用户名: 密码: 验证码:
锡酸盐烧绿石及二元化合物结构与性能的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对烧绿石材料抗辐照性能以及二元化合物高压相变的研究受到了广泛的关注。本论文利用基于密度泛函理论的第一性原理研究了结构、键合和电子性质以及缺陷形成能几种因素对镧系锡酸盐烧绿石氧化物材料Ln_2Sn_2O_7(Ln=Sm,Gd,Tb,Ho,Er,Lu,La,Pr,Nd,Y)抗辐照性能的影响。同时对二元化合物A~NB~(8-N)(N是A元素的最外层价电子数)在高压下的结构相变行为进行了系统的研究。主要结论如下:
     1.利用基于密度泛函理论的平面波赝势程序VASP首次系统地研究了结构、键合和电子性质以及缺陷形成能几个方面对镧系锡酸盐烧绿石氧化物材料Ln_2Sn_2O_7(Ln=Sm,Gd,Tb,Ho,Er,Lu,La,Pr,Nd,Y)抗辐照性能的影响。从结构分析来看,计算得到的晶格常数与实验值吻合很好,表明我们所采用的基组和计算方法是可靠的。氧位置参数x值越大,八面体SnO_6对萤石结构的偏离就越小,材料更趋近于萤石结构,抗辐照能力更强,我们预测该系列氧化物的抗辐照性能随镧系Ln~(3+)离子半径的增大逐渐减小,其中,Lu_2Sn_2O_7烧绿石抗辐照性能最强,La_2Sn_2O_7的抗辐照性能最差。从键结合分析来看,〈Sn-O_(48f)〉键的布居值随镧系Ln~(3+)离子半径的增大呈现出无规律的变化,说明〈Sn-O_(48f)〉的共价键合不是影响其抗辐照性能的主要因素。从缺陷形成能的分析来看,从Lu~(3+)到Tb~(3+)以及从Gd~(3+)到Nd~(3+),随着镧系Ln~(3+)阳离子半径的增加,阳离子反位缺陷形成能逐渐增加,抗辐照性能逐渐减弱,这与实验现象是吻合的。Lu_2Sn_2O_7有最低的阳离子反位缺陷形成能,暗示具有最强的抗辐照能力。电子态密度分析表明,Sn 5p态和O 2p态间存在轨道杂化,这种杂化强弱对材料的抗辐照性能有明显的影响,能带分析显示锡酸盐烧绿石系列材料属于直接带隙型材料,表现出明显的半导体特征。
     2.利用基于密度泛函理论的平面波赝势程序DACAPO计算了KCl、MgS、CaS、YSb和ScSb几种二元化合物的高压相变行为。模拟了压强对B1构型和B2构型的力学、电子和光学性质的影响。计算结果表明,在零温零压下这些化合物的B1构型是最稳定的,随着压强的增大,会发生从B1→B2构型的转变。首次发现,对于同周期的三种化合物KCl、CaS和ScSb,随着阳离子半径的逐渐减小,阴阳离子间共价键合逐渐增强,发生B1→B2构型的相变压强也就越大。但同族化合物MgS和CaS,YSb和ScSb,随着阳离子半径的增加,晶格常数增大,B1→B2构型的相变压强减小,阳离子对其相变压强的影响非常显著。我们也从理论上首次预测了这些化合物的其他高压结构相变行为,即MgS和CaS的B3→B2和B4→B2的结构转变以及KCl化合物的B2→T1和B3→T1的结构相变。这将为进一步的实验研究提供一定的理论依据。压强促使了化合物的键长缩短,体积减小,体积模量增大,电荷发生转移,电子性质的变化导致光学性质也相应的发生了变化。研究发现,这几种二元化合物对光的吸收主要集中在紫外光区。
Recently,there have been considerable progresses in the studies of the resistance toradiation damage of pyrochlore oxide materials and pressure-induced phase transitionsin binary compounds.In the present paper,the factors,including structural,bonding,electronic properties and defect formation energies,influencing the resistance toradiation damage of lanthanide Ln_2Sn_2O_7(Ln=Sm,Gd,Tb,Ho,Er,Lu,La,Pr,Nd,Y)stannate pyrochlore oxides have been studied systematically using first principlecalculation based on Density Functional Theory.At the same time,the pressure-inducedphase transition in binary compounds(A~NB~(8-N),N is the outermost valence electronicnumber of A element) have also been studied systematically.The main results are asfollows:
     1.A systematic study has been carried out to investigate the resistance to radiationdamage of lanthanide stannate Ln_2Sn_2O_7(Ln=Sm,Gd,Tb,Ho,Er,Lu,La,Pr,Nd,Y)pyrochlore oxides from different aspect,including structural,bonding,electronicproperties and defect formation energies,using the Vienna ab initio simulation package(VASP) based on Density Functional Theory.From the structural analysis,it is foundthat the calculated static lattice parameters agree well with experimental measurements,which indicate the basis group and method used in our calculation are reasonable.TheSnO_6 octahedra have smaller structural deviations from the ideal fluorite structure whenthe 48foxygen positional parameter,x,becomes larger,which will show more radiationresistance to ion beam-induced amorphization for pyrochlores.The present worksuggests that the radiation resistance decrease as the lanthanide Ln~(3+) ionic radiusincreases in stannate pyrochlores Ln_2Sn_2O_7(Ln= Sm,Gd,Tb,Ho,Er,Lu,La,Pr,Nd,Y),sowe prognosticate that Lu_2Sn_2O_7 is the most resistant to ion beam-induced amorphizationand La_2Sn_2O_7 is the lowest resistance.From the analysis of bonding properties,it canalso be seen that the bond overlap population shows an inregular variationwith increasing lanthanide Ln~(3+) ionic radius,which suggests the covalent bond is not a primary factor for radiation resistance.From the analysis of defectformation energies,the formation energies of the cation-antisite defects increases continuously from Lu~(3+) to Tb~(3+) and Gd~(3+) to Nd~(3+),indicating a