用户名: 密码: 验证码:
纳米材料在电化学生物传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其特殊的结构而产生了一系列独特的物理、化学性质。将纳米材料作为一种新型的生物传感介质应用于生物化学领域吸引了众多研究者的兴趣。纳米材料修饰的电化学生物传感器的研制是纳米技术与生命科学的交叉,它可以在纳米尺度空间从分子层次上研究目标分子的结构与功能的关系,解决纳米技术在生物医学领域以及环境检测领域中应用的基础问题,发展新技术和新方法。本论文将生物化学、纳米技术和电分析化学理论和方法有机地结合起来,致力于构建新型纳米材料修饰的电化学传感器,本论文共分五个部分。
     Ⅰ.合成了一种用于处理废水中重金属的新型硅纳米多孔吸附剂,同时以铜离子(Cu2+)作为废水处理中重金属离子的模板,验证了这种新型材料在废水处理过程中的的有效性。以蔗糖和聚乙二醇为印迹分子,将含有致孔剂、壳聚糖和无机硅烷的混合溶液涂覆于硅胶表面,通过室温下壳聚糖与γ-环氧丙氧丙基三甲氧基硅烷的共价交联、有机-无机杂化制备得到以硅胶为支持物、具有表面多孔结构的壳聚糖基质。电解废水经过柱层析后,Cu2+的浓度得到了很好的修正。制备的印迹吸附材料就有很好的再生利用性,制备方法简单,制备过程中没有使用有机溶剂,成本低,效果好,稳定性强,在生物吸附领域就有很好的应用前景。
     Ⅱ.以半胱胺(cysteamine)修饰的金电极为基础电极,以戊二醛(glutaraldehyde)为交联剂,利用希夫碱(Schiff base)反应,将表面经过氨基修饰的纳米二氧化硅粒子(SiO2 nanoparticles)固定在电极表面上,制成DNA纳米生物传感器,用于DNA片段的检测。
     Ⅲ.将胶体纳米金和羧基功能化的CdS纳米粒子固定在金电极表面,制成一种新型的电化学生物传感器。胶体纳米金和CdS纳米粒子在电极表面上良好的导电性和生物兼容性,为DNA的固定提供了较大的比表面积和充足的结合位点。在整个的电极组装过程中,电化学循环伏安法(CV)和电化学交流阻抗法(EIS)被用于表征每一步的组装过程。以邻菲咯啉钴[Co(phen)2(Cl)(H2O)]Cl·2H2O作为指示剂,运用微分脉冲伏安技术(DPV)考察了DNA的固定和杂交过程。本文所制备的新型传感器在检测DNA过程中显示了良好的灵敏度、选择性、重现性和稳定性。
     Ⅳ.将金纳米粒子(Au NPs)和硫化铅纳米粒子(PbS NPs)固定在修饰磁球的表面上,利用了生物条形码和金纳米粒子信号的放大作用,制备了一种新型灵敏的DNA电化学生物传感器。通过静电作用将聚丙烯胺氢氯化物/聚苯乙烯磺酸钠/聚丙烯胺氢氯化物/聚丙烯酸(PAH/PSS/PAH/PAA)在磁球表面依次进行了修饰,使磁球表面具有更多的自由羧基来固定氨基修饰的捕获DNA,该传感器首先将氨基功能化的捕获DNA探针结合到磁球上,然后再与靶DNA的一端杂交,耙DNA的另一端和标记Au纳米粒子的DNA探针杂交。Au纳米粒子上DNA的固定采用了生物条形码技术,将PbS纳米粒子作为检测靶DNA的一种标记物,通过DNA链固定在Au纳米粒子,来提高该生物传感器的灵敏度。PbS纳米粒子的电化学溶出法测定铅,通过阳极溶出伏安技术(ASV)预富集铅离子的过程进一步提高了传感器的灵敏度。研究结果表明,该方法制备的生物传感器具有很好的选择性和灵敏度。
     Ⅴ.利用多壁碳纳米管和室温离子液体(RTIL),N-丁基吡啶-六氯代磷酸盐(BPPF6)的混合纳米材料构建了一种新型微过氧化物酶(MP-11)生物催化的用于检测过氧化氢的电化学生物传感器。传感器电化学信号响应快,灵敏度高,稳定性好,具有很好的生物活性和选择性。
Nanomaterials have special structure, which results in serials of interesting chemical and physical properties. In our work, the nanomaterials are used to construct the electrochemical biosensors by means of the combination of biochemistry and electrochemical methods and we aim to develop new types of biosensors based on nanomaterials for the purpose of improving the long-term stability and the higher sensitivity of biosensors. The details are summarized as follows:
     (1) A new porous sorbent for waste water treatment of meta lions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol–gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycid oxypropyltrimethoxy siloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electronmicroscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu2+, was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu2+ adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu2+. The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu2+ in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption.
     (2) A feasible approach modified nanoSiO2 particles on the Au electrode surface to construct a novel DNA biosensor is described. On the basis of Schiff base reaction between the -CHO groups and -NH2 groups, cysteamine and glutaraldehyde was used as covelent attachment cross-linkers. The covalent attachment processes were followed and confirmed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridized dsDNA biosensor was studied by Different Pulse Voltammetry (DPV). From the analysis of voltammetric signals, the linear response range of the biosensor is 6×10-8 M ~ 8×10-10 M, the detection limit is 3×10-10 M. In addition, the sensitivity biosensor is easily manipulated and exhibited good stability and long-term life.
     (3) In this article, colloidal gold nanoparticles (Au NPs) and carboxyl group-functionalized CdS Nanoparticles (CdS NPs) were immobilized on the Au electrode surface to fabricate a novel electrochemical DNA biosensor. Both Au NPs and CdS NPs, well known to be good biocompatibile and conductive materials, could provide larger surface area and sufficient amount of binding points for DNA immobilization. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) experiments were performed to follow the whole electrode fabrication process. DNA immobilization and hybridization were characterized with differential pulse voltammetry (DPV) by using [Co(phen)2(Cl)(H2O)]Cl?2H2O as an electrochemical hybridization indicator. With this approach, the target DNA could be quantified at a linear range from 2.0×10-10 to 1.0×10-8 M, with a detection limit of 2.0×10-11 M by 3σ. In addition, the biosensor exhibited a good repeatability and stability for the determination of DNA sequences.
