用户名: 密码: 验证码:
参数展开共反射点叠加方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
零偏移距剖面在地震资料处理及质量控制、解释和反演各个阶段都占有重要地位,是非常重要的中间成果。获得零偏移距剖面的方法有很多,本文根据前人的研究,简述了几种主要的获取零偏移距剖面的方法(共中心点动校正叠加、倾角时差校正叠加、叠前偏移和共反射面叠加等),指出它们各自的作用和优缺点。在此基础上引出椭圆展开CRP叠加方法。椭圆展开CRP叠加方法具有一定的特殊性和新颖性。它摈弃了传统的CMP抽道集和动校正叠加的思想,从射线理论出发,采用信号的椭圆展开和包络线干涉叠加成像技术,在叠加过程中同时求取准确的CRP叠加速度。当地下为均匀介质覆盖时,无论地下反射界面的形状如何,椭圆展开CRP方法求取的速度就是介质的真实速度,所获得的叠加剖面是真实的零偏移距剖面。该方法对CRP成像方法和速度估算方法的研究有重要的参考价值。
     椭圆展开CRP叠加方法基于水平地表和均匀地下介质的假设,限制了该方法对复杂地区地震资料的成像能力。
     本文根据复杂地区的地震勘探难题,通过引入一系列的参数对椭圆展开CRP叠加方法进行改进,获得了包含三种叠加方法(椭圆展开CRP叠加、双参数展开CRP叠加和基于起伏地表的椭圆展开CRP叠加)的参数展开CRP叠加方法。取得了三项理论研究成果和三项应用技术创新成果。
     ①推导论述了椭圆展开CRP叠加方法。详细研究了椭圆展开CRP叠加方法的理论基础——影像展开、切变换和三元论,推导了椭圆展开CRP叠加算子,讨论了椭圆展开CRP道集抽取和叠加实现方式。指出了椭圆展开CRP方法可以实现非规则观测系统成像的理论根据,形象的展示了其覆盖次数高于常规CMP方法的原因。讨论了速度分析的基本原理和实现方法。结合理论模型和实际地震资料处理试算证实,均匀介质条件下椭圆展开CRP方法所求得的速度是真正的共反射点叠加速度,所获得的叠加剖面是真正的零偏移距剖面,利用该方法得到的成像效果优于传统CMP方法。
     ②推导实现了双参数展开CRP叠加方法。基于有效性概念,推导得到了适应于非均匀介质的双参数展开CRP叠加算法,并提出了相应的转换波计算方法原理。为了提高椭圆展开CRP方法对非均匀介质条件的成像和速度求取能力,引入反映速度横向变化的双参数(上行波与下行波速度的平均速度和速度比)对算法进行改进。论述了双参数展开CRP道集抽取和叠加实现方法,讨论了速度分析方法、实现和优化方法。理论模型和实际地震资料试算证实,改进后的算法尽管仍然使用了近似,并且也有一定的适用限制,但是它对实际地质地球物理场的近似程度更好,取得的处理效果也更好,向理想状态迈进了一大步。
     ③首次研发了基于起伏地表的椭圆展开CRP叠加方法。研究分析了复杂地表问题对地震资料成像的极坏影响和已有解决方法的优缺点。研究并提出了基于起伏地表的椭圆展开CRP叠加方法。论述了基于起伏地表的椭圆展开CRP时间校正原理,讨论了时间校正后叠加成像实现方法,研究了相应的速度分析方法。理论数值模型和实际地震资料试算证实,利用该方法可以实现起伏地表条件下直接的椭圆展开和时间校正叠加成像,无需事先进行任何静校正处理,只需事先将炮点、检波点的准确坐标和高程、炮点井深等信息记录在固定的道头字内即可。目前,该方法已基本实现,但还需进一步的研究和改进。
     ④进行了参数展开CRP叠加方法的应用研究,形成三套创新性应用技术。
     非规则观测系统地震资料成像技术。通过对椭圆展开CRP叠加方法的研究,找到了该方法可以实现非规则观测系统地震资料成像的理论依据,并通过非规则观测系统的单点数值模型(水平地表和起伏地表)和复杂地下构造模型(水平地表和起伏地表)论证了该技术的理论可实现性。
     复杂地表表层结构调查技术。充分发挥参数展开CRP方法速度求取准确的先天优势,研发了MEECRP技术来估计表层速度分布和对表层做校正。帮助解决复杂地区的静校正问题。
     多属性参数剖面综合进行含油气检测技术。参数展开CRP方法求取的速度与反射界面的形状无关,具有实际地质意义。由此得到的平均速度、层速度、速度梯度等属性参数含有丰富的地质信息,可以利用它们方便直观地分析识别速度异常体、进行地应力的研究等,进而综合进行含油气检测。实际生产中,该技术已取得不少地成功实例,具有很好地推广和使用价值。
It is well known that zero-offset section is very important in seismic data processing and interpretation, which is also the objective of conventional CMP (Common Midpoint) stack. There are many methods to obtain zero-offset section. The paper briefly outlines several main stack methods (NMO (Normal Moveout) stack, DMO (Dip Moveout) stack, prestack migration, CRS (Common Reflection Surface) stack, et al.), and introduces their respective advantages and disadvantages. Then, the ellipse evolving common reflection point (CRP) stack is brought in with innovation and distinction, which abandons conventional CMP gathering and NMO stack. Based on ray theory, the ellipse evolving CRP stack adopts the technology of ellipse evolving and envelops intervening and stacking to image. When the media were homogeneous, velocity calculated by ellipse evolving CRP is the real velocity of media, as well as the stack section is the real zero-offset section. Ellipse evolving CRP stack has important reference value to study CRP imaging and velocity estimating.
     Ellipse evolving CRP stack has several theoretical limitations—horizontal surface and homogeneous subsurface media, which limit its imaging ability in complex areas.