significantly reducedradiation resistance as the lanthanide Ln~(3+) cation ionic radius increases.The results arein consistent with the experimental observations on the resistance behavior of thestannate pyrochlores.Lu_2Sn_2O_7 has the lowest cation-antisite defect formation energy,suggesting it has the strongest radiation resistance.The electronic density of states(DOS) analysis shows that there exists some hybridization between Sn 5p and O 2pstates,which influences obviously the radiation resistance.Electronic band structures ofLn_2Sn_2O_7 pyrochlores present a direct band gap and a obvious semiconducting feature.
     2.We have systematically studied pressure-induced phase transition in binarycompounds KCl,MgS,CaS,YSb and ScSb using the plane-wave pseudopotentialDACAPO code based on Density Functional Theory.The influences of pressure onstructural,electronic and optical properties have been investigated.The calculatedresults show that the B1 structure is the most stable at 0 GPa and 0 K for these binarycompounds.Under compression,our calculations show that these compounds willundergo B1→B2 structural phase transition.It is found that the B1→B2 transitionalpressure increase as the cation ionic radius decreases for KCl,CaS and ScSb located atthe same period in Period Table due to the increasing covalent bonding between thecation and anion,however,the B1→B2 transitional pressure decrease as the increasingcation ionic radius and lattice constant for MgS and CaS,YSb and ScSb located at thesame family in Period Table,respectively.We also find for the first time that the otherstructural phase transition from our theoretical calculation,that are the B3→B2 andB4→B2 phase transition for MgS and CaS,B2→T1 and B3→T1 phase transition forKCl.These results will provide some theoretical basis for farther experimental research.Pressure make the bond length shorten,volume minish,bulk modulus increase,andelectric charge transfer.The change of electronic property makes the variety of opticalproperty,respectively.We find the absord for light concentrate on ultraviolet radiationfor these binary compounds.
引文
[1]徐国庆,王驹,郑华玲,等.中国高放废物深地质处置研究.水文地质工程地质,1998,5:7-10
    [2]Digeos A A,Valdez J A,Sickafus K E,et al.Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation,J.Mater.Sci.,2003,38(8):1597-1604
    [3]Weber W J,Ewing R C.Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides.Scientific Basis for Nuclear Waste Management ⅩⅩⅤ.Warrendale,Pennsylvania USA:Materials Research Society Symposium Proceedings,2002,713:443-454
    [4]Lian J,Helean K B,Kennedy B J,et al.Effect of Structure and Thermodynamic Stability on the Response of Lanthanide Stannate Pyrochlores to Ion Beam Irradiation.J.Phys.Chem.B,2006,110(5):2343-2350
    [5]Ewing R C,Weber W J,Lian J.Nuclear waste disposal—pyrochlore (A_2B_2O_7):Nuclear waste form for the immobilization of plutonium and“minor”actinides.J.Appl.Phys.,2004,95(11):5949-5971
    [6]Helean K B,Navrotsky A,Vance E R,et al.Enthalpies of formation of Ce-pyrochlore,Ca_(0.93)Ce_(1.00)Ti_(2.035)O_(7.00),U-pyrochlore,Ca_(1.46)U_(4+0.23)U_(6+0.46)Ti_(1.85)O_(7.00) and Gd-pyrochlore,Gd_2Ti_2O_7:three materials relevant to the proposed waste form for excess weapons plutonium.J.Nucl.Mater.,2002,303(2-3):226-239
    [7]Raison P E,Haire R G.Zireonia-based materials for transmutation of americium and curium:cubic stabilized zirconia and zirconium oxide pyrochlores.Prog.Nucl.Energ.,2001,38(3-4):251-254
    [8]Shoup S S,Bamberger C E,Haire R G.Novel Plutonium Titanate Compounds and Solid Solutions Pu_2Ti_2O_7-Ln_2Ti_2O_7:Relevance to Nuclear Waste Disposal.J.Am.Ceram.Soc.,1996,79(6):1489-1493