     (4) A novel and sensitive sandwich electrochemical biosensor based on the amplification of magnetic microbeads and Au nanoparticles (NPs) modified with bio bar code and PbS nanoparticals was constructed in the present work. In this method, the magnetic microspheres were coated with 4 layers polyelectrolytes in order to increase carboxyl groups on the surface of the magnetic microbeads, which enhanced the amount of the capture DNA. The amino-functionalized capture DNA on the surface of magnetic microbeads hybridized with one end of target DNA, the other end of which was hybridized with signal DNA probe labelled with Au NPs on the terminus. The Au NPs was modified with bio bar code and the PbS NPs was used as a marker for identifying the target oligoncleotide. The modification of magnetic microbeads could immobilize more amino-group terminal capture DNA, and the bio bar code could increase the amount of Au NPs that combined with the target DNA. The detection of lead ions performed by anodic stripping voltammetry (ASV) technology further improved the sensitivity of the biosensor. As a result, the present DNA biosensor showed good selectivity and sensitivity by the combined amplification. Under the optimum conditions, the linear relationship with the concentration of the target DNA was ranging from 2.0×10?14 M to 1.0×10?12 M and a detection limit as low as 5.0×10?15 M were obtained.
     (5) A novel nanocomposite material of muti-walled carbon nanotubes (MWCNTs) and room-temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) was explored and was used to construct a novel Microperoxidase-11 (MP-11) biosensor for the determination of H2O2. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to characterize the performance of the biosensor. Under the optimized experimental conditions, H2O2 could be detected in a linear calibration range of 0.5×10-7 ~ 7.0×10-7 M with a correlation coefficient of 0.9949 (n = 9) and a detection limit of 3.8×10-9 M at 3σ. The modified electrodes displayed excellent electrochemical response, high sensitivity, long-term stability, good bioactivity and selectivity.
引文
[1] Feldheim D.L., Colby Jr. A.F. (Eds.), Metal nanoparticles-synthesis, Characterization and applications, Marcel Dekker, New York, 2002.
    [2] Schmid G., BaumLe M, Geerkens M., et al. Current and future applications of nanoclusters. Chem. Soc. Rev., 28 : 179-185.
    [3] Daniel M.C., Astruc D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and application toward biology, catalysis, and nanotechnology. Chem. Rev., 104 : 293-312.
    [4] Frens G., Particle size and sol stability in metal colloids. Nature (PhyS. Sci.), 1973, 241 : 20-22.
    [5] He P., Urban M.W., Phospholipid-stablilzed Au-nanoparticles. Biomacromolecules, 6 : 12242-1225.
    [6] Itoh H., Naka K., Chujo Y., Syntehsis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J. Am. Chem. Soc., 2004, 126 : 3026-3027.
    [7]Kim K., Demberelnyamba D., Lee H., Size-selective synthesis of gold and Platinum nanoparticles using novel thiol-functionalized liquids, Langrnuir, 2004, 20 : 556-560.
    [8] Limapichat W., Basu A., Reagentless functionalization of gold nanoparticles via a 3 + 2 Huisgen cycloaddition. J. Colloid Interf., 2008, 318:140-144.
    [9] Bhatt A., Mechler A., Martin L., et al. Synthesis of Ag and Au nanostructures in an ionic liquid: thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation. J. Mater Chem., 2007, 17 : 2241-2250.
    [10] Azzazy H.M.E., Mansour M.M.H., Kazmierczak S.C., Nanodiagnostics: A new frontier for clinical laboratory medicine, 2006, 52 : 1238-1246.
    [11] Thank NTK, Rosezweig Z., Development of an aggregation-based immununoassay for anti-protein A using gold nanoparticles, Anal.Chem., 2002, 74 : 1624-1628.
    [12] Ambrosi A., Castaneda M.T., Killard A.J., et al. Double-codified gold nanolabels for enhanced immunoanalysis, Anal. Chem., 2007, 79(14) : 5232-5240.
    [13] Zhu N.N., Zhang A.p., He P.G., et al. Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization, Analyst, 2003, 128 : 260-264.
    [14] Tang H., Chen J., Nie L., et al. A label-free electrochemical immunoassayfor carcinoembryonic antigen based on gold nanoparticles and nonconductive polymer film. Biosens. Bioelectron., 2007, 22 : 1061-1067
    [15] Ding Y., Liu J., Wang H., et al. A piezoelectric immunosensor for the detection ofα-fetoprotein using an nterface of gold/hydroxyapatite hybrid nanomaterial, Biomaterials, 2007, 28 :2142-2154.
    [16] Shen G., Wang H., Tan S., et al. Detection of antisperm antibody in human serum using a piezoelectric immunosensor based on mixed self-assembled monolayers, Anal. Chim. Acta., 2005, 540 : 279-284.
    [17] Shen G.Y., Tan S., Nie H., et al. Electrochemical and piezoelectric quartz crystal detection of antisperm antibody based on protected gold nanoparticles with mixed monolayer for eliminating nonspecific binding, J Irnrnunological Methods 2006, 313 : 11-19.
    [18] Jie G.F., Liu B., Pan H.C.,et al. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by Increasing sensitivity with gold nanoparticle amplification, Anal.Chem., 2007, 79 : 5574-5581.
    [19] Li W.Z., Xie S.S., Qian L.X., Large-seale syntyesis of aligned carbonnanotubes, Science.,1996, 274(5293) : 1701-1703.
    [20] Cattien V. Nguyen, Delzeit Lance, Alan M. Cassell, et al. Preparation of nucleic acid functionalized carbonnanotube arrays, Nano. Lett., 2002, 10(2) : 1079-1081.