     Rooted in solving seismic exploration difficulties, the paper introduces several parameters to improve the ellipse evolving CRP stack and obtains parameter evolving CRP stack, which includes three stack methods—ellipse evolving CRP stack, dual parameters evolving CRP stack and ellipse evolving CRP stack based on rugged surface. The author obtains three theoretical research results and three application technology results as follows:
     ①the deduction and discussion of ellipse evolving CRP stack. The paper studies the theoretical foundation of ellipse evolving CRP stack—image evolving, contact transformation and trialistic theory, and deduces the stack operator of ellipse evolving CRP. The paper also discusses gathering and stack implementing, and points out the theoretical basis of irregular geometry seismic data imaging, it also explains why its folds are higher than conventional CMP's, as well as the basic principle and realizing method of velocity analysis. The combination of theoretical model computing and seismic data processing confirms that velocity calculated by ellipse evolving CRP stack is the real velocity of CRP stack, as well as the stack section is the real zero-offset section. Therefore, the effect of imaging is markedly superior to that of conventional CMP method.
     ②the deduction and realization of dual parameters evolving CRP stack. Based on the concept of effective parameter, the paper deduces the dual parameters evolving CRP stack in the heterogeneous media and presents the computing principle of converted-wave. The paper also discusses the gathering and stack implementing of dual parameters evolving CRP stack, as well as the velocity analysis and its optimization method. The combination of theoretical model computing and seismic data processing confirms that the effect of its imaging is superior to that of conventional ellipse evolving CRP stack.
     ③research and development of ellipse evolving CRP stack based on rugged surface for the first time in the world. The paper studies and analyzes the effects of rugged surface, then it develops ellipse evolving CRP stack based on rugged surface. The paper also discusses the time differences moveout and stacking principle on rugged surface, and studies the velocity analysis of rugged surface. The combination of theoretical model computing and seismic data processing confirms that correct zero-offset section could be obtained directly by ellipse evolving CRP stack on rugged surface without any previously statics processing.
     ④three application technologies deriving from parameter evolving CRP stack as follows:
     Imaging technology of irregular geometry seismic data. Theoretically, parameter evolving CRP stack could process irregular geometry seismic data, and of which the theoretical feasibility is proved by theoretical model (simple and complex, horizontal and rugged surface) computing.
     Investigation technology on complex surface structure. Take full advantage of velocity estimating of parameter evolving CRP stack to form micro ellipse evolving CRP (MEECRP) technology, and it can be used to solve the statics problem in complex area.
