fault-normal, fault-parallel and vertical components of ground motions, some conclusions were drawn.
     1. The directivity effect, Doppler effect and rupture propagation effect are three but closely related concepts in characterizing the phenomenon of a rupturing fault. Firstly, the classical Doppler effect describes the frequency shift between the radiated and received waves of a moving source with single frequency. This is caused by the relative movement of the receiver and source, and it is only a changing of received numbers of wave in a given time but no wave superposition and interference. Secondly, for rupture propagation effect, the slipping of a point on the fault plane still continues after the surpass of the rupture front, so it may lead to a constructive interference of wave radiated from the multiple wave source, thus it is different in nature from the finite moving source and Doppler effect. Thirdly, the rupture process of a real earthquake fault is so complex that it is difficult to generate a frequency shift similar to the Doppler effect.
     2. Analysis on strong ground motions of the Chi-Chi earthquake indicates that the rupture directivity has an orientation modulation effect on the motion parameters. To be specific, firstly, directivity increases the amplitude of motion and decreases the attenuation rate in the forward direction, while it decreases the amplitude of motion and increases the attenuation rate in the backward direction. Secondly, the response spectra with periods larger than 2 sec are much more sensitive to the rupture directivity compared with that of the short periods, and the bigger the period, the larger the directivity effect appeared. Thirdly, the significant duration is getting longer with increasing epicenter distance in the forward direction. Lastly, the fault-normal component is the most sensitive to be affected by the directivity effect.
     3. Analysis on the related source parameters indicates that the focal depth, hypocenter location, rupture velocity, fault dip and rupture model play important roles in affecting the strong ground motion’s directivity.
     (1) Modeling results of a typical unilateral rupture fault indicate that there is an asymmetry distribution of amplitudes, spectral ordinates and durations in the ground surface. The peak ground motion and response spectral ordinates in the forward direction get much higher than that of the backward direction with similar rupture distance, while the duration parameter is in the opposite.
     (2) Variation of focal depth also has an obvious effect on the directivity. With increasing of focal depth, the amplitude of ground motion is getting more and more smaller, while the significantly affected areas in the forward direction is getting more and more far from the epicenter, and the directivity affected areas are getting more and more bigger.
     (3) The hypocenter location has a similar effect with the focal depth in the study, and in general, the more closely the hypocenter located to the ground surface, the bigger the amplitude and spectral ordinate is. And also the hypocenter parameter has a different effect on fault-normal and fault-parallel components.
     (4) The uniform rupture velocity with different value has an effect on the amplitude, spectral ordinate and duration. It is concluded that larger rupture velocity increases the amplitude and spectral ordinate but decrease the duration. And for different rupture velocity in the study, the significantly affected areas show little difference.
     (5) Dip angle of the fault model has a special effect on the ground motion. In a word, big dip angle leads to a distinct directivity effect in the fault-normal component, while small dip angle leads to a distinct directivity effect in the vertical component.
     (6) Nonuniform rupture speed along the fault length also generates directivity on the ground motions. Compared to the constant rupture speed, the variable rupture speed leads to relatively smaller amplitude and spectral ordinate, but a higher duration in the same rupture distance.
     (7) Bilateral rupture of the fault can also generate directivity effect in the two end of the rupture propagating. Analysis to the simulated ground motion indicates that the directivity effect generated by a bilateral rupture is more complex than that of a unilateral rupture. And it also has different effect on the fault-normal and fault-parallel components.
     4. The concept of super-shear rupture and its validation were introduced, through analysis of ground motion under various super-shear rupture speeds, results indicate that super-rupture also leads to directivity effect but there appear some difference compared with the sub-shear ruptures. Firstly, the amplitude of fault-normal component decreases with increasing super-shear rupture speed, while the fault-parallel component increases with increasing super-shear rupture speed. And the significantly affected areas in the forward direction decrease with increasing super-shear rupture speed. Secondly, as for the response spectra ordinate, it bears some similar features with the amplitude aspect. Thirdly, in general, the duration in the forward direction for fault-normal component decreases with increasing super-rupture speed, while the fault-parallel component is in opposite.
     5. A preliminary analysis of directivity effect on strong ground motions in Wenchuan earthquake is conducted. Firstly, in general, the peak ground acceleration in the forward direction is bigger than that of the backward direction, and the difference between the forward and backward depends on the closest rupture distance. Secondly, the average response spectra in the forward direction is higher than that of the backward direction, especially for periods higher than 2 sec, and the maxim ratio of forward and backward average spectra can reaches 4. Thirdly, for strong ground motion duration, the difference between the forward and backward direction some times reaches 2~4 times on average. Lastly, the distribution of building collapse ratio and human mortality ratio in direction along and perpendicular to the fault strike are adopted to additionally prove the directivity effect.
引文
[1]安艺敬一,理查兹.定量地震学[M].地震出版社,北京:1986.
    [2]陈学忠,王琼,刘冬英.河北沙城ML4.1级地震发震断层参数测定[J].地震, 2005, 25(2):69-75.
    [3]陈运泰,吴忠良,王德培等.数字地震学[M].地震出版社,北京:2000.
    [4]陈运泰.地震参数.地震出版社[M],北京:2004.
    [5]陈运泰. 1995年7月20日怀来盆地ML=4.1地震的破裂过程[J].地震学报, 1999, 21(6):.
    [6]陈运泰等编.地震参数--数字地震学在地震预测中的应用[M].地震出版社,北京:2003.
    [7]地震大解剖, Newton别册[M].牛顿出版公司, 1999.
    [8]冯启民,邵广彪.近断层地震动速度、位移峰值衰减规律的研究[J].地震工程与工程振动, 2004, 24(4):13-19.
    [9]高原.较大地震破裂尺度的一种简单估算[J].地震. 1996, 16(4):377-383.
    [10]高原,吴忠良. 1993年11月13日勘察加大地震的破裂过程及其构造意义[J].地球物理学报, 1995, 38(1):56-63.
    [11]高原,吴忠良,周蕙兰.四川地区1989年中强地震系列的震源破裂研究[J].地震学报, 1998, 20(1):12-17.
    [12]高原,郑斯华等.一个复杂大的震动破裂特征分析.地震学报[J], 1997, 19(1):1-6.
    [13]郭铠文.台北都会区强地动观测网之地质特性[R].中央气象局研究报告第CW81 -1A-10号. 1992.
    [14]郭铠文.中央气象局强地动观测网之地质特性研究(二)——桃、竹、苗地区[R],中央气象局研究报告第CW82-1A-11号. 1993.
    [15]郭铠文.中央气象局强地动观测网之地质特性研究(三)——嘉南地区[R],中央气象局研究报告第CW83-1A-12号. 1994.
    [16]何永锋,陈晓非.利用经验格林函数识别地下核爆炸与天然地震[J].中国科学D辑, 2006, 36(2): 177-181.
    [17]黄正耀.台湾地区强地动特性及地震危害度参数之评估[J].国立中央大学,地球物理研究所硕士论文, 1995.
    [18]霍俊荣.近场强地面运动衰减规律的研究[D].中国地震局工程力学研究所博士论文,哈尔滨, 1989.
    [19]江辉,朱晞.近断层地震动考虑能量损伤效应的非弹性强度需求[J].中国安全科学学报, 2005, 15(5):8-12.
    [20]江辉,朱晞.近断层强震速度脉冲效应及连续梁桥减隔震特性分析[J].中国安全科学学报, 2003, 13(12):57-62
    [21]江辉,朱晞.脉冲型地震动模拟与隔震桥墩性能的能量分析[J].北方交通大学学报, 2004, 28(4):6-11.
    [22]李保昆,陈培善.强地面运动衰减的经验关系综述[J].国际地震动态, 1996, 7:1-7.
    [23]李小军.对近年大震震害现象与工程地震问题研究的思考[J].国际地震动态, 2001, 8: 26-32.
    [24]李新乐,朱晞.近场地震速度脉冲效应及模拟模型的研究[J].中国安全科学学报, 2003, 13(12):48-52.
    [25]李新乐,朱晞.近断层地震动等效速度脉冲研究[J],地震学报, 2004, 26(6):634-643
    [26]李新乐,朱晞.近断层地震速度脉冲效应对桥墩地震反应的影响[J].北方交通大学学报, 2004, 28(1):11-16.
    [27]李新乐,朱晞.抗震设计规范之近断层中小地震影响[J].工程抗震, 2004, 4:43-46
    [28]李新乐,朱晞.考虑场地和震源机制的近断层地震动衰减特性的研究[J].工程地质学报, 2004, 12(2):141-147.
    [29]李旭,陈运泰.用长周期体波波形资料反演1990年青海共和地震的震源过程[J].地震学报, 1996, 18(3):279-286.
    [30]笠原庆一[日]著,赵忠和等译.地震力学[M].地震出版社,北京:1984.
    [31]笠原庆一[日]著,郑斯华,庄灿涛译.防灾工程学中的地震学[M].地震出版社,北京: 1992.
    [32]廖振鹏.强烈地震地面运动模拟[R].中国地震工程进展,地震出版社,北京: 1992.
    [33]廖振鹏.强震地面运动模拟[R].中国工程抗震研究40年(1949-1989),地震出版社,北京:1989.
    [34]廖振鹏,魏颖.设计地震加速度图的合成[J].地震工程与工程振动, 1988, 8(1)
    [35]林昭仪.以反应谱研究台北盆地之强地动场址效应[D].国立中央大学地球物理研究所硕士论文, 1997.
    [36]刘瑞丰,许力生.地震破裂时-空过程的研究[J].国际地震动态, 2000, 10: 4-7.
    [37]倪永军,朱晞.近断层地震的加速度峰值比和反应谱分析[J].北方交通大学学报, 2004, 28(4):1-5.
    [38]邵广彪,冯启民.近断层地震动加速度峰值衰减规律的研究[J].地震工程与工程振动, 2004, 24(3):30-37.
    [39]石玉成,陈厚群等.随机有限断层法合成地震动的研究与应用[J].地震工程与工程振动, 2005, 25(4):18-23.
    [40]滕吉文,白登海,杨辉等. 2008汶川Ms8.0地震发生的深层过程和动力学响应[J].地球物理学报, 2008, 51(5):1385-1402.
    [41]王国权,周锡元等. 9.21台湾地震近断层强地面运动的周期和幅值特性[J].工程抗震, 2001, 130-136
    [42]王国新.强地震动衰减研究[D].中国地震局工程力学研究所博士学位论文,哈尔滨:2001.