    [9]Begg B D,Hess N J,Mcready D E,et al.Heavy-ion irradiation effects in Gd_2(Ti_(2-x)Zr_x)O_7 pyrochlores.J.Nucl.Mater.,2001,289(1-2):188-193
    [10]Chakoumakos B C,Ewing R C.Crystal chemical constraints on the formation of actinide pyrochlores.Scientific Basis for Nuclear Waste Management Ⅷ.Pittsburgh, Pennsylvania USA:Materials Research Society,1985,44:641-646
    [11]Sickafus K E,Minervini L,Grimes R W,et al.Radiation Tolerance of Complex Oxides.Science,2000,289(5480):748-751
    [12]Weber W J,Ewing R C.Plutonium Immobilization and Radiation Effects.Science,2000,289(5487):2051-2052
    [13]杨建文.富烧绿石人造岩石和锆英石固化模拟锕系废物研究:[博士学位论文].北京:中国原子能科学研究院,2000,1-178
    [14]蔡修凯,姚熹.铋锌铌基氧化物焦绿石的形成机理.第4届国际电子陶瓷会议.德国:亚肯,1994,147-150
    [15]金强,黄金亮,杨留栓,等.铋基烧绿石陶瓷及其微波特性.现代技术陶瓷.2004,25(3):14-18
    [16]Lumpkin G R,Smith K L,Blackford M G.Heavy ion irradiation studies of columbite,brannerite,and pyrochlore structure types.J.Nucl.Mater.,2001,289(1-2):177-187
    [17]Wang S X,Wang L M,Ewing R C,et al.Ion irradiation effects for two pyrochlore compositions:Gd_2Ti_2O_7 and Gd_2Zr_2O_7.Microstructural Processes in Irradiated Materials.Pennsylvania USA:Materials Research Society Symposium Proceedings,1999,540:355-360
    [18]Wang S X,Begg B D,Wang L M,et al.Radiation stability of gadolinium zirconate:A waste form for plutonium disposition.J.Mater.Res.,1999,14(12):4470-4473
    [19]Wang S X,Wang L M,Ewing R C,et al.Ion irradiation-induced phase transformation of pyrochlore and zirconolite.Nucl.Instrum.Methods Phys.Res.B,1999,148(1-4):704-709
    [20]Begg B D,Hess N J,Weber W J,et al.Heavy-ion irradiation effects on structures and acid dissolution of pyrochlores.J.Nucl.Mater.,2001,288(2-3):208-216
    [21]Lian J,Wang L M,Ewing R C,et al.Cross-sectional TEM Study of Ion Implanted Lanthanide Titanate Pyrochlore Single Crystals.Nucl.Instrum.Methods B,2005,241(1-4):365-371
    [22]Lian J,Zu X T,Kutty K V G,et al.Ion-irradiation-induced amorphization of La_2Zr_2O_7 pyrochlore.Phys.ReV.B,2002,66(5):054108-054113
    [23]Lian J,Chen J,Wang L M,et al.Radiation-induced amorphization of rare-earth titanate pyrochlores.Phys.ReV.B,2003,68(13):134107-134116
    [24]Lian J,Ewing R C,Wang L M,et al.Ion-beam irradiation of Gd_2Sn_2O_7 and Gd_2Hf_2O_7 pyrochlore:Bond-type effect.J.Mater.Res.,2004,19(5):1575-1580
    [25]Lian J,Wang L M,Haire R G,et al.Ion beam irradiation in La_2Zr_2O_7-Ce_2Zr_2O_7 pyrochlore.Proceedings of the Twelfth International Conference on Radiation Effects in Insulators.Amsterdam:Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2004,218:236-243
    [26]Pirzada M,Grimes R W,Minervini L,et al.Oxygen migration in A_2B_2O_7 pyrochlores.Solid State Ionics,2001,140(3-4):201-208
    [27]Minervini L,Grimes R W.Disorder in Pyrochlore Oxides.J.Am.Ceram.Soc.,2000,83(8):1873-1878
    [28]Helean K B,Ushakov S V,Brown C E,et al.Formation enthalpies of rare earth titanate pyrochlores.J.Solid State Chem.,2004,177(6):1858-1866
    [29]Bo W,Zinkevich M,Chong W,et al.Ab initio energetic study of oxide ceramics with rare-earth elements.Rare metals,2006,25(5):549-555
    [30]Kennedy B J,Hunter B A,Howard C J.Structural and Bonding Trends in Tin Pyrochlore Oxides.J.Solid State Chem.,1997,130(1):58-65
    [31]Panero W R,Stixrude L,Ewing R C.First-principles calculation of defect-formation energies in the Y_2(Ti,Sn,Zr)_2O_7 pyrochlore.Phys.ReV.B,2004,70(5):054110-054121
    [32]Pruneda J M,Artacho E.First-principles study of structural,elastic,and bonding properties of pyrochlores.Phys.ReV.B,2005,72(8):085107-085115
    [33]Lumpkina G R,Pruneda M,Rios S,et al.Nature of the chemical bond and prediction of radizaion tolerance in pyrochlore and defece fluorite compounds.J.Solid State Chem.,2007,180(4):1512-1518