     Oil and gas detective technology with multi-attribute parameters sections. Velocity calculated by parameter evolving CRP stack has practical geological meaning, and gets rid of the shackle of reflection interface, thus, average velocity, interval velocity and velocity grads from parameter evolving CRP stack also have abundant geological meaning, which could be used in analyzing and recognizing oil and gas pools. Many tests confirm that this method is a good assistant method of reservoir prediction and oil and gas detection.
引文
[1]伊尔马滋.地震资料分析—地震资料处理、反演和解释.刘怀山等译.北京:石油工业 出版社,2006
    [2]阎世信,刘怀山,姚雪根.山地地球物理勘探技术.北京:石油工业出版社,2000
    [3]熊翥.复杂地区地震数据处理思路.北京:石油工业出版社,2002
    [4]牟永光.地震勘探资料数字处理方法.北京:石油工业出版社,1980
    [5]陆基孟.地震勘探原理.山东:石油大学出版社,1993
    [6]李庆忠.走向精确勘探的道路.北京:石油工业出版社,1993
    [7]R E谢里夫,LP吉尔达特.勘探地震学.北京:石油工业出版社,1999
    [8]姚姚.地震波场与地震勘探.北京:地质出版社,2006
    [9]De Bazelaire E.Normal moveout revisited-inhomogeneous media and curved interfaces.Geophysics,1988,(53):143~157
    [10]Thore P D,De Bazelaire E,Ray M P.Three parameter equation: An efficient tool to enhance the stack.Geophysics,1994,59(2): 297~300
    [11]Berkhout A J.Pushing the limits of seismic imaging,Part Ⅰ: Prestack migration in terms of double dynamic focusing.Geophysics,1997,62(3):937~953
    [12]Berkhout A J,Verschuur D J.CFP-approach to multi-component imaging.Expanded Abstract of 70th Annual Internat SEG Mtg.2000,774~777
    [13]Berkhout A J.CFP technology,new opportunities in seismic processing.Expanded Abstract of 70 Annual Internat SEG Mtg.2000,778~781
    [14]Thorbecke J T.Common focus point technology: [PhD thesis].Delft: Delft University of Technology,1997
    [15]Bolte J F B,Verschuur D J,Hegge R F.CFP operator estimation and inversion demonstrated on a field data set,Part Ⅰ: Operator updating.Expanded Abstracts of 69 Annual International SEG M eeting.1999,1711~1714
    [16]Hegge R,Duijndam A,Bolte J,et a1.CFP operator estimation and inversion demonstrated on a field data set,Part Ⅱ: Velocity estimation.Expanded Abstracts of 69 Annual International SEG Meeting,1999.1500~1503
    [17]Van Veldhuizen E J.Operator amplitude determination for CFP redatumrng through a complex near surface:[Dissertation].Delft: Delft University of Technology,2002
    [18]丁仁伟,李振春,全兆岐.双聚型CFP保幅处理及并行实现综述.勘探地球物理进展,2007,30(6): 415~420
    [19]辛可锋,王华忠,马在田.基于共聚焦点技术的成像速度建模方法研究.石油地球物理勘探,2004,39(5): 519~525
    [20]娄晓东,曹谊,赵青.地震处理新方法——共聚焦点技术.勘探地球物理进展,2002,25(5):7~17
    [21]李振春,张凯,张建磊,等.共聚焦点偏移成像方法研究.石油物探,2003,42(1): 16~21
    [22]辛可锋,王华忠,马在田,等.CFP道集交互速度分析.石油地球物理勘探,2005,40(4): 386~390
    [23]俞国柱,姚姚,周玉冰,等.共聚焦点(CFP)成像技术述评.石油地球物理勘探,2002,37(4):412~421
    [24]王锡文.利用共聚焦点方法消除复杂的近地表效应.勘探地球物理进展,2004,27(4):260~265
    [25]王成祥,赵波,张关泉,等.地下复杂介质地震处理中的CFP技术.地球物理学进展,2003,18(1): 30~34