    [43]王国新,史家平.经验格林函数法与随机有限断层法在合成近场强地震动中的联合运用[J].震灾防御技术, 2008, 3(3):292-301
    [44]王海云.近场强地震动预测的有限断层震源模型[D].中国地震局工程力学研究所博士学位论文.哈尔滨:2004.
    [45]王海云,谢礼立.近断层强地震动场预测[J].地球物理学报, 2009, 52(3):703-711.
    [46]王京哲,朱晞.近场地震速度脉冲下的反应谱加速度敏感区[J].中国铁道科学, 2003, 24(6): 27-30.
    [47]王卫民,赵连锋,李娟等.四川汶川8.0级地震震源过程[J].地球物理学报, 2008, 51(5):1403-1410.
    [48]魏颖.地震加速度图的合成[D].中国地震局工程力学研究所硕士论文,哈尔滨:1987.
    [49]邬鑫,朱晞.近场地震的速度脉冲效应及简化冲击回归公式的检验[J].北方交通大学学报, 2003, 27(1): 36-39
    [50]吴忠良.用经验格林函数方法研究澜沧-耿马MS=7.6地震的破裂过程[J].地震学报, 1998, 20(1): 1-11
    [51]吴忠良.地震震源物理中的临界现象[M].地震出版社,北京:2000.
    [52]物理手册(德)[M]. Horst Stocker编,吴锡真,李祝霞,陈师平译.北京大学出版社,北京: 2004.
    [53]谢剑波,吴永权,吕金水,叶繁英.新丰江地区部分地震的震源时间函数[J].地震地磁观测与研究, 2005, 26(2): 56-60.
    [54]许力生,陈运泰.用经验格林函数方法从长周期数字波形资料中提取共和地震的震源时间函数[J].地震学报, 1996, 18(2):156-169.
    [55]许力生,陈运泰.震源时间函数与震源破裂过程[J].地震地磁观测与研究, 2002, 23(6): 1-8.
    [56]许力生, G.Patau,陈运泰.用余震作为经验格林函数从GDSN长周期波形资料中提取1999年集集地震的震源时间函数[J].地震学报, 2002, 24(2):113-125.
    [57]姚振兴,郑天愉.二滩水电站坝区场地地面远动的估计[J].地球物理学报, 1985, 28(2):
    [58]姚振兴,郑天愉.计算综合地震图的广义反射、透射系数矩阵和离散波数法(二)——对不同深度点源情况的算法[J].地球物理学报, 1984, 27:338-347.
    [59]宇津德治[日]著,陈铁成等译.地震学[M].地震出版社,北京:1981.
    [60]张敏政.近场地震动工程参数估计[D].中国地震局工程力学研究所博士学位论文,哈尔滨:1984.
    [61]张添炮,余贵坤.台湾中部地区之反应谱特性研究[R].第八届台湾地区地球物理研讨会论文集, 2000, 235-244.
    [62]郑治真.波谱分析基础[M].地震出版社,北京:1979.
    [63]李小军,阎秀杰,潘华.中小震近场地震动估计中地震动衰减关系的适用性分析[J].地震工程与工程振动, 2005, 25(1): 1-7.
    [64]周家玉,陈运泰,倪江川等.用经验格林函数确定中小地震的震源时间函数[J].地震学报, 1993, 15(1):22-31.
    [65]周正华,周雍年等.竖向地震动特征研究[J].地震工程与工程振动, 2003, 23(3):23-29.
    [66]卓钰如.用多普勒效应研究中小地震的破裂面和破裂传播速度[J].地震学报, 1982, 4(1):14-26.
    [67] Bolt,B.A.(美)著张雪亮,顾瑾平译.地震强地面运动合成[M].地震出版社, 1990.
    [68] M.巴特著[瑞典].地球物理学中的谱分析——固体地球物理学进展[M].郑治真,叶正仁等译,地震出版社,北京:1978.
    [69] P.Mozaffari,吴忠良,陈运泰.用经验格林函数方法研究澜沧-耿马MS=6.7地震的破裂过程[J].地震学报, 1998.20(1):1-11
    [70] S.达斯[美]等著,吴宁远等译.地震震源力学[M].地震出版社,北京:1991
    [71]石玉成,卢育霞.甘肃黄土地区地震动持续时间预测研究[J].甘肃科学学报, 2005, 17(3):35-39.
    [72]汪梦甫.地震动持时的概率危险性分析方法[J].华南地震, l996, 16(1):43-47.
    [73]谢礼立,张晓志.地震动记录持时与工程持时[J].地震工程与工程振动, 1988,8(1):3l-38.
    [74]谢礼立,周雍年.一个新的地震动持续时间定义[J].地震工程与工程动, 1984, 4(2):27-35.
    [75]尹保江,黄宗明.对地震地面运动持续时问定义的对比分析及改进建议[J].工程抗震, 1999, (2):43-46.
    [76]章在墉.地震危险性分析及其应用[M].同济大学出版社,上海:1996.
    [77]李世愚,陈运泰.平面内剪切断层的超S波速破裂[M],地震学报, 1993, 15(1): 9~14.
    [78]李世愚,陈运泰.分形断层的隧道效应和平面内剪切断层的跨S波速破裂[M],地震学报, 1999, 21(1): 17~23
    [79]刘汉兴,汪素云等.考虑震源破裂方向的地震动衰减模型[J].地震学报, 1989, 1: 24-37.
    [80]陈运泰,许力生等(2008). 2008年5月12日汶川特大地震震源特性分析报告[R].中国地震局地球物理研究所网站,汶川8.0级地震抗震救灾科技专题报道.
    [81]陈肇元,钱嫁茹等(2008).汶川地震建筑震害调查与灾后重建分析报告[R],中国建筑工业出版社.
    [82]国务院抗震救灾指挥部(2008).四川汶川特大地震抗震救灾工作总结报告[R].北京:国务院抗震救灾指挥部.
    [83]黄世敏,罗开海.汶川地震建筑物典型震害探讨[R].中国科学技术协会2008防灾减灾论坛专题报告, 2008.
    [84]李小军,周正华,于海英,温瑞智.汶川8.0级地震强震动观测及记录初步分析[R].汶川地震建筑震害调查与灾后重建分析报告,中国建筑工业出版社,北京:2008.
    [85]李小军,于爱勤,甘朋霞,李敏,刘浪.汶川8.0级地震北川县城区灾害调查与分析[J].震灾防御技术, 2008, 3(4):352-362.
    [86]刘启元,陈九辉,李顺成等.汶川Ms 8.0地震:川西流动地震台阵观测数据的初步分析[J]. 2008, 30(3):584-596.
    [87]娄宇等.四川汶川5.12地震房屋震害分析及抗震对策建议[J].建筑结构, 2008, 28(8):1-7.
    [88]卢寿德,李小军(主编).汶川8.0级地震未校正加速度记录[M].地震出版社,北京:2008.
    [89]陆鸣,李鸿晶,温增平等.都江堰市移动通信系统及其建筑物震害特征[J],北京工业大学学报, 2008, Vol. 11.
    [90]孙景江,马强,石宏彬等.汶川地震高烈度区城镇房屋震害简介[J].地震工程与工程振动, 2008, 28(3):7-15.
    [91]滕吉文,白登海,杨辉等. 2008汶川Ms8.0地震发生的深层过程和动力学响应[J]. 2008, 51(5): 1385-1402.
    [92]温瑞智,魏景芝,赵纪生等.汶川地震农居震害特征及其成因分析与恢复重建建议[J].震灾防御技术, 3(4)391-397.
    [93]谢礼立.汶川地震的教训[J].南京工业大学学报, 2009, 31(1):1-8.
    [94]徐锡伟,闻学泽,叶建青等.汶川Ms8.0级地震地表破裂及其发震构造[J].地震地质, 2008, 30(3):597-629.
    [95]于海英,王栋,杨永强等.汶川8.0级地震强地震动加速度记录的初步分析[J].地震工程与工程震动, 2009, 29(1):1-13.
    [96]袁一凡等.汶川Ms8.0级地震工程震害概览[J].地震工程与工程振动, 2008, 28,增刊.
    [97]张敏政.汶川地震中都江堰市的房屋震害[J].地震工程与工程震动, 2008, 28(3):1-6.
    [98]赵纪生,周正华.灾后城镇重新选址的地震地质灾害评估纲要[J].世界地震工程, 2008, 24(2):26-31.
    [99]赵纪生,魏景芝,吴景发,周正华.汶川8.0级地震滑坡、崩塌机制[J].震灾防御技术, 2008, 3(4):379-383.
    [100]中国建筑科学研究院. 2008年汶川地震建筑震害图片集[M].中国建筑工业出版社, 2008.
    [101]周国良,崔成臣等.汶川8.0级地震中几座近断层桥梁失效模式的初步探讨[J].震灾防御技术, 2008, 3(4):370-378.
    [102]周正华,魏景芝等.汶川8.0级地震房屋建筑震害特征.震灾防御技术[J], 2008, 3(4):384-390.
    [103]周正华,温瑞智等.地震宏观震害调查的几点建议震灾防御技术[J].震灾防御技术, 2008, 3(3): 266-270.
    [104]《汶川地震建筑震害调查与灾后重建分析报告》编委会.汶川地震建筑震害调查与灾后重建分析报告[R].中国建筑工业出版社,北京:2008.
    [105]全国地震区划图编制委员会.汶川地震灾区地震动参数区划图工作报告[R], 2008.
    [106]周荣军,李勇, Alexander L Densmore等.青藏高原东缘活动构造[J].矿物岩石, 2008, 26(2):40-51.
    [107]四川汶川8.0级地震现场联合工作队. 2008年5月2008年5月12日四川省汶川8.0级地震灾害损失评估报告(四川灾区) [R].
    [108] Anderson, J.G. and Hough, S.E.(1984). A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies[J]. Bull.Seism.Soc.Am., 74(5):1969-1993.
    [109] Aagaard, B.T., Hall, J.F. and Heaton, T.H.(2001). Characterization of near-source ground motion with earthquake simulations[J]. Earthquake Spectra,17(2):177-207.
    [110] Abrahamson N.A. and Somerville P. G. (1996). Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake[J]. Bull.Seism.Soc.Am., 86(18):593-599.
    [111] Abrahamson, N.A. and Litehiser, J.J.(1989). Attenuation of vertical peak acceleration[J]. Bull.Seism.Soc.Am., 79(3):549-580.
    [112] Abrahamson, N.A. and Silva, W.J.(1997). Empirical response spectral attenuation relations for shallow crustal earthquakes[J]. Seismological Research Letters, 68(1):94-127.