    [21] Xu Q., Zhang L., Zhu J., Controlled growth of composite nanowires based on coating Ni on carbonnanotubes by electrochemical deposition method, J. Phys. Chem.B., 2003, 107 : 8294-8296.
    [22] Dorte Norgaard Madsen, Kristian Molhave, Ramona Mateiu, et al. Soldering of nanotubes onto microelectrodes,Nano. Lett., 2003, 3(1) : 42-49.
    [23] Liu J.W., Shao M.W., Tang Q., et al. Synthesis of carbonnanotubes and nanobelts through a medial-reduction method, J. Phys. Chem. B., 2003, 107 : 6329-6332.
    [24] Christopher A.D., James M.T., Solvent-free functionalization of carbonnanotubes, J. Am. Chem. Soc., 2003, 125(5) : 1156-l157.
    [25] Wang C., Waje M., Wang X., et al. Proton exchange membrane fuel cells with carbonnanotube based electrodes, Nano. Letters., 2004, 4(2) : 345-348.
    [26] Alireza N., Gregory W.L., Shu P., et al. A carbon nanotube cross structure as a nanoscale quantum device, Nano. Lett., 2003, 3(10) : 1469-1469.
    [27] Wang X.B., Liu Y.Q., Zhu D.B., et al. Controllable growth, structure, and low field emission of well-aligned CNx nanotubes, J. Phys. Chem. B., 2002, 106(9) : 2186-2190.
    [28] David M., Ali J., Kong J., Wang Q., et al. Ballistic transport in metallicnanotubes with reliable Pd ohmic contacts, Nano.Lett., 2003, 3(11) : 1541-1544.
    [29] Toshiya Okazaki, Kazutomo Suenaga, Kaori Hirahara, et al. Real time reaction dynamics in carbon nanotubes, J. Am. Chem. Soc., 2001, 123(39) : 9673-9674.
    [30] Liang Liu, Shoushan Fan, Isotope labeling of carbon nanotubes and formation of 12C-13C nanotube junctions, J. Am. Chem.Soc., 2001, 123(46) : 11502-11503.
    [31]王宗花,罗国安,碳纳米管在分析化学领域的研究进展,分析化学,2003,31(8) : 1004-1009.
    [32] Katz E., Willner I., Biomolecule-Functionalized Carbon Nanotubes: Applications in Nanobioelectronics, ChemPhysChem., 2004, 5 : 1084-1104
    [33] Yang J. , Jiao K., Yang T., A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment, Anal. Bioanal. Chem., 2007, 389 : 913-921.
    [34] Ma H.Y., Zhang L.P., Pan Y.,et al. A novel electrochemical DNA biosensor fabricated with layer-by-layer covalent attachment of multiwalled carbon nanotubes and gold nanoparticles, Electroanalysis, 2008, 20 : 1220-1226.
    [35]覃柳,刘仲明,邹小勇。电化学生物传感器的研究进展,中国医学物理学杂志,2007, 24 (1) : 60-62.
    [36]Jiao K., Yang T., Yang J., et al. Immobilization and hybridization of DNA based on magnesium ion modified 2,6-pyridinedicarboxylic acid polymer and its application for label-free PAT gene fragment detection by electrochemical impedance spectroscopy, Sci China Ser B-Chem, 2007, 50 : 1862-2771.
    [37]李静,韩涛,蔡称心,等。电化学方法检测DNA碳纳米管修饰电极,Chin. J. Appl. Chem., 2008, 25 : 1038-1041.
    [38] Chang H.X., Yuan Y., Shi N.L., et al. Electrochemical DNA Biosensor Based on Conducting Polyaniline Nanotube Array, Anal. Chem., 2007, 79 (13) : 5111–5115.
    [39] Fortier G., Vaillancourt M., Belanger D. Polypyrrole a new possibility for covalent binding of oxidoreductases to electrode surfaces as a base for stable biosensors, Electroanalysis,1992, (4) : 275-285.
    [40] Yang H.P., Zhu Y.F. A high performance glucose biosensor enhanced via nanosized SiO2, Analytica Chimica Acta, 2005, 92-97.
    [41]黄智航,李忠彦,刘仲明,纳米颗粒复合材料增强的蔗糖、葡萄糖双功能生物传感器, 2008, 3: 42-48.
    [42] Lu, X.B., Zhang, Q., Zhang, L., et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid, Electrochemistry Communications, 2006, 8 : 874-878.
    [43] Tatsuma T., Watanabe T., Electrochemical characterization of Polypyrrole bienzyme eleetrodes with glueose oxidase and peroxidase, J. Electroanal. Chem., 1993, 356 : 245-253.
    [44] Shaolin M., Huaiguo X., Bidong Q., Bioelectrochemical responses of the polyaniline glucose oxidase electrode, J. Electroanal. Chem., 1991, 304 : 7-16.
    [45] Bartlett P.N., Tebbutt P., Tyrrell C.H., Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols, Anal.Chem., 1992, 64 : 138-142.
    [46] Malitesta C., Palmisano F., Torsi L., et al. Glucose fast response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film, Anal. Chem., 1990, (62) : 2735-2740.
    [47] Yang, C., Lu, Q., Hua, S., Electroanalysis, 2006, 18, 2188-2198.
    [48] Hodak J., Etehenique R., Calvo E., et al., Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine) ferrocene redox mediator, Langmuir, 1997, (13) : 2708-2716.
    [49] Ou, C., Yuan, R., Chai, Y., et al. A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles–multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface, Anal. Chim. Acta., 2007, (603): 205-213.
    [50] Yang, W.W., Wang, J.X., Zhao, S., et al. Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment, Electrochemistry Communications, 2006, (8) : 665-672.
    [51]马丽,白燕,刘仲明,电化学DNA传感器研究进展[J],传感器技术,2002,21(3) : 58-64.
    [52]邹小勇,陈汇勇,李荫,电化学DNA传感器的研制及其医学应用[J],分析测试学报,2005, 24(1) : 123-128.