    [26]刘超颖,王成祥,赵波,等.CFP层速度扫描建模方法.石油物探,2003,42(3):294~297
    [27]Gelchinsky B,Berkovitch A,Keydar S.Multifocusing homeomorphic imaging,Partl.Basic concepts and formulas.Journal of Applied Geophysics,1999,42(3~4): 229~242
    [28]Gelchinsky B,Berkovitch A,Keydar S.Multifocusing homeomorphic imaging,Part 2.Multifold data set and multifocusing.Journal of applied Geophysics,1999,42(3~4): 243 ~ 260
    [29]Berkovitch A,Gelchinsky B,Keydar S.Basic Formula for multiifocusing stack.56~(th) Mtg.Eur Assoc Expl Geophys,Expanded Abstracts,1994,140
    [30]Landa E,Gurevich B,Keydar S,eta l.Application of multifocusing method for subsurface imaging.Journal of Applied Geophysics,1999,42(3~4):283~300
    [31]罗银河.多聚焦( MF)成像技术综述.地球物理学进展,2003,18(4): 635~642
    [32]罗银河.多聚焦成像技术与数值模拟:[硕士学位论文].北京:中国地质大学,2003
    [33]罗银河,刘江平,姚姚,等.多聚焦成像技术及应用研究.石油物探,2005,44(3): 209~ 213
    [34] Gelchinsky B. Homemorphic imaging in processing of seismic data (fundamentals and schemes): 59th Ann. Intemat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1989, 983-988
    [35] Gelchinsky B, Keydar S. Homeomorphic imaging approach-theory and practice. Journal of Applied Geophysics, 1999,42(3-4): 169-228
    [36] Keydar S, Landa E, Gelchinsky B. Multiple prediction using the homeomorphic-imaging technique. Geophysical Prospecting, 1998,46(4):413-440
    [37] Gelchinsky B. Common reflecting element (CRE) method. Geophysics, 1988, 19(1) : 71-75
    [38] Koren Z, Gelchinsky B. Common-refiecting-element (CRE) ray tracing for the calculation of the global multi-offset time field. Geophysics J Internat, 1989, 99: 391-400
    [39] Cruz J C R, Hubral P, Tygel M, et al.The common reflecting element (CRE) method revisited. Geophysics, 2000, 65(3):979-993
    [40] Keydar S, Gelchinsky B and Berkovitch A. The combined homeomorphic stacking. 63th Annual. Internat. Mtg. Soc. Expl. Geophys.,Expanded Abstracts, 1993, 1141 - 1144
    [41] Keydar S, Gelchinsky B and Berkovitch A. Common shot point stacking and imaging. Journal of Seismic Exploration, 1996, (5): 261-274
    [42] Keydar S, Gelchinsky B, Shtivelman V, et al. Common evolute element (cee) stack and imaging (zero offset stack). 60th Annual. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1990, 1719-1722
    [43] Perroud H, Hubral P, Hecht G. Common-reflection-point stacking in laterally inhomogeneous media. Geophys. Prosp., 1999, 47:1-24
    [44] Hubral P. Computing true amplitude reflections in a laterally inhomogeneous earth. Geophysics, 1983,48(8): 1051-1062
    [45] Hubral P. Macro-model independent seismic reflection imaging. Journal of Applied Geophysics, 1999,42(3,4): 137-138
    [46] Adler F, Hoxha F, Hubral P. Migrating around in circles: Part II. The Leading Edge. 1997,3: 235-237