    [34]Hammer B,Hansen L B,Norskov J K.Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals.Physical Review B,1999,59(11):7413-7421
    [35]Kresse G,Furthm(?)ller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys.ReV.B,1996,54 (16):11169-11186
    [36]Gonze X,Beuken J M,Caracas R,et al.First-principles computation of material properties:the ABINIT software project.Comp.Mater.Sci.,2002,25(3):478-492
    [37]Payne M C,Teter M P,Allan D C,et al.Iterative minimization techniques for abinitio total-energy calculations molecular-dynamics and conjugate gradients.Rev.Mod.Phys.,1992,64(4):1045-1097
    [38]Bockstedte M,Kley A,Neugebauer J,et al.Density-functional theory calculations for poly-atomic systems:electronic structure,static and elastic properties and ab initio molecular dynamics.Comput.Phys.Comm.,1997,107(1-3):187-222
    [39]Blaha P,Schwarz K,Madsen G,et al.Wien2k,an augmented plane wave plus local orbitals program for calculating crystal properties.Wien:Vienna university of technology,2001,1-180
    [40]冯端,金国钧.凝聚态物理学(上卷).北京:高等教育出版社,2003,158-163
    [41]Parr R G,Yang W.Density Functional Theory of Atoms and Molecules.New York:Oxford Press,1989,1
    [42]Jones R O,Gunnarsson O.The density functional formalism,its applications and prospects.Rev.Mod.Phys.,1989,61(2):689-746
    [43]Kryachko E S,Ludena E V.Energy Density Functional Theory of Many Electron Systems.Boston:Kluwer Academic,1990,3-20
    [44]Janak J F.Proof that (?)E/(?)ni=ε in density-functional theory.Phys.Rev.B,1978,18(12):7165-7168
    [45]李正中.固体物理.北京:高等教育出版社,2002,12
    [46]Kohn W,Sham L J.Self-consistent equations including exchange and correlation effects.Phys.Rev.,1965,140(4A):A1133-1138
    [47]Hohenberg P,Kohn W.Inhomogeneous electron gas.Phys.Rcv.,1964,136(3B):B864-871
    [48]Harris J,Jones R O.Pseudopotentials in density-functional theory.Phys.Rev.Lett.,1978,41(3):191-194
    [49]Phillips J C.Energy-band interpolation scheme bands on a pseudopotential.Phys.Rev.B,1958,112(3):685-695
    [50]Ashcroft N W,Mermin N D.Solid State Physics.Philadelphia:Holt Saunders,1983,1
    [51]Stich I,Car R,Parrinello M,et al.Conjugate gradient minimization of the energy functional:a new method for electronic structure calculation.Phys.Rev.B,1989,39(8):4997-5004
    [52]Gillan M J.Calculation of the vacancy formation energy in aluminum.J.Phys:Condens.Matter,1989,1(4):689-711
    [53]Payne M C,Joannopoulos J D,Allan D C,et al.Molecular dynamics and ab initio total energy calculations.Phys.Rev.Lett.,1986,56(24):2656-2656
    [54]Car R,Parrinello M.Unified approach for molecular dynamics and density-functional theory.Phys.Rev.Lett.,1985,55(22):2471-2474
    [55]Gross E K U,Kohn W.Local density-functional theory of frequency-dependent linear response.Phys.Rev.Lett.,1985,55(26):2850-2852
    [56]Runge E,Gross E K U.Density-Functional Theory for Time-Dependent Systems.Phys.Rev.Lett.,1984,52(12):997-1000
    [57]Perdew J P,Robert G P,Lvy M.Density-Functional Theory for Fractional Particle Number:Derivative Discontinuities of the Energy.Phys.Rev.Lett.,1982,49(23):1691-1694
    [58]Wigner E P.Measurement of the Curvature in a Two-Dimensional Universe.Phys.Rev.,1960,120(2):643-644
    [59]Perdew J P,Zunger A.Self-interaction correction to density-functional approximations for many-electron systems.Phys.Rev.B,1981,23(10):5048-5079
    [60]Hedin L,Lundqvist B.Explicit local exchange-correlation potentials.J.Phys.C,1971,4(14):2064-2083
    [61]Langreth D C,Perdew J P.Exchange-correlation energy of ametallic surface:wave-vector analysis.Phys.Rev.B,1977,15(6):2884-2901
    [62]Harris J,Jones R O.The surface energy of a bounded electron gas.J.Phys.F:Metal.Phys.,1974,4(8):1170-1186