    [53] Komarova, E., Aldissi,M., Bogomolova, A. Direct electrochemical sensor for fast reagent free DNA detection, Biosensors and Bioelectronics, 21(2005) : 182-189.
    [54] Zhi Z.L., Drazan V., Wolfoeis O.S., et al. Electrocatalytic activity of DNA on electrodes as an indieation of hybridization, Bioelectroehemistry, 2006, 68 : 1-6.
    [55] Jin B., Ji X.P., Nakamura T. Voltammetric study of interaction of co(phen)33+ with DNA at gold nanoparticle self-assembly electrode, Eleetrochimica Acta 2004, 50 :1049-1055.
    [56]龚美娟,李静,韩涛,等。电化学方法检测DNA碳纳米管修饰电极, Chin. J. Appl. Chem., 2008, 25 : 1038-1041.
    [57]刘盛辉,孙长林,何品刚,等。单链脱氧核糖核酸在石墨电极表面固定化的研究[J],分析化学,19, 27(2) : 130-134.
    [58] Liu S.H., Ye J.N., He P.G., et al. Voltammetric determination of sequence-speeific DNA by electroactive intercalator on graphite electrode[J], Anal. Chim. Acta., 1996, 335 : 239-242.
    [59] Wang J., Bard A.L., Monitoring DNA immobilization and hybridization on surfaces by atomic force microscopy force measurements[J], Anal. Chem., 2001, 73(10) : 2207-2212.
    [60]姜雄平,许丹科,刘摺清,等。化学发光核酸传感器的研制[J],分析化学, 2000, 28 (1) : 12-16.
    [61] Gajovle-Elchelmann N., Ehrentreich-Forster E., Brer F.F., Directed immobilization of nueleic acids at ultramicroelectrodes using a novel electro- deposited polymer[J], Biosens. Bioeleetron., 2003, 19 (5) : 427-422.
    [62] Lin L., Li J.R., Jiang L., Fixation of single-stranded DNA nucleotide by self assembly technology[J], Colloid and Inter face A., 2000, 175 (12) : 11-15.
    [63] Zhu N.N., Zhang A.P., Wang Q.J., et al. Electrochemical detection of DNA hybridization using methylene blue and electro deposited:irconia thin films on gold electrodes[J], Anal. Chim. Acta., 2004, 510 (2) : 163-168.
    [64]王保珍,杜小燕,郑晶,等。铂电极表面生物素-亲和素固载单链脱氧核糖核酸的电化学传感器[J],分析化学,2005,33 (6 ): 789-792.
    [65] Marrazza G., Chianella L., Mascini M., Disposable DNA electrochemical sensor for hybridization detection[J], Biosens. Bioelectron., 1999, 14 (1) : 43-51.
    [66]牟颖,赵晓君,王珍,等。γ-干扰素DNA传感器组装过程的表面等离子体子共振研究[J],化学学报,2000, 58 (5) : 500-504.
    [67] Zhou X.C., Huang L.Q., Li S.F.Y., Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonueleotife immobilization methods and the application genetic diagnosis[J], Biosens. Bioeleetron, 2001, 16 (1-2) : 85-95.
    [68] Ferancova A., Buckova M., Orgovaetal E.K. Association interaction voltammetric determination of 1-aminopyrene and1-hydroxypyrene at cyclodextrin and DNA based electrochemical sensors, Bioelectrochemistry, 2005, 67 : 191-197.
    [69] Kang J.W., Li Z.F., Lu X.Q. Electrochemical study on the behavior of Morin and its interaction with DNA, Journal of Pharmaceutical and Biomedical Analysis, 2006,40:1166-1171.
    [70] Guo M.D., Li, Y.Q., Guo, H.X., et al. Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE, Bioelectrochemistry, 2006, 70 : 245-249.
    [71] Panke O., et al. VoltammetriC detection of single base-pair mismatches and quantifieation of label-free target ssDNA using a competitive binding assay, Biosens. Bioelectron., 2006, 128-131.
    [72]Haq N., Sakandar R., Kalsoom A., et al. Electrochemical DNA biosensor for the study of ciprofloxacin-DNA interaction, Anal. Biochem., 2006, 354 : 28-34.
    [73] DelPozo M.V., Alonso C., Parienteetal F. Electrochemical DNA sensing using osmium complexes as hybridization indicators, Biosens. Bioeleetron., 2005, 20 : 1549-1558.
    [74]Jin Y., Yao X., Liu Q., et al. Hairpin DNA Probe based electrochemical biosensor using methylene blue as hybridization indicator, Biosens. Bioeleetron., 2007, 22 :1126-1130.
    [75] Li X.M., Ju H.Q., Ding C.F., et al. Nucleic acid biosensor for detection of the patitis B virus using 2,9-dimethyl-1,10-phenanthroline copper complex as electrochemical indicator, Analytica Chimica Acta., 2007, 582 :158-163.
    [76] Zhang S.S., Niu S.Y., Qu B., et al. Studies on the interaction mechanism between hexakis(imidazole) manganese (П) terephthalate and DNA and preparation of DNA electrochemical sensor, J Inorgan. Biochem., 2005, 99 : 2340-2343.
    [77] Kafi A.K.M., Yin F., Shin H.K., et al. Hydrogen peroxide biosensor based on DNA, Hb modified gold eleetrode, Thin Solid Films, 2006, 499 : 420-424.
    [78] Krieg A., Ruckstuhl T., Seeger S., Towards single-molecule DNA sequeneing : Assays with low nonspeciWC adsorption, Anal. Biochem., 2006, 349 : 181-185.
    [79] Calleja M., Nordstrom M., Alvarez M., et al. Highly sensitive polymer-based cantilcver sensors for DNA detection, Ultramieroscopy, 2005, 105 : 215-222.
    [80] Gu T.T., Hasebe Y., DNA-Cu(П) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide, Biosens. Bioelectron., 2006, 21 : 2121-2123.