    [47] Hubral P, Krey T. Interval velocities from seismic reflection traveltime measurements. Soc. Expl.Geophys,1980
    [48]Jager R.共反射面元叠加法.姚云霞,李振春译.石油物探译丛,2001,3,1~11
    [49]Hubral P,Hocht G,Jager R.Seismic illumination.The Leading Edge,1999,18(11):1168~1171
    [50]Hubral P,Hocht G,Jager R.An introduction to the Common Reflection Surface Stack.60th Mtg.Eur.Assoc.Expl.Geophys.,1988,Extended Abstracts: 1-19
    [51]Perroud H,Hurbal P,Hocht G.Migrating around in circles-Part Ⅲ.The Leading Edge,1997,15(6): 875~883
    [52]Hubral P,Schleicher J,Tygel M A unified approach to 3-D seismic reflection imaging,PartⅠ: Basic concepts.Geophysics,1996,61:742~758
    [53]Tygel M,Schleicher J,Hubral P,et al.2.5-D time-amplitude Kirchhoff migration to zero offset in laterally inhomogeneous media.Geophysics,1998,63: 557~573
    [54]T Hertweck J,Schleicher J,MANN.Data stacking beyond CMP.The leading edge,2007,7 :818~827
    [55]Jager R,Mann J,Hocht G,et al.Common-reflection-surface stack: Image and attributes.Geophysics,2001,66(1): 97~109
    [56]Hocht G,de Bazelaire E,Majer P,et al.Seismic and optics hyperbolae and curvatures.Journal of Applied Geophysics,1999,42(3~4): 261~281
    [57]Hocht G.Common Reflection Surface Stack: [Master's thesis].Karlsurhe: University of Karlsruhe,1998
    [58]Hocht G.The CRS stack for 3-D media: [Ph.D.thesisj.Karlsurhe: University of Karlsruhe,2001
    [59]Muller T,Jager R,Hocht G.Common reflection surface stacking method—Imaging with an unknown velocity model.68 Ann.Internat.Mtg.,Soc.Exp 1.Geophys.,Expanded Abstracts,1998.1764~1767
    [60]Muller.The 3D Common-Reflection-Surface Stack Theory and Application:[Ph.D.thesis].Karlsurhe: University of Karlsruhe,2003
    [61]Zhang Y,Bergler S,Hubral P.Common-reflection-surface(CRS) stack for common offset.Geophysical Prospecting,1998,46(4): 423~440
    [62]Gierse G,Pruessmann J,Laggiard E,et al.Improved imaging of 3D marine seismic data from offshore Costa Rica with CRS processing.First break,2003,21(12): 45~49
    [63]Trappe H,Gierse G, Pruessmann J.Case studies show potential of Common Reflection Surface stack-structural resolution in the time domain beyond the conventional NMO/DMO stack.First break,19(11):625~633
    [64]Erik E.Theory and application of residual static correction by means of CRS attributes: [Ph.D.thesis].Karlsurhe: University of Karlsruhe,2003
    [65]杨锴,许士勇,王华忠,等.倾角分解共反射面元叠加方法.地球物理学报,2005,48(5):1148~1155
    [66]杨锴,马在田.关于共反射面元叠加方法在实际应用中的一些思考.地球物理学进展,2005,20(1):12~16
    [67]杨锴,马在田.输出道成像方式的共反射面元叠加方法Ⅰ——理论.地球物理学报,2006,49(2): 546~553
    [68]杨锴,马在田,罗卫东.输出道方式的共反射面元叠加方法Ⅱ——实践.地球物理学报,2006,49(3): 895~902
    [69]杨锴,王华忠,马在田.共反射面元叠加的应用实践.地球物理学报,2004,47(2): 327~331
    [70]杨锴,王华忠,许士勇.通过倾角扫描实现优化共反射面元(CRS)叠加.国际地球物理论文集(北京),2004,CPS/SEG:1311~1334
    [71]杨锴,王华忠,马在田.实现最佳零炮检距地震照明成像——CRS叠加之几何阐述.勘探地球物理进展,2002,25(3): 27~31