    [113] Abrahamson, N.A.(2000). Effects of rupture directivity on probabilistic seismic hazard analysis. In: Proceedings of the 6th International Conference on Seismic Zonation, Earthquake Engineering Research Institute, Palm Springs. Abrahamson, N.A. and Youngs, R.R.(1992). A stable algorithm for regression analysis using the random effects model[J]. Bull.Seism.Soc.Am., 82:505-510.
    [114] Aki, K.(1984). Asperities barriers characteristic earthquakes and strong motion prediction. Special section. Fault behavior and the earthquake generation process, J. Geophys. Res. 89, 5867-5872. Aki, K.(1979). Characterization of barriers on an earthquake fault[J]. J. Geophys. Res., 84:6140-6148.
    [115] Ambraseys, N.N. and Bommer, J.J.(1991). The attenuation of ground accelerations in Europe[J]. Earthquake Engineering and Structural Dynamics, 20(12):1179-1202.
    [116] Ammon, C.J., Velasco, A.A. and Lay, T.(1993). Rapid estimation of rupture directivity: application to the 1992 Landers (Ms = 7.4) and Cape Mendocino (Ms = 7.2), California earthquakes[J]. Geophys. Res. Lett., 20:97-100.
    [117] Anderson, J.G. and Hough, S.E. (1984). A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies[J]. Bull.Seism.Soc.Am., 74(5):1969-1993.
    [118] Andrews, D.J. and Ben-Zion, Y.(1997). Wrinkle-like slip pulse on a fault between different materials[J], J. Geophys. Res., 102:553-571.
    [119] Andrews, D.J.(1980). A stochastic fault model 1. Static case[J]. J. Geophys. Res., 85:3867-3877.
    [120] Andrews, D.J.(1981). A stochastic fault model 2. Time-dependent case[J]. J. Geophys. Res., 86:10821-10834.
    [121] Antolik, M., Dreger, D. and Romanowicz, B.(1999). Rupture processes of large deep-focus earthquakes from inversion of moment rate functions[J], J. Geophys. Res., 104: 864-894.
    [122] Archuleta, R.J. and Hartzell, S.H.(1981). Effects of fault finiteness on near-source ground motion[J]. Bull.Seismol.Soc.Am., 71:939-957.
    [123] Atkinson, G. and D. Boore(1995). Ground-Motion Relations for Eastern North America[J]. Bull.Seism.Soc.Am., 85:17-30.
    [124] Atkinson, G.M. and Beresnev, I. A.(1997). Don’t call it stress drop[J], Seism. Res. Lett., 68: 3-4.
    [125] Atkinson, G.M. and Beresnev, I. A.(1997). Modeling finite-fault radiation from theωspectrum[J]. Bull.Seism.Soc.Am., 87:64-84.
    [126] Atkinson, G.M. and Walt Silva(1997). An emperical study of earthquake source spectra for California earthquakes[J], Bull.Seism.Soc.Am., 86:97-112.
    [127] Atkinson, G.M.(1995). Attenuation and source parameters of earthquakes in the Cascadia region[J], Bull.Seism.Soc.Am. 85, 1327-1342.
    [128] Atkinson, G.M. and Boore, D.M.(1990). Recent trends in ground motion and spectral response relations for North America[J]. Earthquake Spectra, 6(1):15-35.
    [129] Atkinson, G.M.(1997). Empirical ground motion relations for earthquakes in the Cascadia region[J]. Canadian Journal of Civil Engineering, 24:64-77.
    [130] Atkinson, G.M. and Boore, D.M.(1995). Ground-Motion Relations for Eastern North America[J]. Bull.Seism.Soc.Am., 85(1):17-30.
    [131] Bard, T.A., John, F.H. and Thomas, H.H.(2004). Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal in the 1999 Chi-Chi, Taiwan, Earthquake[J], Bull.Seism.Soc.Am., 94(1):155-170.
    [132] Battis, J.(1981). Regional modification of acceleration attenuation functions[J]. Bull.Seism.Soc.Am., 71(4):1309-1321.Ba. Bull.Seism.Soc.Am. 60:29-61.
    [133] Baumont, D. e Courboulex, F.(2002). Slip Distribution of the Mw 5.9, 1999 Athens Earthquake Inverted from Regional Seismological Data[J]. Geophys. Res. Lett. 29.
    [134] Beck, S.L., Silver, P., Wallace, T. C. and James, D.(1995). Directivity analysis of the deep Bolivian earthquake of June 9, 1994[J]. Geophys. Res. Lett., 22:2257-2260.
    [135] Benioff, H.(1955). Mechanism and Strain Characteristics of the White Wolf Fault as Indicated by the Aftershock Sequence; Earthquakes in Kern County, California during 1955[J]. California Division of Mines Bulletin, 171:199-202.
    [136] Ben-Menahem A. et al. (1961). Radiation of seismic surface-waves from finite moving sources[J]. Bull.Seism.Soc.Am., 51: 401-435.
    [137] Ben-Menahem, A.(1965). A procedure for source studies from spectrum of long-period seismic body waves[J]. Bull.Seism.Soc.Am.,55,2: 203-235
    [138] Ben-Menahem, A. and Toksoz, M.N.(1962). Source-mechanism from spectra oflong-period seismic surface-waves, 1. the mongolian earthquake of december 4, 1957[J]. J. Geophys. Res., 67:1943-1955.
    [139] Ben-Menahem, A. and Toksoz, M.N. (1963a). Source-mechanism from spectrums of long-period surface-waves, 2. the alaska earthquake of november 4, 1952[J]. J. Geophys. Res., 68: 5207-5222.
    [140] Ben-Menahem, A. and Toksoz, M.N.(1963b). Source-mechanism from spectra of long-period seismic surface waves, 3. the alaska earthquake of july 10,1958[J]. Bull.Seism.Soc.Am., 53:905-919.
    [141] Ben-Menahem, A.(1962). Radiation of seismic body waves from a finite moving source in the earth[J]. J. Geophys. Res., 67:345-350.
    [142] Beresnev, I.A. and Atkinson, G.M.(1998a). FINSIM-a FORTRAN program for simulating stochastic acceleration time histories from finite-faults[J]. Bull. Seism. Res. Lett. 69:27-32.
    [143] Beresnev, I.A. and Atkinson, G.M.(1998b). Stochastic finite-fault modeling of ground Motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites[J]. Bull.Seism.Soc.Am. 88:1392-1401.
    [144] Beresnev, I.A. and Atkinson, G.M.(1998c). Stochastic finite-fault modeling of ground Motions from the 1994 Northridge, California, earthquake.II. Widespread nonlinear response at soil sites[J]. Bull.Seism.Soc.Am. 88:1402-1410.
    [145] Beresnev, I.A. and Atkinson, G.M.(1999). Generic finite-fault model for ground-motion prediction in Eastern North America[J]. Bull.Seism.Soc.Am., 89:608-625.
    [146] Beresnev I.A.(2001). Short notes, What we can and cannot learn about earthquake sources from the spectra of seismic waves[J], Bull.Seism.Soc.Am., 91:397-400.
    [147] Beresnev, I.A. and Atkinson, G.M.(2001). Subevent structure of large earthquakes-A ground-motion perspective[J]. Geophysical Research Letters, 28:53-56.
    [148] Beresnev, I.A., Wen, K.L. and Yeh, Y.T.(1995). Nonlinear soil amplification: Its corroboration in Taiwan[J]. Bull.Seism.Soc.Am., 86:496-515.
    [149] Berge. C., Herrero, A. and Bernard, P.(1996). Modeling Directivity of Heterogeneous Earthquake Ruptures[J]. Bull.Seism.Soc.Am. 86:1149-1160.
    [150] Bernard, P. and Madariaga, R.(1984a). A new asymptotic method for the modeling of near field accelerograms[J]. Bull.Seism.Soc.Am., 74:539-557.
    [151] Bernard, P. and Madariaga, R.(1984b). High frequency seismic radiation from a buried circular fault[J]. Geophys. J.R. Astr. Soc., 78:1-18.
    [152] Blume, J.A.(1980). Distance partitioning in attenuation studies[J]. Pages 403-410 of: Proceedings of Seventh World Conference on Earthquake Engineering, vol. 2.
    [153] Boatwright, J. and Boore, D. M.(1982). Analysis of the Ground Accelerations radiated by the 1980 Livermore Valley Earthquakes for Directivity and Dynamic Source Characteristics[J], Bull.Seism.Soc.Am., (72):1843-1865.
    [154] Bollinger, G.A.(1968). Determination of earthquake fault parameters from long-period P-waves[J]. J. Geophys. Res., 73:785-807.
    [155] Bollinger, G.A.(1970). Fault length and fracture velocity for the Kyushu, Japan, earthquake of October 3, 1963[J]. J. Geophys. Res., 75:955-964
    [156] Bolt, B.A. and Abrahamson, N.A.(1982). New attenuation relations for peak and expected accelerations of strong ground motion[J]. Bull.Seism.Soc.Am., 72(6):2307-2321.
    [157] Boore, D.M., Joyner, W.B. and Fumal, T.E.(1997). Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work[J]. Seismological Research Letters, 68(1):128-153.
    [158] Boore, D.M.(1983). Stochastic Simulation of High-Frequency Ground Motions Based on Seismological Models of the Radiated Spectra[J]. Bull.Seism.Soc.Am., 73(6):1865-1894.
    [159] Boore, D.M. and Joyner, W.B.(1978). The influence of rupture incoherence on seismic directivity[J]. Bull.Seism.Soc.Am., 68:283-300.
    [160] Bouchon, M.(1979). Discrete wave number representation of elastic wave fields in three-space dimension[J]. J. Geophys. Res., 68:1555-1576.
    [161] Bouchon, M.(1980a). The motion of the ground during an earthquake:1.The case of a strike-slip fault[J]. J. Geophys. Res., 85:356-266.
    [162] Bouchon, M.(1980b). The motion of the ground during an earthquake:1.The case of a dip-slip fault[J]. J. Geophys. Res., 85:367-375.
    [163] Brune, J.N.(1970). Tectonic Stress and Spectra of Seismic Shear Waves from Earthquakes[J]. Journal of Geophysical Research, 75(26):4997-5009.
    [164] Brune, J.N.(1971). "Correction,"[J]. Journal of Geophysical Research, 76:5002.
    [165] Burridge, R. and Knopoff, L.(1964). Body force equivalents for seismic location[J]. Bull.Seism.Soc Am., 54, 1875-1888.
    [166] Caldeira, B., Bezzeghoud, M. and Borges, J.(2004). Seismic source directivity from Doppler effect analysis, part II: Applications. XXIX GeneralAssembly of the European Seismological Commission (ESC), 12-17 September, Potsdam
    [167] Campbell, K.W.(1981). Near-source attenuation of peak horizontal acceleration[J]. Bull.Seism.Soc.Am., 71(6):2039-2070.