    [81] Li J., Liu Q., Liu Y.J., et al. DNA biosensor based on chitosan film doped with carbon nanotubes, Anal. Biochem., 2005, 346 : 107-114.
    [82] Cooper W.J., Marcey L.W. Molecular recognition with designed peptides and proteins, Chemical Biology 2005, 9 : 627-631.
    [83] Ma K.S., Zhou H., Zoval J., et al. DNA hybridization deteetion by label free versus imPedance amplifying label with impedance spectroscopy, Sensors and Aetuators B, 2006, 114 : 58-64.
    [84] Wang J., Rivas G., Femandes J., et al. Indicator-free electrochemical DNA hybridization biosensor, Anal. Chim. Acta., 1998, 375 : 197-203.
    [85] Girolamo D.F., Vera L.F., Sonia M., et al. Towards a label-free optical porous silicon DNA sensor, Biosens. Bioelectron., 2005, 21 : 661-665.
    [86] Masayo O., Norihiko M., Toshio S., et al. Detection of a specific DNA sequence by electrophoresis through a molecularly imprinted polymer, Biomaterials, 2006, 27 : 4177-4182.
    [87] Patolsky F., Lielltenstein A., Willner I., Highly sensitive amplified electronic detection of DNA by biocatalyzed prceipitation of an insoluble product onto electrodes[J], Chem. Eur. J., 2003, 9 : 1137-1145.
    [88]贺集诚一郎,表面,1988, 26 : 27-29.
    [89]Weller H., Kolloidale H.Q.T., Chemie im Ubergangsbereich zwisehen Festkorper und Molekul,Angew. Chem., 1993,105 : 43-55.
    [90] Schedelbeck G., Wegscheider W., Bichler M., et al. Coupled quantum dots fabrieated by cleaved edge overgrowth: from artificial atoms to moleeules, Scienee, 1997, 278 : 1792-1795.
    [91] Stewart D.R., Sprinzak D., Marcus C.M., et al. Correlations between ground and excited State Spectra of a quantum dot, Science, 1997, 278 : 1784-1788.
    [92] Wang Y., Herron N., Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties, J. Phys. Chem., 1991, 95 : 525-532.
    [93] Weller H.F., Ojtik A., Henglein A., Photochemistry of semiconductor colloids: properties of extremely small particles of Cd3P2 and Zn3P2, Chem. Phys. Lett., 1985, 117 : 485-488.
    [94] Legget A.J., Chakravarty S., Dynamics of the dissipative two-state system, Rev. Mod. Phys., 1987, 59 : 1-85.
    [95] Awsehalom D.D., Moeord M.A., et. al. Observation of macroscopic spin phenomena in nanometer-scale magnets, Phys.Rev. Lett., 1990, 65 : 783-786.
    [96] Yang J.P., Meldrum F.C., Fendler J.H., Epitaxial growth of size-quantized cadmium sulfide crystals under arachidic acid Monolayers, J. Phys.Chem., 1995, 99 : 5500-5504.
    [97] Camacho C., Matas J.C., Chico B., et al. Amperometric biosensor for hydrogen peroxide, using supramolecularly immobilized horseradish peroxidase on theβ-Cyclodextrin-coated gold electrode, Electroanalysis, 2007, 19 : 2538-2542.
    [98] Hu Y.F., Zhang Z.J., Wiley J., et al. Determination of free cholesterol based on a novel flow-injection chemiluminescence method by immobilizing enzyme,Luminescence 2008, 23 : 338–343.
    [99] Jalit Y., Rodrguez M.C., Rubianes M.D., et al. Glassy Carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine,Electroanalysis , 2008, 20 : 1623–1631.
    [100] Derwinska K., Miecznikowski K., Koncki R., et al. Application of Prussian Blue based composite film with functionalized organic polymer to construction of enzymatic glucose biosensor,Electroanalysis, 2003, 15 : 23-24.
    [101]赵广英,邢丰峰,鸡白痢电化学免疫传感器的研制, 2007, 4 : 115-118
    [102]刘志国,胡舜钦,沈国励,基于褐藻酸钠-纳米金复合物作非酶标记的新型电化学免疫传感器的研制,PART B: Chem. Anal., 2004, 40 : 445-449.
    [103] Ionescu R.E., Gondran C., Ghebert A.,et al. Construction of amperometric immunosensors based on the electrogenerattion of a permeable biotinylated polypyrrole film, Anal Chem., 2004, 76 (22) : 6808-6813.
    [104] Cui R., Pan H.C., Zhu J.J., et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluoreseent labels, Anal Chem., 2007, 79 (22) : 8494-8501
    [105]Ioneseu R.E., Cosnier S., Herrnnann S., et al. AmperometriC immunosensor for the deteetion of anti-west nile virus IgG Anal.Chem., 2007, 79 (22) : 8662-8668.
    [106] Cui R.J., Pan H.C., Zhu J.J., et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels, Anal.Chem., 2007, 79 : 8494-8501.
    [107] Dai Z., Yan F., Chen J., et al. Reagentless amperometric immunosensors based on direct electrochemistry of Horseradish Peroxidase for determination of Carcinoma Antigen-125, Anal. Chem., 2003, 75 (20) : 5429-5434.
    [108] Tang D.P., Ren J.J., In situ amplified electrochemical immunoassay for carcinoembryonic antigen using Horseradish Peroxidase-encapsulated nanogold hollow microspheres as Labels, Anal. Chem., 2008, 80 (21) : 8064-8070.
    [109] Taton T.A., Mirkin C.A., Letsinger R.L., Scanometric DNA array detection with nanoparticle probes, Science, 2000, 289 : 1752-1760.
    [110] Park S.J., Taton T.A., Mirkin C.A., Array-Based Electrical Detection of DNA with Nanoparticle Probes, Science, 2002, 295 : 1503-1506.
    [111] Zhang J., Song S., Zhang L.Y., et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes, 2006, J. AM. CHEM. SOC., 128: 8575-8580.