    [63]Langreth D C,Mehl M J.Beyond the local-density approximation in calculations of ground-state electronic properties.Phys.Rev.Lett.,1983,28(4):1809-1834
    [64]Langreth D C,Mehl M J.Easily implernentable nonlocal exchange-correlation energy functional.Phys.Rev.Lett.,1981,47(6):446-450
    [65]Perdew J P,Burke K,Ernzerhof M.Generalized Gradient Approximation Made Simple.Phys.Rev.Lett.,1996,77(18):3865-3868
    [66]Perdew J P,Chevary J P,Vosko S H.Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation.Phys.Rev.B,1992,46(11):6671-6687
    [67]Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys.Rev.B,1990,41(11):7892-7895
    [68]Payne M,Teter M P,Allan D C.Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients.Rev.Mod.Phys.,1992,64(4):1045-1097
    [69]Ashcroft N W,Mermin N D.Solid State Physics.Philadelphia:Holt Saunders,1976,1
    [70]Robertson I J,Payne M C.The k.p method in pseudopotential total energy calculations: error reduction and absolute energies.J.Phys:Condens.Matter,1991,3(45):8841-8853
    [71]Robertson I J,Payne M C.K-point sampling and the k.p method in pseudopotential total energy calculations.J.Phys:Condens.Matter,1990,2(49):9837-9852
    [72]Chakoumakos B C.Systematics of the pyrochlore structure type,ideal A_2B_2X_6Y.J.Solid State Chem.,1984,53(1):120-129
    [73]Subramanian M A,Aravamudan G,Rao G V S.Oxide Pryochlores-a review.Prog.Solid State Chem.,1983,15(2):55-143
    [74]Purton J A,Allan N L.Displacement cascades in Gd_2Ti_2O_7 and Gd_2Zr_2O_7:A molecular dynamics study.J.Mater.Chem.,2002,12(10):2923-2926
    [75]Nemoshkalenko V V,Borisenko S V,Uvarov V N,et al.Electronic structure of the R_2Ti_2O_7 (R=Sm-Er,Yb,Lu) oxides.Phys.Rev.B,2001,63(7):075106-075114
    [76]Chartier A,Meis C,Weber W J,et al.Theoretical study of disorder in Ti-substituted La_2Zr_2O_7.Phys.Rev.B,2002,65(13):134116-134127
    [77]Ismunandar,Kennedy B J,Hunter B A.Observations on pryochlore oxide structures.Mater.Res.Bull.,1999,34(8):1263-1274
    [78]Kresse G,Furthm(?)ller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Compu.Mater.Sci.,1996,6(1):15-50
    [79]Fischer T H,Almlof J.General-methods for geometry and wave-function optimization.J.Phys.Chem.,1992,96(24):9768-9774
    [80]Kulkarni N K,Sampath S,Venugopal V.Preparation and characterisation of Pu-pyrochlore:[La_(1-x)Pu_x]_2 Zr_2O_7 (x=0-1).J.Nucl.Mater.,2000,281(2-3):248-250
    [81]Tabira Y,Withers R L.The determination of an unknown oxygen atom position in rare-earth zirconate pyrochlores by a 111 systematic-row convergent-beam electron diffraction technique.Philos.Mag.A,1999,79(6):1335-1346
    [82]Murnaghan F D.The compressibility of media under extreme pressures.Proceedings of the National Academy of Sciences of the United States of America,1944,30(9):244-247
    [83]Brisse F,Knop O.Pyrochlores.111.X-Ray,neutron,infrared,and dielectric studies of A_2Sn_2O_7 stannates.Can.J.Chem.,1968,46(2):859-873
    [84]Tabira Y,Withers R L,Minervini L,et al.Systematic Structural Change in Selected Rare Earth Oxide Pyrochlores as Determined by Wide-Angle CBED and a Comparison with the Results of Atomistic Computer Simulation.J.Solid State Chem.,2000,153(1):16-25
    [85]Trachenko K.Understanding resistance to amorphization by radiation damage.J.Phys.: Condens.Matter,2004,16(R03):R1491-R1515
    [86]Wilde P J,Catlow C R A.Molecular dynamics study of the effect of doping and disorder on diffusion in gadolinium zirconate.Solid State Ionics,1998,112(3-4):185-195
    [87]Wilde P J,Catlow C R A.Defect and diffusion in pyrochlore structured oxides.Solid State Ionics,1998,112(3-4):173-183
    [88]Hybertsen M S,Louie S G.First-Principles Theory of Quasiparticles:Calculation of Band Gaps in Semiconductors and Insulators.Phys.Rev.Lett.,1985,55(13):1418-1421