    [168] Campbell, K.W.(1985). Strong motion attenuation relations: A ten-year perspective[J]. Earthquake Spectra, 1(4):759-804.
    [169] Campbell, K.W. and Bozorgnia, Y.(1994). Near-Source Attenuation of Peak Horizontal Acceleration from Worldwide Accelerograms Recorded from 1957 to 1993[J]. Proc. 5th U.S. National Conf. Earthquake Eng., Chicago, Illinois. 3:283-292.
    [170] Campbell, K.W. and Bozorgnia, Y.(2000). New empirical models for predicting near-source horizontal, vertical, and V/H response spectra: Implications for design[J]. In: Proceedings of the Sixth International Conference on Seismic Zonation.
    [171] Campbell, K.W.(1997). Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra[J]. Seismological Research Letters, 68(1):154-179.
    [172] Castro, R.R. and Antonio Rovelli (2001). Stochastic simulation of strong- motion records from the 26 September 1997(Mw 6), Umbria-Marche(Central Italy)earthquake[J]. Bull.Seism.Soc.Am., 91:27-39.
    [173] Catherine Berge, Andre Herrero, Pascal Bernard, Myriam Bour, and Pascal Dominique(1998). The spectral source model:A tool for deterministic and probilistic seismic hazard asseeement[J], Earthquake Spectra, 14(1):35-57.
    [174] Chau-Huei Chen, Wei-Hau Wang, and Ta-liang Teng (2001). 3D velocity structure around the source area of the 1999 Chi-Chi, Taiwan, earthquake: before and after the mainshock[J]. Bull.Seism.Soc.Am., 91:1013-1027.
    [175] Chen, Y.T., Zhou, J.Y. and Ni, J.C.(1991). Inversion of near-source broadband accelerograms for the earthquake source time function[J]. Tectonophysics, 197(1):89-98.
    [176] Cochard, A. and Rice, J.R.(2000). Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip-pulse response[J]. J. Geophys. Res., 105(25):891- 907.
    [177] Cousins, W.J., Zhao, J.X. and Perrin, N.D.(1999). A model for the attenuation of peak ground acceleration in New Zealand earthquakes based on seismograph and accelerograph data[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 32(4):193-220.
    [178] Crouse, C.B.(1991). Ground-motion attenuation equations for earthquakes on the Cascadia subduction zones[J]. Earthquake Spectra, 7(2):201-236.
    [179] Crouse, C.B. and McGuire, J.W.(1996). Site Response Studies for Purpose of Revising NEHRP Seismic Provisions[J], Earthquake Spectra, 12(3):407-439.
    [180] Dahle, A., Bugum, H. and Kvamme, L.B.(1990a). Attenuation modelling based on intraplate earthquake recordings[J]. Pages 121-129 of: Proceedings of Ninth European Conference on Earthquake Engineering, vol. 4-A.
    [181] Dahle, A., Bugum, H. and Kvamme, L.B.(1990b). Attenuation models inferred from intraplate earthquake recordings[J]. Earthquake Engineering and Structural Dynamics, 19(8):1125-1141.
    [182] Densmore, A.L., Ellis, M.A., Li, Y. et al.(2007). Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 26, TC4005, doi:10.1029/2006TC 001987.
    [183] Donovan, N.C.(1973). A statistical evaluation of strong motion data including the February 9, 1971 San[J], Proc. 5th WCEE 1252-1261.
    [184] Douglas, A., Hudson, J.A.and Marshall, P. D.(1981). Earthquake seismograms that show Doppler effects due to crack propogation[J]. Geophys. J. R. Astr. Soc., 64:163-185
    [185] Douglas, A., Hudson, J.A. and Pearce, R.G.(1988). Directivity and the Doppler effect[J], Bull.Seism.Soc.Am., 788:1367-1372.
    [186] Douglas, J.(2001). A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates [R], ESEE Report No. 01-1.
    [187] Dunham, E.M., Favreau, P. and Carlson, J.M.(2003). A supershear transition mechanism for cracks[J], Science, 299:1557-1559
    [188] Espinosa, A.F.(1980). Attenuation of strong horizontal ground accelerations in the western United States and their relation to ML[J]. Bull.Seism.Soc.Am., 70(2):583-616.
    [189] Faccioli, E. Estimating Ground Motions for Risk Assessment, Proc. of the U.S.-Italian Workshop on Seismic Evaluation and Retrofit, Edited by D. P. Abrams and G. M. Calvi, Technical Report NCEER-97-0003, National Center for Earthquake Engineering Research, Buffalo, New York, 1997:1-16.
    [190] Field, E.H. and Jacob, K.H.(1995). A comparison and test of various site- response estimation techniques, including three that are not reference-site dependent[J]. Bull.Seism.Soc.Am. 85:1127-1143.
    [191] Frankel, A.D., Mueller, C., Barnhard, T. et al.(1996), National Seismic-Hazard Maps: Documentation, USGS Open-File Report 96-532.
    [192] Fukushima, Y., and Tanaka, T.(1990). A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan[J]. Bull.Seism.Soc.Am., 80(4): 757-783.
    [193] Fukushima, Y., Tanaka, T., and Kataoka, S.(1988). A new attenuation relationship for peak ground acceleration derived from strong-motion accelerograms[J]. Pages 343-348 of: Proceedings of Ninth World Conference on Earthquake Engineering, vol. II.
    [194] Garcia-Fernandez, M. and Canas, J.A.(1992). Regional Lg-wave attenuation and estimates of peak ground acceleration in the Iberian peninsula[J]. Pages 439-443 of:Proceedings of Tenth World Conference on Earthquake Engineering, vol. 1.
    [195] Gaull, B.A.(1988). Attenuation of strong ground motion in space and time in southwest Western Australia[J]. Pages 361-366 of: Proceedings of Ninth World Conference on Earthquake Engineering, vol. II.
    [196] Huo, J., and Hu, Y.(1991). Attenuation laws considering the randomness of magnitude and distance[J]. Earthquake Research in China, 5(1):17-36.
    [197] Grzegorz Kwiatek, Source time function of mining-induced seismic events at Rudna Copper Mine[J], Poland: an accuracy analysis" Presented at EGU General Assembly in Vienna, 2005
    [198] Hall, J.F., Heaton, T.H., Halling, M.W. and Wald, D.J.(1995). Near-source ground motion and its effects on flexible buildings[J]. Earthquake Spectra, 11(4):569-605.
    [199] Hanks, T.C. and McGuire, R.K.(1981). The Character of High-Frequency Strong Ground Motion[J]. Bull.Seism.Soc.Am., 71(6):2071-2095.
    [200] Harris, J.G. and Achenbach, J.D.(1981). Near-field surface motion excited by radiation from a slip zone of arbitrary shape[J]. J. Geophys. Res., 86:9352-9356
    [201] Harris, R.A., Archuleta, R.J. and Day, S.M.(1991). Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture[J]. Geophys. Res. Lett., 18:893-896.
    [202] Hartzell, S.H. and Heaton, T.H.(1983). Inversion of Strong Ground Motion and Teleseismic Waveform Data for the Fault Rupture History of the 1979 Imperial-Valley, California, Earthquake[J]. Bull.Seism.Soc.Am., 73(6):1553-1583.
    [203] Hartzell, S.H. and Heaton, T.H.(1985). Teleseismic Time Functions for Large, Shallow Subduction Zone Earthquakes. Bull.Seism.Soc.Am., 75(4):965-1004.
    [204] Hartzell, S.H. and Heaton, T.H.(1986). Rupture History of the 1984 Morgan Hill, California, Earthquake from the Inversion of Strong Motion Records[J]. Bull.Seism.Soc.Am., 76:649-674.
    [205] Hartzell, S., Harmsen, S., Frankel, A. and Larsen, S.(1999). Calculation of broadband time histories of ground motion: comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake[J]. Bull.Seism.Soc.Am., 89: 1484-1504.
    [206] Haskell, N.A.(1963). Radiation pattern of rayleigh waves from a fault of arbitrary dip and direction of motion in a homogeneous medium[J]. Bull.Seism.Soc.Am., 53:619-642.
    [207] Haskell, N.A.(1969). Elastic displacements in the near-field of a propagating fault. Bull.Seism.Soc.Am., 59:865-908.
    [208] Haskell, N.A.(1964a). Radiation pattern of surface waves from point sources in a multi-layered medium[J]. Bull.Seism.Soc.Am., 54:377- 393
    [209] Haskell, N.A.(1964b). Total energy and energy spectral density of elastic wave radiation from propagating faults[J]. Bull.Seism.Soc.Am., 54:1811-1841.
    [210] Heaton, T.H.(1995). Overview of seismological methods for the synthesis of strong ground motion[J]. In Proceedings: Modeling Earthquake Ground Motion at Close Distances, Palo Alto, CA, pp. 15-1 - 15-17.Research Project 3102-04, Electric Power Institute.
    [211] Hirasawa Tomowo and Stauder William(1965). On the seismic body waves from a finite moving source[J]. Bull.Seism.Soc.Am., 55:237-262.
    [212] Hirasawa Tomowo and Stauder William(1964). Spectral analysis of body waves from the earthquake of February 18, 1956[J]. Bull.Seism.Soc.Am., 54:2017-2035.
    [213] Hirasawa Tomowo(1964). Elastic waves from a spherical source: Aperiodic solutions for Scholte's model[J]. Bull.Seism.Soc.Am., 54:897-908.
    [214] Hirasawa, T. and Stauder, W.(1965). On the seismic body waves from a finitemoving source[J], Bull.Seism.Soc.Am., 55:237-262.
    [215] Hirasawa, T. and Berry Michael, J.(1971). Reflected and head waves from a linear transition layer in a fluid medium[J]. Bull.Seism.Soc.Am., 61:1-25.
    [216] Hoshiba, M.(2003). Fluctuation of Wave Amplitude Even When Assuming Convolution of Source, Path and Site Factors-Effect of Rupture Directivity[J]. Physics Earth and Planetary Interiors, 137:45-65.
    [217] Jonathan P. Stewart, Shyh-Jeng Chiou, Jonathan D. Bray, et al.(2001). Ground Motion Evaluation Procedures for Performance-Based Design[R]. PEER Report 2001/09
    [218] Joyner, W.B. and Boore, D.M.(1988). Measurement, Characterization, and Prediction of Strong Ground Motion[J], Proc. Earthquake engineering and Soil Dynamics II, GT Div/ASCE, edited by J. L. Von Thun, Park City, Utah, 43-102.