    [72]王华忠,杨锴,马在田.共反射面元叠加的应用理论——从共反射点到共反射面元.地球物理学报,2004,47(1): 137~142
    [73]覃天.共反射面叠加及其波场属性在地震资料处理中的应用研究:[博士学位论文].北京:中国地质大学,2007
    [74]谭未一.共反射面元叠加:[博士学位论文].北京:中科院地质与地球物理研究所,2004
    [75]覃天,段云卿,赵勇.共反射面元叠加波场属性参数的应用.石油地球物理勘探,2006,41(5): 530~533
    [76]覃天,贾明辰,凌勋,等.共反射面元叠加在复杂地区地震成像中的应用.新疆石油地质,2006,27(5): 604~606
    [77]谭未一,杨长春,李瑞忠,等.共反射面元叠加的实现途径及流程.地球物理学进展,2004,19(2):325~330
    [78]徐国庆,胡中平.CRS叠加技术及其应用.勘探地球物理进展,2003,26(5): 447~450
    [79]裴江云,刘洪,李幼铭,等.共反射元弧叠加方法在火山岩成像中的应用.地球物理学报,2004,47(1): 106~111
    [80]裴江云.地震波场延拓+菲涅尔体叠加方法及成像效果:[博士学位论文].北京:中科院地质与地球物理研究所,2002
    [81]覃天,王拥军,高峰昌,等.共反射面叠加在实际地震资料处理中的应用.物探与化探,2006,30(4): 330~333
    [82]韩立国,孙建国,何礁登,等.共反射面与共中心点联合叠加成像.石油物探,2003,42(1):25 ~28
    [83]韩立国.共反射面与共中心点联合叠加成像与速度模型重建方法研究:[博士学位论文].吉林:吉林大学,2003
    [84]李振春,孙小东,刘洪.复杂地表条件下共反射面元(CRS)叠加方法研究.地球物理学报,2006,49(6): 1794~1801
    [85]李振春,姚云霞,马在田,等.共反射面道集偏移速度建模.地震学报,2003,25(4):406~414
    [86]李振春,姚云霞,马在田,等.基于参数多级优化的共反射面叠加方法及其应用.石油地球物理勘探,2003,38(2): 156~161
    [87]#12
    [88]#12
    [89]#12
    [90]#12
    [91]Kondrashkov V V,Aniskovich E M.Basic principles of parametric evolvement of signal method (PRO) as universal technique of seismic data processing.Physics of the Earth,1998,(2):46~64
    [92]#12
    [93]Kondrashkov V V,Aniskovich E M.Fundamentals of the parametric Development of reflections as a universal method for seismic data processing.Izvestiya,physics of the solid earth,1998,34(2): 127~144
    [94]周青春,刘怀山,Kondrashkov V V,等.椭圆展开共反射点叠加方法的应用研究.地球物理学报,2009,52(1): 222~232
    [95]周青春,刘怀山,Kondrashkov V V,等.参数展开共反射点叠加方法研究.地球物理学报,2009,待发
    [96]Zhou Q C,Liu H S,Kondrashkov V V,et al.Ellipse evolving common reflection point velocity analysis and its application to oil and gas detection.Journal of Geophysics and Engineering,2009,6:53~60
    [97]周青春,林依华,李国都.一种新的油气检测方法——参数展开CRP速度分析方法.CPS/SEG北京2009国际地球物理会议收录
    [98]Dix C H.Seismic velocities from surface measurements.Geophysics,1955,20,68~86
    [99]Mayne W H.Common reflection point horizontal data stacking techniques.Geophysics,1962,27(6):927~938
    [100]Neidell N S,and Taner M.Semblance and other coherency measures for multichannel data.Geophysics,1971,36(3):482~497
    [101]Buchholtz H.A note on signal distortion due to dynamic (NMO)corrections.Geophysical Prospecting,1972,20(2):395~402
    [102]Dunkin J W,Levin F K.Effect of normal moveout on a seismic pulse.Geophysics,1973,38(4): 635~664
    [103]Castle R J.A theory of normal moveout.Ceophysics,1994,59(6):983~999
    [104]De Bazelaire E,Viallix J R.Normal moveout in focus.Geophys.Prosp.,1994,42(5):477~499
    [105]Yilmaz O Z,Claerbout J F.Prestack partial migration.Geophysics,1980,45(12):1753~1779
    [106]Derigovski S M,Rocca F.Geometrical optics and wave theory of constant offset sections in layered media.Geophysical prospecting,1981,29:374~406