    [89]Fahy S,Chang K J,Louie S G.Pressure coefficients of band gaps of diamond.Phys.Rev.B,1987,35(11):5856-5859
    [90]Pandey R,Sivaraman S.Spectroscopic properties of defects in alkaline-earth sulfides.J.Phys.Chem.Solids,I991,52(1):211-225
    [91]Mutschke H,Begemann B,Dorchner J,et al.Infrared data of sulphides of interstellar dust importance.Infrared Phys.Technol.,1994,35(2-3):361-374
    [92]Morhain C,Prior K A,Cavenett B C.Growth of zinc blende MgS/ZnSe single quantum wells by molecular-beam epitaxy using ZnS as a sulphur source.Appl.Phys.Lett.,2000,76(26):3929-3931
    [93]Kravtsova A N,Stekhin I E,Soldatov A V,et al.Electronic structure of MS (M=Ca,Mg,Fe,Mn):X-ray absorption analysis.Phys.Rev.B,2004,69(13):134109-134121
    [94]Suzuki H,Nashiki H,Hoshiyama M,et al.XPS measurement of valence-band offset for ZnSe/MgS.Nonlinear Opt.,1997,18(2-4):227-230
    [95]Ching W Y,Gan F,Huang M Z.Band theory of linear and nonlinear susceptibilities of some binary ionic insulators.Phys.Rev.B,1995,52(3):1596-1611
    [96]Pandey R,Jaffe J E,Kunz A B.Ab initio band-structure calculations for alkaline-earth oxides and sulfides.Phys.Rev.B,1991,43(11):9228-9237
    [97]Boer P K,Groot R A D.The conduction bands of MgO,MgS and HfO_2.J.Phys:Condens.Matter,1998,10(45):10241-10248
    [98]Cardona M,Harbeke G.Optical Properties and Band Structure of Wurtzite-Type Crystals and Rutile.Phys.Rev.,1965,137(5A):A1467-A1476
    [99]Pandey R,Lepak P,Jaffe J E.Electronic structure of alkaline-earth selenides.Phys.Rev.B,1992,46(8):4976-4977
    [100]Stepanyuk V S,Grigorenko A A,Katsnelson A A,et al.Electronic structure and optical properties of MgS.Phys.Stat.Sol.(b),1992,174(1):289-294
    [101]Mittendorf H.R(?)ntgenographische und optische Untersuchungen aufgedampfter Schichten aus Erdalkalichalkogeniden.Z.Phys.,1965,183(2):113-129
    [102]Froyen S,Wei S H,Zunger A.Epitaxy-induced structural phase transformations.Phys.Rev.B,1988,38(14):10124-10127
    [103]Pandey R,Sutjianto A.Study of structural phase transition in MgSe.Solid State Commun.,1994,91(4):269-271
    [104]Prafulla J,Umesh K,Sakalle.Pressure induced structural phase transition in MgS and CaS.J.Phys.Chem.Solids,1998,59(5):599-603
    [105]Ekbundity S,Chizmeshyayz A.Theoretical and experimental investigation of the equations of state and phase stabilities of MgS and CaS.J.Phys.:Condens Matter,1996,8(43):8251-8265
    [106]Okuyama H,Nakano K,Miyajima T,et al.Epitaxial Growth of ZnMgSSe on GaAs Substrate by Molecular Beam Epitaxy.Jpn.J.Appl.Phys.,1991,30(9B):L1620-L1623
    [107]Rabab A M,Abbarb B,Douri Y A.Calculation of structural,optical and electronic properties of ZnS,ZnSe,MgS,MgSe and their quaternary alloy Mg_(1-x)Zn_xS_ySe_(1-y).Material Science and Engineering B,2003,100(2):163-171
    [108]Bradford C,Ocdonnell CB,Urbaszek B.Highly confined excitons in MgS/ZnSe quantum wells grown by molecular beam epitaxy.Phys.Rev.B,2001,64(19):195309-195317
    [109]Wolverson D,Bird D M,Bradford C.Lattice dynamics and elastic properties of zinc-blende MgS.Phys.Rev.B,2001,64(11):113203-113207
    [110]Wyckoff.W G.Crystal Structure.New York:Wiley,1963,Vol 1,112
    [111]Drief F,Tadjer A,Mesri D,et al.First principles study of structural,electronic,elastic and optical properties ofMgS,MgSe and MgTe.Catalysis Today,2004,89(3):343-355
    [112]Lee S G,Chang K J.First-principles study of the structural properties of MgS-,MgSe-,ZnS-,and ZnSe-based superlattices.Phys.Rev.B,1995,52(3):1918-1925
    [113]Rached D,Benkhettou N,Soudini B,et al.Electronic structure calculationsof magnesium chalcogenides MgS and MgSe.Phys.Stat.Sol.(b),2003,240(3):565-573