    [219] Kamiyama, M.(1995). An attenuation model for the peak vallues of strong ground motions with emphasis on local soil effects[J]. Pages 579-585 of: Proceedings of the First International Conference on Earthquake Geotechnical Engineering, vol. 1.
    [220] Kanamori, H. and Allen, C.R.(1986). Earthquake repeat time and average stress drop[J]. Earthquake Source Mechanics, Maurice Ewing Ser. 6, edited by S. Das et al., 227-235.
    [221] Kato Naoyuki and Hirasawa Tomowo(1999). A model for possible crustal deformation prior to a coming large interplate earthquake in the Tokai district, central Japan[J]. Bull.Seism.Soc.Am., 89:1401-1417.
    [222] Kawashima, K., Aizawa, K., and Takahashi, K.(1984). Attenuation of peak ground motion and absolute acceleration response spectra[J]. Pages 257-264 of: Proceedings of Eighth World Conference on Earthquake Engineering, vol. II.
    [223] Kawashima, K., Aizawa, K., and Takahashi, K.(1985). Attenuation of peak ground motions and absolute acceleration response spectra of vertical earthquake ground motion[J]. Proceedings of JSCE Structural Engineering/Earthquake Engineering, 2(2):415-422.
    [224] Kawashima, K., Aizawa, K., and Takahashi, K.(1986). Attenuation of peak ground acceleration, velocity and displacement based on multiple regression analysis of Japanese strong motion records[J]. Earthquake Engineering and Structural Dynamics, 14(2):199-215.
    [225] Keller E.A. and Gurrola L.D.(2000). Earthquake Hazard of the Santa Barbara Fold Belt, California[R]. Final Report,Santa Barbara, California.
    [226] Knopoff Leon and Gilbert Freeman(1960).First motions from seismic sources[J]. Bull.Seism.Soc.Am., 50:117-134.
    [227] Knopoff, L. and Gilbert, F.(1959). Radiation from a strike slip fault[J]. Bull.Seism.Soc.Am., 49(2):163-178.
    [228] Kobayashi, S., Takahashi, T., Matsuzaki, S., Mori, et al.(2000). A spectral attenuation model for Japan using digital strong motion records of JMA87 type[J]. In: Proceedings of Twelfth World Conference on Earthquake Engineering. Paper No. 2786.
    [229] Kraeva, N.(2004). Tikhonov’s Regularization for Deconvolution in the Empirical Green Function Method and Vertical Directivity Effect[J]. Tectonophys, 383:29-44.
    [230] Krawinkler, H., and Alavi, B.(1998). Development of Improved Design Procedures for Near-Fault Ground Motions[J]. SMIP98 Seminar on Utilization of Strong-Motion Data, Oakland, pp:21-41.
    [231] Lanza, V., Spallarossa, D., Cattaneo, M., et al.(1999). Source parameters of small events using constrained deconvolution with empirical Green's functions[J]. Geophysical Journal International, 137(3):651-662.
    [232] Lay, T.H., Kanamori, H., Ruff, L.(1982). The asperity model and the nature of large subduction zone earthquakes[J]. Earthq. Pred. Res., 1:3-71.
    [233] Lee, C.T., Cheng, C.T., Liao, C.W. and Tsai, Y.B.(2001). Site classification of Taiwan free-field strong-motion stations[J], Bull.Seism.Soc.Am., 91(5):1283-1297.
    [234] Ma, K.F., Mori, J., Lee, S.J. and Yu, S.B.(2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull.Seism.Soc.Am., 91:1069-1087.
    [235] Madariaga, R.(1983). High frequency radiation from dynamic earthquake fault models[J]. Ann. Geophys., 1:17-23.
    [236] Maruyama, T.(1963). On the force equivalents of dynamical elastic dislocations with reference to the earthquake mechanism[J]. Bull. Earthq. Res. Inst., 41:467-486.
    [237] McGarr, A.(1984). Scaling of ground motion parameters, state of stress, and focal depth[J]. J. Geophys. Res., 89:6969-6979.
    [238] McGarr, A.(1986). Some observations indicating complications in the nature of earthquake scaling[R]. Earthquake Source Mechanics, Maurice Ewing Ser. 6, edited by S. Das et al., pp:217-225.
    [239] McGuire, J.J., Zhao, L. and Jordan, T.H.(2001). Teleseismic inversion for the second-degree moments of earthquake space-time distributions[J]. Geophys. J. Int., 145: 661-678.
    [240] McGuire, J.J., Zhao, L. and Jordan, T.H.(2002). Predominance of unilateral rupture for a global catalog of large earthquakes[J]. Bull.Seism.Soc.Am., 92:3309-3317.
    [241] Molas, G.L. and Yamazaki, F.(1995). Attenuation of earthquake ground motion in Japan including deep focus events[J]. Bull.Seism.Soc.Am., 85(5):1343-1358.
    [242] Munson, C.G. and Thurber, C.H.(1997). Analysis of the attenuation of strong ground motion on the island of Hawaii[J]. Bull.Seism.Soc.Am., 87(4):945-960.
    [243] Musson, R.M.W., Marrow, P.C. and Winter, P.W.(1994). Attenuation of earthquake ground motion in the UK[J]. Tech. rept. AEA/CS/16422000/ZJ745/004. AEA Technology Consultancy Services (SRD) and British Geological Survey.
    [244] Nur Umutlua, Kazuki Koketsub, Claus Milkereit(2004). The rupture process during the 1999 Dqzce, Turkey, earthquake from joint inversion of teleseismic and strong-motion data[J]. Tectonophysics, 39:315-324
    [245] Orozco, G. and Ashford, S. Effects of Large Velocity Pulses on Reinforced Concrete Bridge Columns[J]. PEER 2002/23.
    [246] Panza, G.F. and Suhadolc, P.(1987). Complete strong motion synthetics[J]. In: Computational techniques, Vol. 4, Seismic strong motion synthetics, ed. by: B.A. Bolt, 153-204, Academic Press.
    [247] Pascal Bernard, Andre Herrero and Catherine Berge(1996). Modeling directivity of heterogeneous earthquake ruptures[J], Bull.Seism.Soc.Am., 86:1149-1160.
    [248] Peng, K.Z., Wu, F.T., and Song, L.(1985). Attenuation characteristics of peak horizontal acceleration in northeast and southwest China[J]. Earthquake Engineering and Structural Dynamics, 13(3):337-350.
    [249] Poliakov, A.N.B., Dmowska, R. and Rice, J.R.(2002). Dynamic shear rupture interactions with fault bends and off-axis secondary faulting[J]. J. Geophys. Res., 107, doi: 10.1029/2001JB000572
    [250] Rodriguez-Marek, A.(2000). Near fault seismic site response. Ph.D. Thesis, Civil Engineering, University of California, Berkeley, p. 451.
    [251] Hwang, Ruey-Der, Yu, Guey-Kuen and Wang, Jeen-Hwa(2001). Rupture directivity and source-process time of the September 20, 1999 Chi-Chi, Taiwan, earthquake estimated from Rayleigh-wave phase velocity[J]. Earth Planets Space, 53:1171-1176.
    [252] Sabetta, F. and Pugliese, A.(1987). Attenuation of peak horizontal acceleration and velocity from Italian strongmotion records[J]. Bull.Seism.Soc.Am., 77(5):1491-1513.
    [253] Savage, J.C.(1972). Relation of corner frequency to fault dimensions[J]. Journal of Geophysical Research, 77:3788-3795.
    [254] Seth Stein and Michael Wysession(2003). An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Blackwell Publishing, 2003
    [255] Shabestari, K.T. and Yamazaki, F.(2000). Attenuation relation of response spectra in Japan considering sitespecific term[R]. In: Proceedings of Twelfth World Conference on Earthquake Engineering. Paper No. 1432.
    [256] Sharma, M.L.(1998). Attenuation relationship for estimation of peak ground horizontal acceleration using data from strong-motion arrays in India[J]. Bull.Seism.Soc.Am., 88(4): 1063-1069.
    [257] Sharma, M.L.(2000). Attenuation relationship for estimation of peak ground vertical acceleration using data from strong motion arrays in India[J]. In: Proceedings of Twelfth World Conference on Earthquake Engineering. Paper No. 1964.
    [258] Silver, P.G., Beck, S.L., Wallace, T.C., et al.(1995), Rupture characteristics of the deep Bolivian earthquake of 9 June 1994 and the mechanism of deep-focus earthquakes[J]. Science, 268:69-73.
    [259] Símonólafsson.(1999). Estimation of Earthquake-Induced Response[J]. Thesis. Department of Structural Engineering Norwegian University of Science and Technology, Trondheim, Norway
    [260] Simpson, K.A.(1996). Attenuation of strong ground-motion incorporating near-surface foundation conditions. Ph.D. thesis, University of London.
    [261] Singh, J.P.(1985). Earthquake ground motions: Implications for Designing Structures and Reconciling Structural Damage[J]. Earthquake Spectra, 1(2):239-270.
    [262] Somerville, P.G. and Smith, N.F.(1996). Forward rupture directivity in the Kobe andNorthridge earthquakes, and implications for structural engineering[J]. Seismological Research Letters, 67(2):pp. 55.
    [263] Somerville, P.G., Smith, N.F., Graves, R.W., et al.(1997). Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters. 1997, 68(1): 199-222
    [264] Somerville, P., C. K. Saikia, D. Wald, and R. Graves (1995). Implications of the Northridge earthquake for strong ground motions from thrust faults[J]. Bull.Seism.Soc.Am., 86:5115-5125.
    [265] Somerville, P.G.(2002). Characterizing near fault ground motion for the design and evaluation of bridges[R]. Proceedings of the Third National Seismic Conference and Workshop on Bridges and Highways held in Portland, Oregon, April 28-May 1, 2002.
    [266] Somerville, P.G.(1998). Development of an improved representation of near fault ground motions[J]. In: Proceedings of the SMIP98 Seminar on Utilization of Strong Ground Motion Data, Oakland, CA, pp.1-20.
    [267] Somerville, P.G., Irikura, K., Graves, R., et al.(1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol. Res. Lett., 70:59-80.
    [268] Somerville, P.G., Krawinkler, H. and Alavi, B.(2000). Development of improved ground motion representation and design procedures for near fault ground motions[J]. Final Report to CSMIP Data Utilization Program, Contract no.1097-1601.
    [269] Spudich Paul and Chiou. Brian, S.J.(2008). Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory[J]. Earthquake Spectra, 24(1):279-298.