    [112] Ding C.F., Zhong H., Zhang S.S., Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using nanoCuS tags, Biosens. Bioelectron., 2008, 23 : 1314-1318.
    [113] Zhang S.S., Zhong H., Ding C.F., Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles, Anal. Chem., 2008, 80 : 7206-7212.
    [114] Hu K.C., Lan D.X., Li X.M., et al. Electrochemical DNA biosensor based on nanoporous Gold electrode and multifunctional encoded DNA?Au bio bar codes, Anal. Chem., 2008, 80 : 9124-9130.
    [115] Zhu X.L., Han K., Li G.X., Magnetic Nanoparticles Applied in Electrochemical Detection of Controllable DNA Hybridization, Anal. Chem., 2006, 78 : 2442-2449.
    [116] Hansen J.A., Mukhopadhyay R., Hansen J., et. al, Femtomolar Electrochemical Detection of DNA Targets Using Metal Sulfide Nanoparticles, J. Am. Chem. Soc, 2006, 128 : 3860-3861.
    [117] Li D., Yan Y., Wieckowski A., e. al, Amplified electrochemical detection of DNA through the aggregation of Au nanoparticles on electrodes and the incorporation of methylene blue into the DNA-crosslinked structure, Chem. Commun., 2007, 34 : 3544-3546.
    [118] Zhang J., Song S.P., Wang L.H., et. al, Sequence-Specific Detection of Femtomolar DNA via a Chronocoulometric DNA Sensor (CDS): Effects of Nanoparticle-Mediated Amplification andNanoscale Control of DNA Assembly at Electrodes, J. Am. Chem. Soc, 2006, 128 : 8575-8580.
    [119] Liu J., Lu Y., Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles, Chem. Commun., 2007, 34 : 4872-4874.
    [120] Famulok M., Mayer G., Aptamers in nanoland, Nature, 2006, 439: 666-669.
    [121] Han M.S., Lytton-Jean A.K.R., Oh B.K., et. al, Colorimetric screening of DNA binding molecules with gold nanoparticle probes, Angew. Chem. Int. Ed., 2006, 45: 1802-1810.
    [122] Zhu N.N., Chang Z., He P.G., et al. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization, Electrochimica Acta, 2006, 51 : 3758-3762.
    [123] Zhu N.N., Chang Z., He P.G., et al. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes, Anal. Chim. Acta, 2005, 545 : 21-26.
    [124] Zhu N.N., Zhang A.p., Wang Q.J., et al. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes, Anal. Chim. Acta, 2004, 510 : 163-168.
    [125] Chang H.X., Yuan Y., Shi N.L., et al. Electrochemical DNA Biosensor Based on Conducting Polyaniline Nanotube Array, Anal. Chem., 2007, 79 (13) : 5111–5115.
    [126]Ye Y., Ju X., Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode[J]. Biosens. Bioelectron., 2005, 21 : 735-741.
    [127] Yang, W.W., Wang, J.X., Zhao, S., et al. Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment, Electrochemistry Communications, 2006, (8) : 665-672.
    [128] Jalit Y., Rodrguez M.C., Rubianes M.D., et al. Glassy Carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine,Electroanalysis , 2008, 20 : 1623–1631.
    [129] Zhang S.S., Li X.M., Zhang F., CE-based simultaneous liquid-phase noncompetitive enzyme immunoassay for three tumor markers in human serum using electrochemical detection, Electrophoresis, 2007, 28 : 4422-4431.
    [130] Cui R.J., Pan H.C., Zhu J.J., et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels, Anal.Chem., 2007, 79 : 8494-8501.
    [131] Tang D.P., Ren J.J., In situ amplified electrochemical immunoassay for carcinoembryonic antigen using Horseradish Peroxidase-encapsulated nanogold hollow microspheres as Labels, Anal. Chem., 2008, 80 (21) : 8064-8070.
    [132] Zhu N.N., Zhang A.p., He P.G., et al. Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization, Analyst, 2003, 128 : 260-264.
    [133] He, P.L., Shen, L., Cao, Y.H., Li, D.F., 2007. Ultrasensitive electrochemical detection of proteins by amplification of aptamer?nanoparticle bio bar codes, Anal. Chem., 2007, 79 :8024-8029.
    [134] Muhannad J.A., Shiddiky M.A.R., Yoon-bo S., Hydrazine-catalyzed ultrasensitive detection of DNA and proteins, Anal. Chem., 2007, 79 : 6886-6890.
    [135] S.S. Zhang, J. Zou, F.L. Yu, Investigation of voltammetric enzyme-linked immunoassay based on a new system of HAP-H2O2-HRP, Talanta, 2008, 76 : 122-127.
    [136] Zhang S.S., Jiao K., Chen H.Y., An improved ELISA for the determination of tobacco mosaic virus with linear sweep voltammetry detection based on a new system of PAP-H2O2-HRP, Anal. Lett., 1999, 32 : 758-762.
    [1] Yantasee W., H.Lin Y., Fryxell G.E., et al. One-step synthesis of ordered mesoporous carbonaceous spheres by an aerosol-assisted self-assembly, Ind. Eng. Chem. Res., 2004, 43 : 22-29.
    [2] Wang S., Zhang R.F., Column preconcentration of lead in aqueous solution with macroporous epoxy resin-based polymer monolithic matrix, Anal. Chim. Acta., 2006, 575 : 166-171.
    [3] Nan J., Yan X.P., On-line dynamic two-dimensional admicelles solvent extraction coupled to electrothermal atomic absorption spectrometry for determination of chromium(VI) in drinking water, Anal. Chim. Acta., 536 : 202-212.
    [4] Zhang Y., Banks C., A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns ,Water Res., 2006, 40 : 788-798.
    [5] Crini G., Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment ,Prog. Polym. Sci., 2005, 30 : 38-70.
    [6] Guibal E., Interaction of metal ions with chitosan-based sorbents: a review, Sep. Sci. Technol., 2004, 38 : 43-74.