    [114]Lichanot A,Dargelos A,Larrie C.Electronic structure and phase transition in magnesium sulphide.Solid State Commun.,1994,90(3):189-193
    [115]Kalpana G,Palanivel B,Thomas R M,et al.Electronic and structural properties of MgS and MgSe.Physica B,1996,222(1-3):223-228
    [116]Luo H,Green R G,Ghandehari K,et al.Structural phase transformations and the equations of state of calcium chalcogenides at high pressure.Phys.Rev.B,1994,50(22):16232-16237
    [117]Camp P E,Doren V E,Martins J L.High Pressure Properties of the Alkaline-Earth Sulphides.Phys.Stat.Sol.(b),1995,190(1):193-197
    [118]Cortona P,Villafiorita M A,Becker M A.Direct calculations of charge densities of solids:Applications to the alkali-earth sulfides.Int.J.Quantum Chem.,1995,56(6):831-837
    [119]Cortonay P,Masriz P.Cohesive properties and behaviour under pressure of CaS,CaSe,and CaTe:results ofab initio calculations.J.Phys.:Condens.Matter,1998,10(40):8947-8955
    [120]Majewski J A,Vogl P.Simple model for structural properties and crystal stability of sp-bonded solids.Phys.Rev.B,1987,35(18):9666-9682
    [121]Moruzzi V L,Janak J F,Williams A R.Calculated Electronic Properties of Metal.New York:Pergamon,1978,52
    [122]Peiris S M,Campbell A J,Heinz D L.Compression of MgS TO 54 GPa.J.Phys.Chem.Solids,1994,55(5):413-419
    [123]Okuyama H,Nakano K,Miyajima T,et al.Epitaxial growth of ZnMgSSe on GaAs substrate by molecular beam epitaxy.J.Cryst.Growth,1992,117(1-4):139-143
    [124]Konczewicz L,Bigenwald P,Cloitre T,et al.MOVPE growth of zincblende magnesium sulphide.J.Cryst.Growth,1996,159(1-4):117-120
    [125]Kimijima H,Kitagawa M,Inoue R,et al.Deposition and characterization of Zn_xMg_(1-x)S thin films on amorphous substrates.Appl.Surf.Sci.,1997,113/114(5):432-435
    [126]Uesugi K,Obinata T,Suemune I,et al.Epitaxial growth of zinc-blende ZnSe/MgS superlattices on (001) GaAs.Appl.Phys.Lett.,1996,68(6):844-846
    [127]Lines M.E.Bond-orbital theory of linear and nonlinear electronic response in ionic crystals.I.Linear response.Phys.Rev.B,1990,41(6):3372-3382
    [128]Zhang J G,Eklund P C,Hua Z L.Photoluminescence and optical absorption in CaS:Eu~(2+):Sm~(3+) thin films.Mater.Res.,1992,7(2):411-417
    [129]Kaneko M J,Koda T.New developments in Ⅱa-Ⅵb (alkaline-earth chalcogenide) binary semiconductors.J.Cryst.Growth,1988,86(1-4):72-78
    [130]Kaneko Y,Morimoto K,Koda T.Optical properties of alkaline-earth chalcogenides.Ⅱ.Vacuum ultraviolet reflection spectra in the synchrotron radiation region of 4-40 eV.J.Phys.Soc.Jpn,1983,52(12):4385-4396
    [131]Saum G A,Hensley E B.Fundamental Optical Absorption in the ⅡA-ⅥB Compounds. Phys.Rev.,1959,113(4):1019-1022
    [132]Stepanyuk V S,Sz(?)sz A,Farberovich O V,et al.An Electronic Band Structure Calculation and the Optical Properties of Alkaline-Earth Sulphides.Phys.Status Solidi B,1989,155(1):215-220
    [133]Leger J M,Oki K,Rossat-Mignod J.Volume behaviour of CeSb and LaSb up to 25 GPa.J.Phys.C,1984,17(28):4935-4943
    [134]Hayashi J,Shirotani I,Tanaka Y,et al.Phase transitions of LnSb (Ln=lanthanide) with NaCl-type structure at high pressures.Solid State Commun.,2000,114(11):561-565
    [135]Shirotani I,Hayashi J,Yamanashi K,et al.Pressure-induced phase transitions in lanthanide monoantimonides with a NaCl-type structure.Phys.Rev.B,2001,64(13):132101-132105
    [136]Rodr'iguez-hern'andez P,Mu(?)noz A.Theoretical study of the pressure-induced structural phase transition of ScSb and YSb.Int.J.Quantum Chem.,2004,101(6):770-773
    [137]Hayashi J,Shirotania I,Hiranoa K,et al.Structural phase transition of ScSb and YSb with a NaCl-type structure at high pressures.Solid State Commun.,2003,125(10):543-546
    [138]Mujica A,Rubio A,Mun(?)oz A,et al.High-pressure phases of group-Ⅳ,Ⅲ-Ⅴ and Ⅱ-Ⅵ compounds.Rev.Mod.Phys.,2003,75(3):863-912