    [270] Spudich, P. and Chiou, B.J.S.(2006). Directivity in preliminary NGA residuals. Final probect report to Pacific Earthquake Engineering Research Center, University of California, Berkeley, Task 1M01, Subagreement SA5146-15811. Menlo Park, Calif.: U.S. Geological Survey.
    [271] Spudich, P., Chiou, B.J.S., Graves, R., et al.(2004). A formulation of directivity for earthquake sources using isochrone theory[R]. U.S. Geological Survey, Open-File Report: 1268.
    [272] Spudich, P., Frazer, N.(1984). Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop[J]. Bull.Seism.Soc.Am., 74:2061-2082.
    [273] Spudich Paul and Brian Chiou (2007). Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory (Abstract). SMIP07 Seminar on Utilization of Strong-Motion Data, pp. 111 - 112.
    [274] Sun, F., and Peng, K.(1993). Attenuation of strong ground motion in western U.S.A[J]. Earthquake Research in China, 7(1):119-131.
    [275] Takahashi, T., Kobayashi, S., Fukushima, Y., et al.(2000). A spectral attenuation model for Japan using strong motion data base[R]. In: Proceedings of the Sixth International Conference on Seismic Zonation.
    [276] Tamura, K., Sasaki, Y. and Aizawa, K.(1990). Attenuation characteristics of ground motions in the period range of 2 to 20 seconds—for application to the seismic design of long-period structures[R]. Pages 495-504 of: Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, vol. 1.
    [277] Theodulidis, N.P. and Bard, P.Y.(1995). Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan(SMART-1) [J]. Soil Dyn. Earthquake Eng., 14:177-179.
    [278] Tibi, R., Estabrook, C.H. and Bock, G.(1999). The 1996 June 17 Flores Sea and 1994 March 9 Fiji-Tonga earthquakes: source processes and deep earthquake mechanisms[J]. Geophys. J. Int., 138:625- 642.
    [279] Tibi, R., Bock, G. and Estabrook, C.H.(2002), Seismic body wave constraint on mechanisms of intermediate-depth earthquakes[J]. J. Geophys. Res., 107(B3):2047, doi:10.1029/2001JB000361.
    [280] Tibi, R., Bock, G. and Wiens, D.A.(2003), Source characteristics of large deep earthquakes: Constraint on the faulting mechanism at great depths[J]. J. Geophys. Res., 108(B2), 2091, doi:10.1029/2002JB001948.
    [281] Trifunac, M.D. and Lee, V.W.(1989). Empirical models for scaling pseudo relative velocity spectra of strong earthquake accelerations in terms of magnitude, distance, site intensity and recording site conditions[J]. Soil Dynamics and Earthquake Engineering, 8(3): 126-144.
    [282] Tsui-Yu Chang, Fabrice Cotton, Yi-Ben Tsai and Jacques Angelier(2004). Quantification of hanging-wall effects on ground motion: Some insights from the 1999Chi-Chi Earthquake[J]. Bull.Seism.Soc.Am., 94(6):2186-2197
    [283] Vanmarcke, E.H. and Lai, S.S.P.(1980). Strong-Motion Duration and RMS Amplitude of Earthquake Records[J]. Bull.Seism.Soc.Am., 70(4):1293-1307.
    [284] Velasco, A.A., Ammon, C.J. and Lay, T.(1994). Empirical Green function deconvolution of broadband surface waves: Rupture directivity of the 1992 Landers, California (Mw=7.3), earthquake[J]. Bull.Seism.Soc.Am., 84:735-750.
    [285] Vietanh PHUNG, Gail M. ATKINSON and David T. LAU(2004). Characteristicationof directivity effects observed during 1999 Chi-Chi, Taiwan Earthquake[R]. 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2740.
    [286] Warren, L.M. and Silver, P.G.(2006), Measurement of differential rupture durations as constraints on the source finiteness of deep-focus earthquakes[J]. J. Geophys. Res., 111, B06304, doi:10.1029/2005JB004001.
    [287] Warren, Linda M. and Shearer, Peter M.(2006) Systematic determination of earthquake rupture directivity and fault planes from analysis of long-period P-wave spectra[J]. Geophysical Journal International, 164 (1):46-62. doi: 10.1111/j.1365-246X.2005.02 769.x
    [288] Weertman, J.(1964). Continuum distribution of dislocations on faults with finite friction[J]. Bull.Seism.Soc.Am., 54:1035-1058.
    [289] Weertman, J.(1965). Relationship between displacements on a free surface and the stress on a fault[J]. Bull.Seism.Soc.Am., 55:945-953.
    [290] Whittaker. A.U.S.(2000). Japan Workshop on the Effects of Near-Field Earthquake Shaking March 20-21, 2000 San Francisco[R], California PEER 2000/02
    [291] Yao, Z.X. and Harkrider.D.G.(1983). A generalized reflection-transmission coefficient matix and discrete wavenumber method for synthetic seismograms[J], Bull.Seism.Soc.Am., 73:1685-1699.
    [292] Zeng Yeuhua and Chau-Huei Chen(2001). Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake[J]. Bull.Seism.Soc.Am., 91:1088-1098.
    [293] Yuji Yagi and Masayuki Kikuchi. Source rupture process of the Kocaeli, Turkey, earthquake of August17, 1999, obtained by joint inversion of near-field data and teleseismic data[J]. GRL2000
    [294] Zhao, J.X., Dowrick, D.J., and McVerry, G.H.(1997). Attenuation of peak ground acceleration in New Zealand earthquakes[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 30(2):133-158.
    [295] Aagaard, B.T., Hall, J.F. and Heaton, T.H.(2004). Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal in the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 94(1):155-170.
    [296] Abrahamson, N.A. and Somerville, P.G.(1993). Estimation of hanging wall and foot wall effects on peak acceleration. Proc. International Workshop on Strong Motion Data, Menlo Park, California, 2:351-360.
    [297] Abrahamson, N.A., and Silva, W.J.(1996). Empirical Ground Motion Models[R], Report to Brookhaven National Laboratory.
    [298] Archuleta R.J.(1984). A faulting model for the 1979 Imperial Valley earthquake[J]. Journal of Geophysical Research, 89:4559-4585
    [299] Bakun, W.H., Stewart, R.M. and Bufe, C.G.(1978). Directivity in the high-frequency radiation of small earthquakes[J]. Bull.Seism.Soc.Am., 68:1253-1263.
    [300] Ben-Menahem, A.(1965). A procedure for source studies from spectrum of long-period seismic body waves[J]. Bull.Seism.Soc.Am., 55(2):
    [301] Beroza, G.C., Spudich, P.(1988). Linearized inversion for fault rupture behavior Application to the 1984 Morgan Hill, California, earthquake[J]. Journal of Geophysical Research, 93:6275-6296.
    [302] Bolt, B.A.(1973). Duration of Strong Ground Motion[R]. Proceedings of the 5th WCEE, Rome, Italy, 1:1304-1313.
    [303] Bommer, J.J. and Martinez-Pereira, A.(1999). The effective duration of earthquake strong motion[J]. J. Earthquake Eng., 3:127-172.
    [304] Boore, D.M.(2001a). Comparisons of Ground Motions from the 1999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California[J].Bull.Seism.Soc.Am., 91(5):1212- 1217.
    [305] Boore, D.M.(2001b). Effect of Baseline Corrections on Displacements and Response Spectra for Several Recordings of the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 91(5):1199- 1211.
    [306] Bouchon, M.(1979a). Predictability of ground displacement and velocity near an earthquake fault: An Example: The Parkfield earthquake of 1966[J]. J. Geophys. Res., 84:6149-6156.
    [307] Bouchon, M.(1979b). Discrete wave number representations of elastic wave fields in three-space dimensions[J]. J. Geophys. Res., 84:3609-3614.
    [308] Bouchon, M.(1982). The rupture mechanism of the Coyote Lake earthquake of 6 August 1979 inferred from near-field data[J]. Bull. Seism. Soc. Am., 73:745-757.
    [309] Bouchon, M. and Valle′e, M.(2003). Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake[J]. Science, 301:824-826.
    [310] Bouchon, M., Bouin, M.P., Karabulut, H., et al.(2001). How Fast is Rupture during an Earthquake? New Insights from the 1999 Turkey Earthquakes[J]. Geophys. Res. Lett., 28:2723-2726.
    [311] Bouchon, M., Tokso¨z, N., Karabulut, H., et al.(2000). Seismic imaging of the 1999 Izmit (Turkey) rupture inferred from the near-fault recordings[J]. Geophys. Res. Lett. 27:3013-3016.
    [312] Broberg K.B.(1994). Intersonic Bilateral Slip[J]. Geophysical Journal International, 119(3):706-714.
    [313] Burridge, R., Conn, G. and Freund, L.B.(1979). The stability of a rapid model II shear crack with finite cohesive traction[J]. Journal of Geophysical Research, 84:2210-2222.
    [314] Campbell, K.W.(1993). Empirical prediction of near-source ground motion from large earthquakes[J]. Proc. International Workshop on Earthquake Hazard and Large Dams in the Himalaya, January 15-16, 1993, New Delhi, India.
    [315] Chang, T.Y., Cotton, F., Tsai, Y.B., et al.(2004). Quantification of Hanging-Wall Effects on Ground Motion: Some Insights from the 1999 Chi-Chi Earthquake[J]. Bull.Seism.Soc.Am., 94(6):2186-2197.
    [316] Chang, T.Y., Cotton, F. and Angelier, J.(2001). Seismic Attenuation and Peak Ground Acceleration in Taiwan[J]. Bull.Seism.Soc.Am., 91(5):1229-1246.
    [317] Chen, X.F., Quan, Y.L. and Harris, J.M.(1996). Seismogram synthesis for radially multi-layered media using the generalized reflection/transmission coefficients method: Theory and application to acoustic logging[J]. Geophysics, 61(4):1150-1159.
    [318] Chen, X.F.(1995). Seismogram synthesis for multi-layered media with irregular interfaces by global reflection/transmission matrices method—II: Applications for two-dimensional SH case[J]. Bull.Seismo.Soc.Am., 85:1094-1106.
    [319] Chen, C.H., Wang, W.H. and Teng, T.L.(2003). A Possible Causal Relationship Between the 1998 Ruey-Li Sequence and the 1999 Chi-Chi Earthquake in Taiwan[J]. Bull.Seism.Soc.Am., 93(4):1542- 1558.
    [320] Chen, K.C., Huang, B.S., Wang, J.H., et al.(2001). An Observation of Rupture Pulses of the 20 September 1999 Chi-Chi, Taiwan, Earthquake from Near-Field Seismograms[J]. Bull.Seism.Soc.Am., 91(5):1247-1254.