    [7] Oshita K., Oshima M., Gao Y.H., et al, Synthesis of novel chitosan resin derivatized with serine moiety for the column collection/concentration of uranium and the determination of uranium by ICP-MS , Anal. Chim. Acta., 2003, 480 : 239-249.
    [8] S inha V.R., Singla A.K., Wadhawan S., et al. C hitosan microspheres as a potential carrier for drugs, Int. J. Pharm., 2004, 274 : 1-33.
    [9] Shi Q.H., Ti an Y., Dong X.Y., et al. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption, Biochem. Eng. J., 2003, 16 : 312-322.
    [10] Xi F.N., Wu J.M., Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent , J. Chromatogr. A, 2004, 1057 : 41-47.
    [11] T sai C.C., Huang R.N., Sung H.W.,et al. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin), J. Biomed. Mater. Res., 2000, 52 : 58-65.
    [12] Meegan J.E., Aggeli A., Boden N.,et al. Formation of cage-like hollow spherical silica via a mesoporous structure by calcination of lysozyme–silica hybrid particles, Adv. Funct. Mater., 2004, 14 : 31-33.
    [13] Shchipunov Y.A., Karpenko T.Y., Hybrid Polysaccharide-Silica Nanocomposites Prepared by the Sol?Gel Technique, Langmuir, 2004, 20 : 3882-3887.
    [14] M olvinger K., Quignard F., Brunel D., et al.Multistep adsorption of anionic dyes onsilica/chitosan hybrid: 1. Comparative kinetic data from liquid- and solid-phase models, Chem. Mater., 2004, 16 : 3362-3376.
    [15] Liu Y.L., Su Y.H., Lai J.Y., In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with usingγ-glycidoxypropyltrimethoxysilane as a crosslinking agent, Polymer, 2004, 45 : 6831-6837.
    [16] Liu Y.L., Su Y.H., Lee K.R.,et al. Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability, J. Membr. Sci., 2005, 251 : 233-238.
    [17] Shirosaki Y., Tsuru K., Hayakawa S.,et al. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes,Biomaterials., 2005, 26 : 485-493.
    [18] Dai S., Shin Y.S., Barnes C.E., et al. Enhancement of Uranyl Adsorption Capacity and Selectivity on Silica Sol?Gel Glasses via Molecular Imprinting, Chem. Mater., 1997, 9 : 2521-2525.
    [19] Fang G.Z., Tan J., Yan X.P., An Ion-Imprinted Functionalized Silica Gel Sorbent Prepared by a Surface Imprinting Technique Combined with a Sol?Gel Process for Selective Solid-Phase Extraction of Cadmium(II), Anal. Chem., 2005, 77 : 1734-1739.
    [20] Li F., Li X.M., Zhang S.S., One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol–gel process, J. Chromatogr. A, 2006, 1129 : 223-230.
    [21] Li F., Jiang H.Q., Zhang S.S., An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(II) from aqueous solution, Talanta, 2007, 71 : 1482-1493.
    [22] Yang L., Hsiao W.W., Chen P., Chitosan–cellulose composite membrane for affinity purification of biopolymers and immunoadsorption , J. Membr. Sci., 2002, 197 : 185-197.
    [23] Zeng M.F., Fang Z.P., Xu C.W., Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN, J. Appl. Polym. Sci., 2004, 91 : 2840-2847.
    [24] Guo T.Y., Xia Y.Q., Hao G.J., et al. Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer, Carbohydr. Polym., 2005, 62 : 214-221.
    [25] Smatt J.H., Schunk S., Linden M., Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity, Chem. Mater., 2003, 15 : 2354-2361.
    [26] Pang J.B., Li X., Wang D.H., et al. Purification of CVD synthesized single-wall carbonnanotubes by different acid oxidation treatments, Adv. Mater., 2004, 16 : 884-888.
    [27] Ishizuka N., Minakuchi H., Nakanishi K.,et al. Designing monolithic double-pore silica for high-speed liquid chromatography, J. Chromatogr. A, 1998, 797 : 133-137.
    [28] Terreux R., Domard M., Viton C., et al. Interactions study between the Copper II Ion and constitutive elements of chitosan structure by DFT calculation, Biomacromolecules, 2006, 7 : 31-37.
    [29] Yan W.L., Bai R.B., Adsorption of lead and humic acid on chitosan hydrogel beads, Water Res. 2005, 39 : 688-698.
    [30] Dutta P.K., Dutta J., Chattopadhyaya M.C., et al. Study on the preparation of chitosan–alginate complex membrane and the effects on adhesion and activation of endothelial cells, J. Polym. Mater., 2004, 21 : 321-324.
    [31] Benaissa H., Benguella B., Biosorption of cadmium and nickel by functionalized husk of Lathyrus sativus, Environ. Pollut., 2004, 130 : 152-163.
    [32] Martins A.O., Silva E.L., Carasek E., et al. Application of Chitosan Functionalized with 8-Hydroxyquinoline: Determination of Lead by Flow Injection Flame Atomic Absorption Spectrometry , Anal. Chim. Acta, 2004, 521 : 152-161.
    [1] Weller H.,Transistors and light emitters from single nanoclusters. Angew Chem Int Ed., 1998, 523 : 209-217.
    [2] Boal A.K., Ilhan F., DeRouchey J.E., Self-assembley of nanoparticles into structuredspherical and network aggregates, Nature, 2000, 404 : 746-748.
    [3] Jia J., Wang B., Wu A., A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol–gel network, Anal. Chem., 2002, 74 : 2217-2223.
    [4] Zhao J., O’Daly J.P., Henkens R.W., A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications, Biosens Bioelectron., 1996, 11 : 493-502.
    [5] Zhang S., Wang N., Yu H., Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor, Bioelectrochemistry, 2005, 67 : 15-22.
    [6] Hilliard L.R., Zhao X., Tan W., Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies, Anal Chim Acta, 2002, 470 : 51-56.
    [7] He P., Hu N., Rusling J.F., Driving forces layer-by-layer self-assembly of films of SiO2 nanoparticles and heme proteins, Langmuir, 2004, 20 : 722-729.