    [139]Al'tshuler L V,Pavlovskii M N,Kuleshova L V,et al.Investigation of alkali-metal halides at high pressures and temperatures produced by shock compression.Sov.Phys.Solid State 1963,5(1):203-211
    [140]张中明,字正华,陈旭,等.KCl晶体物态特性及结构相变的理论计算.云南大学学报(自然科学版),1999,21(1):40-41
    [141]Hayes D B.High reflectivity GaAs-AlGaAs mirrors fabricated by metalorganic chemical vapor deposition.J.Appl.Phys.,1974,45(10):1028-1030
    [142]Duvall G E,Graham R A.Phase transitions under shock-wave loading.Rev.Mod.Phys,1977,49(3):523-579
    [143]Rosenberg Z.Determination of the b1-b2 dynamic transition of potassium chloride with Manganin gauges.J.Appl.Phys.,1982,53(3):1474-1476
    [144]Zaretsky E B.Dislocation mechanism and kinetics of shock-induced phase transformation in KCl.J.Phys.Chem.Solids,1998,59(2):253-259
    [145]Cohen A J,Gorden A J.Theory of the lattice energy,equilibrium structure,elastic constants,and pressure-induced phase transitions in alkali-halide crystals.Phys.Rev.B,1975,12(8):3228-3241
    [146]Zhang S,Chen N X.Atomistic simulations of B1-B2 phase transition in KCl based on inversion pair potentials.Acta.Materialia,2003,51 (20):6151-6161
    [147]Zhang H,Bukowinski M S T.Modified potential-induced-breathing model of potentials between close-shell ions.Phys.Rev.B,1991,44(6):2495-2503
    [148]Pendas A M,Luana V.Pressure-induced B1-B2 phase transition in alkali halides:General aspects from first-principles calculations.Phys.Rev.B,1994,49(5):3066-3074
    [149]Kinoshita T,Mashimo T,Kawamura K.The mechanism and effect of defects in the B1-B2 phase transition of KCl under high pressure:molecular dynamics simulation.J.Phys.:Condens.Matter,2005,17(6):1027-1035
    [150]Pend(?)s A M,Lua(?)a V,Recio J M,et al.Low-and high-pressure ab initio equations of state for the alkali chlorides.Phys.Rev.B,1993,48(9):5891-5901
    [151]Sims C E,Barrera G D,Allan N L,et al.Thermodynamics and mechanism of the B1-B2 phase transition in group-Ⅰ halides and group-Ⅱ oxides.Phys.Rev.B,1998,57(18):11164-11172
    [152]Born M,Huang K.Dynamic Theory of Crystal Lattices.London:Oxford U.P.,1954,107-152
    [153]Tosi M P.Cohesion of Ionic Solids in the Born Model.Solid State Phys.,1964,16(1):1-120
    [154]Perez-Albuerne E A,Drickamer H G.Effect of High Pressures on the Compressibilities of Seven Crystals Having the NaCl or CsCl Structure.J.Chem.Phys.,1965,43(4):1381-1387
    [155]Vaidya S N,Kennedy S N.Compressibility of 27 halides to 45 kbar.J.Phys.Chem.Solids,1971,32(5):951-964
    [156]Bassett W A,Takahashi T,Campbell J K.Volume change for the B1-B2 phase transformations in three potassium halides at room temperature.Trans.Am.Crystallogr.Assoc.,1969,5(1):93-103
    [157]Birch F.Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 degrees.J.Geophys.Res.,1978,83(B3):1257-1268
    [158]Preneipe M.,Zupan A.,Dovesi R.,et al.Ab initio study of the structural properties of LiF,NaF,KF,LiCl,NaCl,and KCl.Phys.Rev.B,1995,51(6):3391-3396
    [159]Birch F.Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain.J.Geophys.Res.,1986,91(B5):4949-4954
    [160]Zhang S,Chen N X.Study on the high-pressure properties of KCl crystal by inversion pair potentials.Materials Science and Engineering B,2003,99(1-3):588-592
    [161]Inouye C.S.,Pong W.Ultraviolet photoelectron spectra of rubidium halides.Phys.Rev.B,1977,15(4):2265-2272
    [162]Brown F.C.,Gahwiller C.,Fujita H.,et al.Extreme-Ultraviolet Spectra of Ionic Crystals.Phys.Rev.B,1970,2(6):2126-2138
    [163]Roessler D M,Walker W C.Electronic spectra of crystalline sodium chloride and potassium chloride.Phys.Rev.B,1968,166(3):599-606

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700