    [321] Chen, W.S., Huang, B.S., Chen, Y,G., et al.(2001). 1999 Chi-Chi Earthquake: A Case Study on the Role of Thrust-Ramp Structures for Generating Earthquakes[J]. Bull.Seism.Soc.Am., 91(5):986-994.
    [322] Chen, Y.G., Chen, W.S., Lee, J.C., et al.(2001). Surface Rupture of 1999 Chi-Chi Earthquake Yields Insights on Active Tectonics of Central Taiwan[J].Bull.Seism.Soc.Am., 91(5):977-985.
    [323] Cheng-Horng Lin, C.H.(2001). The 1999 Taiwan Earthquake: A Proposed Stress-Focusing, Heel-Shaped Model[J]. Bull.Seism.Soc.Am., 91(5):1053-1061.
    [324] Chi, W.C., Dreger, D. and Kaverina, A.(2001). Finite-Source Modeling of the 1999 Taiwan (Chi-Chi) Earthquake Derived from a Dense Strong-Motion Network[J]. Bull.Seism.Soc.Am., 91(5): 1144-1157.
    [325] Dalguer, L.A., Irikura, K., Riera, J.D. and Chiu, H.C.(2001). The Importance of the Dynamic Source Effects on Strong Ground Motion during the 1999 Chi-Chi, Taiwan, Earthquake: Brief Interpretation of the Damage Distribution on Buildings[J]. Bull.Seism.Soc.Am., 91(5):1112-1127.
    [326] Dobry, R., Idriss, I.M. and Ng, E.(1978). Duration characteristics of horizontal components of strong-motion earthquake records[J]. Bull.Seismol.Soc.Am., 68:1487-1520.
    [327] Dunham(2003). A supershear transition mechanism for cracks[J]. Science, 299:1557-1559
    [328] Eberhart-Phillips, D. and coauthors (2003). The 2002 Denali fault earthquake, Alaska: A large-magnitude, slip-partitioned event[J], Science. 300, 1113-1118.
    [329] Ellsworth, W.L., Lebi, M., et al.(2004). Near-field ground motion of the 2002 Denali fault, Alaska, earthquake recorded at Pump Station 10[J]. Earthquake Spectra, 20(3):597-615.
    [330] Evans, J.R., Jensen, E.G., et al.(2006). Calibration of PS09, PS10, and PS11 Trans-Alaska Pipeline System Strong-Motion Instruments, with Acceleration, Velocity, and Displacement Records of the Denali Fault Earthquake[R], 03 November 2002, U.S. Geol. Surv. Open File Rep., 2006-028
    [331] Fletcher, J.B. and Wen, K.L.(2005). Strong Ground Motion in the Taipei Basin from the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 95(4):1428-1446.
    [332] Hartzell, S.H. and Heaton, T.H.(1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake[J]. Bull. Seismol. Soc. Am., 73:1553-1583.
    [333] Heaton, T.H., Hall, J.F., Wald, D.J., et al.(1995). Response of high-rise and baseisolated buildings to a hypothetical Mw 7.0 blind thrust earthquake[J]. Science, 267:206-211.
    [334] Hisada, Y.(1995). An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths (Part 2) [J]. Bull. Seismol. Soc. Am., 85:1080-1093.
    [335] Hu Jinjun and Xie Lili.(2008). Directivity of near-fault ground motion generated by thrust-fault earthquake: a case study of the 1999 Mw7.6 Chi-Chi earthquake[R]. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, October 12-17, 2008, Beijing, China. Paper ID. 03-02-0033.
    [336] Hu Jinjun, Xie Lili and Dai Junwu(2008). Characteristics of engineering damage and human mortality in Mianzhu areas in the great 2008 Wenchuan, Sichuan[R], earthquake. Proceedings of the 14th World Conference on Earthquake Engineering.Beijing, Beijing, China. Paper No. S31-024.
    [337] Huang, C.C., Lee, Y.H., Liu, H.P., et al.(2001). Influence of Surface-Normal Ground Acceleration on the Initiation of the Jih-Feng-Erh-Shan Landslide during the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 91(5): 953-958.
    [338] Huang, N.E., Chern, C.C., Huang, K., Salvino, L.W., et al.(2001). A New Spectral Representation of Earthquake Data: Hilbert Spectral Analysis of Station TCU129, Chi-Chi, Taiwan, 21 September 1999[J]. Bull.Seism.Soc.Am., 91(5):1310-1338.
    [339] Huang, W.G., Wang, J.H., Huang, B.S., et al.(2001). Estimates of Source Parametersfor the 1999 Chi-Chi, Taiwan, Earthquake Based on Brune's Source Model[J]. Bull.Seism.Soc.Am., 91(5):1190- 1198.
    [340] Kamiyama, M.(1984). Effects of subsoil conditions and other factors on the duration of earthquake ground shaking[J]. Proceedings, 8th World Conference on Earthquake Engineering, San Francisco, 2:793-800.
    [341] Kelson, K.I., Kang, K.H., Page, W.D., et al.(2001). Representative Styles of Deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) Earthquake: Geomorphic Characteristics and Responses of Man-Made Structures[J]. Bull.Seism.Soc.Am., 91(5):930-952.
    [342] Kempton, J.J.(2004). Prediction Models for Significant Duration of Earthquake Ground Motions[D]. M.S. dissertation, University of California, Los Angeles.
    [343] Kennett, B.L.N.(1983). Seismic Wave Propagation in Stratified Media. Cambridge Univ. Press, London and New York.
    [344] Lay, T. and Wallace, T.C.(1995). Modern Global Seismology. Academic Press Inc. New York.
    [345] Lee, C.P. and Tsai, Y.B.(2004). Variations of P-Wave Travel-Time Residuals before and after the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 94(6): 2348-2365.
    [346] Lee, J.C., Chen, Y.G., Sieh, K., et al.(2001). A Vertical Exposure of the 1999 Surface Rupture of the Chelungpu Fault at Wufeng, Western Taiwan: Structural and Paleoseismic Implications for an Active Thrust Fault. Bull.Seism.Soc.Am., 91(5):914-929.
    [347] Lee, W.H.K., Shin, T.C., Kuo, K.W., et al.(2001). CWB Free-Field Strong-Motion Data from the 21 September Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 91(5):1370-1376.
    [348] Lee, Y.H., Chen, H.S., Rau, R.J., et al.(2006). Revealing Surface Deformation of the 1999 Chi-Chi Earthquake Using High-Density Cadastral Control Points in the Taichung Area, Central Taiwan[J]. Bull.Seism.Soc.Am., 96(6):2431-2440.
    [349] Lee, Y.H., Lu, S.T., Shih, T. S., et al.(2005). Structures Associated with the Northern End of the 1999 Chi-Chi Earthquake Rupture, Central Taiwan: Implications for Seismic-Hazard Assessment[J]. Bull.Seism.Soc.Am., 95(2):471-485.
    [350] Li Xiaojun, Zhou Zhenghua, Yu Haiyin, et al.(2008). Strong Motion Observations and Recordings from the Great Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration, 7(3): 235-246.
    [351] Lin, A., Lee, C.T., Maruyama, T.,et al.(2005). Meso- and Microstructural Analysis of Coseismic Shear Zone of the 1999 MW 7.6 Chi-Chi Earthquake, Taiwan[J]. Bull.Seism.Soc.Am., 95(2): 486- 501.
    [352] Loh, C.H., Wu, T.C. and Huang, N.E.(2001). Application of the Empirical Mode Decomposition -Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses[J]. Bull.Seism.Soc.Am., 91(5):1339-1357.
    [353] Ma., K.F., Mori, J., Lee, S.-J. et al.(2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull. Seism. Soc. Am., 91:1069-1087.
    [354] Madariaga, R.(1977). High-frequency radiation from crack (stress-drop) models of faulting[J]. Geophs. J., 51:625-652.
    [355] McGuire, R.K., and Barnhard, T.P.(1979). The usefulness of ground motion duration in prediction of severity of seismic shaking[R]. Proceedings, 2nd U.S. National Conference on Earthquake Engineering, Stanford, Calif., pp. 713-722.
    [356] Oglesby, D.D. and Day, S.M.(2001). Fault Geometry and the Dynamics of the 1999 Chi-Chi (Taiwan) Earthquake[J]. Bull.Seism.Soc.Am., 91(5):1099-1111.
    [357] Oglesby, D.D., Archuleta, R.J. and Nielsen, S.B.(1998). Earthquakes on dippingfaults: the effects of broken symmetry[J]. Science, 280:1055 -1059.
    [358] Oglesby, D.D., Archuleta, R.J. and Nielsen, S.B.(2000a). The dynamics of dip-slip faults: explorations in two dimensions[J], J. Geophys. Res., 105:13643 -13653.
    [359] Oglesby, D.D., Archuleta, R.J. and Nielsen, S.B.(2000b). The three-dimensional dynamics of dipping faults[J]. Bull.Seism.Soc.Am., 90:616-628.
    [360] Ohnaka, M., Kuwahara, Y., Yamamoto, K., et al.(1986). Dynamic breakdown process and the generating mechanism for high-frequency elastic radiation during stick-slip instability[J]. Earthquake. Source Mechanics, 6(37):13-24.
    [361] Olson, A.H., Orcutt, J.A., and Frazier, G.A.(1984). The discrete wavenumber / finite element method for synthetic seismograms[J]. Geophys. J. R. Astr. Soc., 77: 421-460.
    [362] Ouchi, T., Lin, A., Chen, A., et al.(2001). The 1999 Chi-Chi (Taiwan) Earthquake: Earthquake Fault and Strong Motions[J]. Bull.Seism.Soc.Am., 91(5):966-976.
    [363] Roumelioti, Z. and Beresnev, I.A.(2003). Stochastic Finite-Fault Modeling of Ground Motions from the 1999 Chi-Chi, Taiwan, Earthquake: Application to Rock and Soil Sites with Implications for Nonlinear Site Response[J]. Bull.Seism.Soc.Am., 93(4):1691-1702.
    [364] Satoh, T., Kawase, H., Iwata, T., et al.(2001). S-Wave Velocity Structure of the Taichung Basin, Taiwan, Estimated from Array and Single-Station Records of Microtremors[J]. Bull.Seism.Soc.Am., 91(5):1267-1282.
    [365] Schmedes, J., and Archuleta, R.J.(2008). Near-Source Ground Motion Along Strike Slip Faults: Insights into Magnitude Saturation of PGV and PGA[J]. Bull.Seism.Soc.Am.(Accepted).
    [366] Shin, T.C. and Teng, T.L.(2001). An Overview of the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 91(5):895-913.