    [107]Hale D.Dip moveout by Fourier transform.Geophysics,1984,49(6):741~757
    [108]Hale D.Dip moveout processing.Domenico: Society of Exploration Geophysicists,1991
    [109]Deregowski S M.What is DMO? First Break,1986,4(7):7~24
    [110]Deregowski S M.Common -offset migration and velocity analysis.First Break,1990,8(6):225~234
    [111]戴志阳,孙建国.DMO方法综述.世界地质,2001,20(4): 402~409
    [112]王振华.DMO技术及其处理效果分析.中国海上油气,1992,6(2): 58~68
    [113]马在田.地震偏移成象.北京:石油工业出版社,1989
    [114]马在田.论反射地震偏移成像.勘探地球物理进展,2002,25(3): 1~5
    [115]王余庆,李斐,王宇超.叠前偏移技术探讨及应用.西北油气勘探,2006,18(2): 31~39
    [116]王喜双,张颖.地震叠前时间偏移处理技术.石油勘探与开发,2006,33(4): 416~419
    [117]Sun J.Limited-aperture migration.Geophysics,2000,65(2): 584~595
    [118]Sun J.On the limited aperture migration in two dimensions.Geophysics,1998,63(3):984~994
    [119]Jones I F,Keith I,Martin G,et al.3-D prestack depth migration and velocity model building.The Leading Edge,1998,17(7): 897~906
    [120]方伍宝.地震偏移问题及其解决方案.勘探地球物理进展,2002,25(2): 44~60
    [121]符力耘,孙伟家,李东平.退化的Fourier偏移算子及其在复杂断块成像中的应用.地球物理学报,2007,50(4): 1241~1250
    [122]程玖兵,马在田,耿建华,等.双平方根单程波动方程叠前τ偏移方法.地球物理学报,2007,50(1): 260~267
    [123]刘定进,印兴耀.傅里叶有限差分法保幅叠前深度偏移方法.地球物理学报,2007,50(1): 268~276
    [124]刘礼农,高红伟,刘洪,等.三维VTI介质中波动方程深度偏移的最优分裂Fourier方法.地球物理学报,2005,48(2): 406~414
    [125]吴庆举,李永华,张瑞青,等.接收函数的克希霍夫2D偏移方法.地球物理学报,2007,50(2): 539~545
    [126]王棣,王华忠,马在田,等.叠前时间偏移方法综述.勘探地球物理进展,2004,27(5):313~319
    [127]王延光.关于地震叠前时间偏移技术与应用问题的思考.油气地球物理,2003,1(3):1~6
    [128]井西利,杨长春,王世清.一种改进的地震反射层析成像方法.地球物理学报,2007,50(6): 1831~1836
    [129]周龙泉,,刘福田,陈晓非.三维介质中速度结构和界面的联合成像.地球物理学报,2006,49(4): 1062~1067
    [130]秦义龙,张中杰,Shin C,等.利用单频双程波动方程计算初至走时及其振幅.地球物理学报,2005,48(2): 423~428
    [131]徐升,Gilles L.复杂介质下保真振幅Kirchhoff深度偏移.地球物理学报,2006,49(5):1431~1444
    [132]罗省贤,李录明.三维叠前深度偏移速度模型建立方法.石油物探,1999,38(4): 1 ~6
    [133]Cerveny V,Molotkov I A,Psencik I.地震学中的射线方法.刘福田等译.北京:地质出版社,1986
    [134]郭树祥,韩永治,李建明,等.高分辨率地震资料处理中的优化速度分析方法.石油物探,2004,1:80~82
    [135]王辉,丁志峰.浅层地震勘探资料处理中的速度分析参数选取.地震地质,2006,28(4) : 597~603
    [136]Alkhalifah T.Velocity analysis using nonhyperbolic moveout in transversely isotropic media.Geophysics,1997,62: 1839~1854
    [137]Guo G M,Guo S X,Li J M,et al.Method and application of quartic-order velocity analysis.Petroleum geology and recovery efficiency,2003,10(2):38 ~39
    [138]Hake H,Helbig K,Mcsdag C S.Three-term Taylor series for t~2-x~2 curves over layered transversely isotropic ground.Geophys.Prosp.,1984,32: 828 ~ 850
    [139]Lehmann H J,Houba W.Practical aspects in the determination of 3-D stacking velocities Geophys.Prosp.,1985,33: 34~51
    [140]Lyakhovisky F,Nersky M.The traveltime curves of reflected waves or a transversely isotropic medium.Dokl,Akad,Nauk SSSR,1971,196:327~330 (in Russian)
    [141]Carrion P M.Velocity analysis by long-offsets seismic data.Pure and Applied Geophysics,1988,126: 1~26
    [142]Radovich B J,Levin F K.Instantaneous velocities and reflection times for transversely isotropic solid.Geophysics,1982,47: 316 ~322
    [143]Tsvankm I,Thomen L.Nonhyerbolic reflection moveout in anisotropic media.Geophysics,1994,59: 1290~1304
    [144]Yuan J.Analysis of four-component sea-floor seismic data for seismic anisotropy: [PhD Thesis].Edinburgh :University of Edinburgh,2001
    [145]陈雨红,魏修成.垂向非均匀介质中转换波转换点计算.地球物理学报,2007,50(4):1225~1231
    [146]许士勇,马在田.快速有效的转换波共转换点叠加技术.地球物理学报,2002,45(4):557~568
    [147]Li X Y,Yuan J.Converted-wave moveout and conversion-point equations in layered VTI media: theory and application.Journal of Applied Geophysics,2003,54: 297~318
    [148]何兵寿,张会星.共转换点速度分析石油地球物理勘探,2005,40(5): 510~514
    [149]林依华,尹成,周熙襄,等.一种新的求解静校正的全局快速寻优法.石油地球物理勘探,2000,35(1): 1~12
    [150]Ronen J,Claerbout J F.Surface-consistent residual statics estimation by stack-power maximization.Geophysics,1985,50(12): 2759~2767
    [151]Mike C.反射地震勘探静校正技术,李培明等译.北京:石油工业出版社,2004
    [152]徐颖,郑朝平.地震资料处理技术新进展——静校正和叠加成像.勘探地球物理进展,26(5): 439~446
    [153]Berryhill J R.Wave-equation datuming.Geophysics,1979,44(8): 1329~1344
    [154]Berryhill J R.Wave-equation datuming,before stack.Geophysics,1984,49(11): 2064-2066
    [155]Reshef M.Depth migration from irregular surfaces with the depth extrapolation methods.Geophysics,1991,56(1):119~122
    [ 156]Beaslef C J,Lynn W.The zero velocity layer:migration from irregular surfaces.Expanded Abstracts of 59th SEG Mtg,1989:117~120
    [157]Beaslef C J,Lynn W.The zero velocity layer:migration from irregular surfaces.Geophysics,1992,57(11):1435~1443
    [158]何英,王华忠,马在田,等.复杂地形条件下波动方程叠前深度成像.勘探地球物理进展,2002,25(3): 13~19
    [159]田文辉,李振春,张辉,等.起伏地表条件下的波场上延法叠前深度偏移.中国石油大学学报,2006,30(5):19~26
    [160]李福元,赵瑞培.复杂地表地震资料的地形校正.石油地球物理勘探,2002,37(增刊):31~34
    [161]郑军.变速场高程静校正在复杂地表中的应用.江汉石油职工大学学报,2004,17(4):4~6
    [162]王成祥,赵波,张关泉.基于起伏地表的混合法叠前深度偏移.石油地球物理勘探,2002,37(3): 219~223
    [163]李振春,安琪,马光凯,等.基于共聚焦点技术的起伏地表基准面重建.勘探地球物理进展,2007,30(5): 373~376
    [164]Versteeg R.Sensitivity of prestack depth migration to the velocity model.Geophysics,1993,58: 873~882
    [165]成爱民,刘怀山,刘斌,等.西部地区近地表调查技术研究及应用.海洋地质动态,2006,22(2): 29~31
    [166]刘怀山,刘兵,童思友.山地地球物理勘探难点和对策.西北地质,2004,36(4): 65~70
    [167]崔树果,刘怀山,魏继东.山地地震勘探采集方法研究.西北地质,2004,36(4): 71 ~ 78
    [168]王.兴芝,刘怀山,贺昆仑山前地震勘探方法及应用效果.西北地质,2004,36(4):85~90
    [169]步长城,刘怀山.三维叠前时间偏移技术在永新高密度细分面元资料处理中的应用.海洋地质动态,2008,24(12): 34~38
    [170]王树华,刘怀山,张云银,等变速成图方法及应用研究.中国海洋大学学报,2004,34(1):139~146
    [171]童思友,刘怀山,陈容.地震属性优化技术在胜利CJZ东坡的应用.西北地质,2004,36(4): 91~95
    [172]王建花,李庆忠,邱睿浅层强反射界面的能量屏蔽作用.石油地球物理勘探,2003,38(6): 589~596

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700