    [367] Sokolov, V. and Wald, D.J.(2002). Instrumental Intensity Distribution for the Hector Mine, California, and the Chi-Chi, Taiwan, Earthquakes: Comparison of Two Methods[J]. Bull.Seism. Soc.Am., 92(6):2145-2162.
    [368] Sokolov, V.Y., Loh, C.H. and Wen, K.L.(2002). Comparison of the Taiwan Chi-Chi Earthquake Strong-Motion Data and Ground-Motion Assessment Based on Spectral Model from Smaller Earthquakes in Taiwan[J]. Bull.Seism.Soc.Am., 92(5):1855-1877.
    [369] Sokolov, V.Yu., Loh, C.H. and Wen, K.L.(1999). Empirical models for estimating design input ground motions in Taiwan region, In: Proc. of International Workshop on Mitigation of Seismic Effects on Transportation Structures, Taipei, Taiwan, July 12-14, 1999, pp. 154-163.
    [370] Sokolov, V.Yu., Loh, C.H. and Wen, K.L.(2000a), Empirical model for estimating Fourier amp-litude spectra of ground acceleration in Taiwan region[J]. Earthquake Engineering and Structural Dynamics, 29:339-357.
    [371] Sokolov, V.Yu., Loh, C.H. and Wen, K.L.(2000b). Empirical study of sediment-filled basin response: A case of Taipei city[J]. Earthquake Spectra, 16:681-707.
    [372] Sokolov, V.Yu., Loh, C.H. and Wen, K.L.(2001). Empirical models for site and region-dependent ground-motion parameters in Taipei area: A unified approach[J]. Earthquake Spectra, 17:313-331.
    [373] Sokolov, V.Yu., Loh, C.H. and Wen, K.L.(2002b), Evaluation of models for Fourier amplitude spectra for the Taiwan region[J]. Soil Dynamics and Earthquake Engineering, 22:718-730.
    [374] Sokolov, V.Yu., Loh, C.H. and Wen, K.L.(2003a). Evaluation of hard rock spectral models for the Taiwan region on the basis of the 1999 Chi-Chi earthquake data[J].Soil Dynamics and Earthquake Engineering, 23:715-735.
    [375] Sokolov, V.Yu., Loh, C.H. and Wen, K.L.(2003b). Evaluation of generalised site response functions for typical soil classes (B, C and D) in the Taiwan region[J] (submitted to Earthquake Spectra).
    [376] Sokolov, V.Yu., Loh, C.H. and Wen, K.L.(2003c). Evaluation of parameters of future earthquakes for purposes of seismic hazard assessment[R], In: Proceedings of the 2003 Pacific Conference on Earthquake Engineering, Christchurch, New Zealand, 12-14 February 2003, CD-ROM, paper 049.
    [377] Sokolov, V.Yu.(2000a). Site & Region-specific response spectra: A probabilistic approach[J]. Soil Dynamics and Earthquake Engineering, 20:273-281.
    [378] Sokolov, V.Yu.(2000b). Hazard-consistent ground motions: Generation on the basis of Uniform Hazard Fourier Spectra[J], Bull.Seism.Soc.Am. 90:1010-1027.
    [379] Somerville, P.G. and Smith, N.F.(1996). Forward rupture directivity in the Kobe andNorthridge earthquakes, and implications for structural engineering[J]. Seismological Research Letters, 67(2): pp. 55.
    [380] Somerville, P., Irikura, K., Graves, R. et al.(1999) . Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seism. Res. Lett., 70:59-80.
    [381] Phung, V., Atkinson, G.M. and Lau, D.T.(2004). Characterization of directivity effects observed during 1999 chi-chi, taiwan earthquake[R]. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6, 2004, Paper No. 2740.
    [382] Spudich, P. and Archuleta, R.(1987). Techniques for earthquake ground motion calculation with applications to source parameterization of finite faults, in Bolt, B.A. ed., SEISMIC STRONG MOTION SYNTHETICS: Orlando, Florida, Academic Press, p. 205-265
    [383] Spudich, P. and Ascher, U.(1983). Calculation of complete theoretical seismograms in vertically varying media using collocation methods[J]. Geophysical Journal Royal Astronomical Society, 75: 101-124.
    [384] Spudich, P. and Cranswick, E.(1984). Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array[J]. Bull.Seism.Soc.Am., 74: 2083-2114.
    [385] Spudich, P. and Xu, L.(2003a). Software for calculating earthquake ground motions from finite faults in vertically varying media, in International Handbook of Earthquake and Engineering Seismology,W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger (editors), Academic Press, New York, Part B, ch. 85-14, pp. 1633-1634.
    [386] Spudich, P. and Xu, L.(2003b). Documentation of software package ISOSYN v3.11: isochrone integration programs for earthquake ground motion calculation, in CD#3 accompanying International Handbook of Earthquake and Engineering Seismology, Part B, W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger (editors), Academic Press, New York, Part B.
    [387] Teng, T.L., Tsai, Y.B. and Lee, W.H.K.(2001). Preface to the 1999 Chi-Chi, Taiwan, Earthquake Dedicated Issue[J]. Bull.Seism.Soc.Am., 91(5):893-894.
    [388] Trifunac, M.D. and Brady, A.G.(1975). A Study on the Duration of Strong Earthquake Ground[J]. Bull.Seism.Soc.Am., 65(3): 581-626
    [389] Tsai, Y.B., Yu, T.M., Chao, H.L. and Lee, C.P.(2001). Spatial Distribution and Age Dependence of Human-Fatality Rates from the Chi-Chi, Taiwan, Earthquake of 21 September 1999[J]. Bull.Seism. Soc.Am., 91(5):1298-1309.
    [390] Wald, D.J., Helmberger, D.V. and Heaton, T.H.(1991). Rupture model of the 1989Loma Prieta earthquake from the inversion of strong-motion and broadband teleseismic data[J]. Bull. Seism. Soc. Am., 81:1540-1572.
    [391] Wang Zifa(2008). A preliminary report on the Great Wenchuan Earthquake[J]. Earthq Eng & Eng Vib, 2008, 7:225-234.
    [392] Wang, G.Q., Boore, D.M., Igel, H. and Zhou, X.Y. (2003). Some Observations on Colocated and Closely Spaced Strong Ground-Motion Records of the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull. Seism. Soc.Am., 93(2):674-693.
    [393] Wang, G.Q., Boore, D.M., Igel, H. and Zhou, X.Y. (2004). Comparisons of Ground Motions from Five Aftershocks of the 1999 Chi-Chi, Taiwan, Earthquake with Empirical Predictions Largely Based on Data from California[J]. Bull.Seism.Soc.Am., 94(6):2198-2212.
    [394] Wang, G.Q., Tang, G.Q., Boore, D.M., et al.(2006). Surface Waves in the Western Taiwan Coastal Plain from an Aftershock of the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 96(3): 821-845.
    [395] Wang, G.Q., Zhou, X,Y., Ma, Z.J. and Zhang, P.Z.(2001). A Preliminary Study on the Randomness of Response Spectra of the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 91(5):1358- 1369.
    [396] Wang, W.H., Chang, S.H. and Chen, C.H.(2001). Fault Slip Inverted from Surface Displacements during the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 91(5):1167-1181.
    [397] Wen, K.L., Peng, H.Y., Tsai, Y.B. and Chen, K.C.(2001). Why 1G Was Recorded at TCU129 Site During the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 91(5):1255-1266.
    [398] Wen, K.L. and Yeh, Y.T.(1991). Characteristics of strong motion durations in the SMART1 array area, Terr., Atmos[J]. Ocean Sci., 2:187-201.
    [399] Wu, Y.M., Shin, T.C. and Chang, C.H.(2001). Near Real-Time Mapping of Peak Ground Acceleration and Peak Ground Velocity Following a Strong Earthquake[J]. Bull.Seism.Soc.Am., 91(5):1218-1228.
    [400] Xia, K.W., Rosakis, A.J. and Kanamori, H.(2004). Laboratory earthquakes: real time observations of the subRayleigh to supershear transition[R], 2003 AGU, San Francisco, December 8-12.
    [401] Xia, K.W., Rosakis, A.J. and Kanamori, H.(2005). Supershear and subRayleigh-intersonic transition observed in laboratory earthquake experiments[J]. Experimental Techniques, 29(3): 63-66.
    [402] Xia, K.W., Rosakis, A.J. and Kanamori, H.(2004). Laboratory Earthquakes: The Sub-Rayleigh-to- Supershear Rupture Transition[J]. Science, 303:1859-1861.
    [403] Xia, K.W., Rosakis, A.J. and Kanamori, H., et al.(2005). Laboratory Earthquakes Along Inhomogeneous Faults: Directionality and Supershea[J]r. Science, 308:681-684.
    [404] Li Xiaojun, Zhou Zhenghua, Huang Moh, Wen Ruizhi, Yu Haiyin, Lu Dawei, Zhou Yongnian and Cui Jianwen. (2008). Preliminary Analysis of Strong-Motion Recordings from the Magnitude 8.0 Wenchuan, China, Earthquake of 12 May 2008[J]. Seismological Research Letters, 79(6):844-854.
    [405] Xu, L.S., Chen, Y.T., Teng, T.L. and Patau, G.(2002). Temporal-Spatial Rupture Process of the 1999 Chi-Chi Earthquake from IRIS and GEOSCOPE Long-Period Waveform Data Using Aftershocks as Empirical Green's Functions[J]. Bull.Seism.Soc.Am., 92(8):3210-3228.
    [406] Yoshioka, S.(2001). Coseismic Slip Distribution of the 1999 Chi-Chi, Taiwan, Earthquake Deduced from Inversion Analysis of GPS Data[J]. Bull.Seism.Soc.Am., 91:1182-1189.
    [407] Zaré. M. Doppler Effect Observed on the Recorded Strong Ground Motions in Iran and Turkey[J]. Journal of Seismology and Earthquake Engineering (JSEE), 4(2):pp.21-36
    [408] Zeng, Y.H. and Chen, C.H.(2001). Fault Rupture Process of the 20 September 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull.Seism.Soc.Am., 91(5):1088-1098.
    [409] Zhang W.B., Iwata, T., Irikura, K., et al.(2004). Dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake[J]. Geophys. Res. Lett., 31, L10605
    [410] Zhang W.B., Iwata, T., Irikura, K., et al.(2003). Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan, earthquake[J]. J. Geophys. Res., 108(B5), 2232.
    [411] Zhao Jisheng, Zhou Zhenghua and Wu Jingfa(2008). Investigation of landslide and rockfall caused by Wenchuan earthquake of Ms8.0[R]. 14th World Conference on Earthquake Engineering, Beijing, China, S31-050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700