    [8] Lei C., Wollenberger U., Bistolas N., Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles, Anal Bioanal Chem., 2002, 372 : 235-239.
    [9] Zhao G., Feng J., Xu J., Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film, Electrochem Commun., 2005, 7 : 724-729.
    [10] Zhang Y., He P., Hu N., Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis, Electrochim Acta, 2004, 49 : 1981-1988.
    [11] He P., Hu N., Electrocatalytic properties of heme proteins in layer-bylayer films assembled with SiO2 nanoparticles, Electroanalysis, 2004, 16 : 1122-1131.
    [12] Zhang D., Chen Y., Chen H., Xia X., Silica-nanoparticle-based interface for the enhanced immobilization and sequence-specific detection of DNA, Anal. Bioanal. Chem., 2004, 379 : 1025-1030.
    [13] Sun Y.Y., Yan F., Sun C.Q., Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment , Biomaterials, 2006, 27 : 4042-4049.
    [14]赵奎,李军,王林,通过静电相互作用制备CdTe-S iO2纳米复合物高等学校化学学报,2005, 26 : 1106-1109
    [15]肖旭贤,何琼琼,覃罡,新型氨基化磁性纳米粒子的合成,应用化学工业, 2005, 36 : 112-115.
    [16] Sara C.J., Masih D., Erol K., Silica coated quantum dots: a new tool for electrochemical and optical glucose detection, Microchim Acta, 2008, 160 : 375-383.
    [17] Qiu J.D., Xie H.Y., Liang R.P., Preparation of porous chitosan/carbon nanotubes film modified electrode for biosensor application, Microchim Acta, 2007, 7 : 411-417
    [18] Andres R.P., Bielefeld J.D., Henderson J.I., Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters, Science, 1996, 273 : 1690-1693.
    [19] Stober W., Fink A., Bohn E., Controlled growth of monodisperse silica spheres inthemicronsize range[J]. J Colloid Interface Sci, 1968, 26 : 62-69.
    [20] St?ber W., Fink A., Controlled growth of monodisperse silica spheres in the micron size range, J Colloid Interface Sci, 1968, 26 : 62-69.
    [21] Van B. A., Van G.J., Vrij A., Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism, J Colloid Interface Sci, 1992, 154 : 481-501.
    [22] Van B. A., Vrij A., Synthesis and characterization of monodisperse colloidal organo-silica spheres, J Colloid Interface Sci., 1993, 156 : 1-18.
    [23] Westcott S.L., Oldenburg S.J., Lee T.R., Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces, Langmuir, 1998, 14 : 5396-5401.
    [1] Service R.F., Coming soon: the pocket DNA sequencer, Science, 1998, 282 : 399-401.
    [2] Butler J.M., Genetics and genomics of core short tandem repeat loci used in human identity testing, J. Forensic Sci., 2006, 51 : 253-265.
    [3] Staudt L.M., Gene expression physiology and pathophysiology of the immune system, Trends Immunol., 2001, 22 : 35- 40.
    [4] Farace G., Lillie G., Hianik T., et al. Reagentless biosensing using electrochemical impedance spectroscopy, Bioelectrochemstry, 2002, 55 : 1-3.
    [5] Reisberga S., Piroa B., Noela V., et al. Selectivity and sensitivity of a reagentless electrochemical DNA sensor studied by square wave voltammetry and fluorescence, Bioelectrochemstry, 2006, 69 : 172-179.
    [6] Rosi N.L., Mirkin C.A., Nanostructures in biodiagnostics, Chem. Rev., 2005, 105 : 1542-1562.
    [7] Gerion D., Chen, Kannan F.Q. B.,et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays, Anal. Chem., 2003, 75 : 4766-4772.
    [8] Drummond T.G., Hill M.G., Barton J.K., Electrochemical DNA sensors, Nat. Biotechnol., 2003, 21 : 1192-1199.
    [9] He L., Musick M.D., Nicewarner S.R., et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization, J. Am. Chem. Soc., 2000, 122 : 9071-9077.
    [10] Lao R.J., Song S.P., Wu H.P.,et al. Electrochemical interrogation of DNA monolayers on gold surface, Anal. Chem., 2005, 77 : 6475-6480.
    [11] Moses S., Brewer S.H., Lowe L.B., et al. Characterization of single- and double-stranded DNA on gold surfaces, Langmuir, 2004, 20 : 11134-11140.
    [12] Lowe L.B., Brewer S.H., Kramer S.,et al. Laser-induced temperature jump electrochemistry on gold nanoparticle-coated electrodes, J. Am. Chem. Soc., 2003 125, (2003) 14258-14259.
    [13] Ding C.F., Zhao F., M.L. Zhang M.L.,et al. Hybridization biosensor using 2, 9-dimethyl-1, 10-phenantroline cobalt as electrochemical indicator for detection of hepatitis B virus DNA, Bioelectrochemstry, 2008, 72 : 28-33.
    [14] Ostatnáa V., Dolinnayab N., Andreevb S., et al. The detection of DNA deamination by electrocatalysis at DNA-modified electrodes, Bioelectrochemstry, 2005, 67 : 205-210.
    [15] Brown K.R., Fox A.P., Natan M.J., Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc., 1996, 118 : 1154-1157.
    [16] Bao L.L., Mahurin S.M., Haire R.G.,et al. Silver-doped sol–gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions, Anal. Chem., 2003, 75 : 6614-6620.
    [17] Ma R., Sasaki T., Bando Y., Layer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes and nanotubes/nanosheets with polycations, J. Am. Chem. Soc., 2004, 126 : 10382-10388.
    [18] Kidambi S., Dai J.H., Li J.,et al. Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers, J. Am. Chem. Soc., 2006, 126 : 2658-2659.
    [19] Li D., Yan Y., Wieckowska A., et al. Amplified electrochemical detection of DNA through the aggregation of Au nanoparticles on electrodes and the incorporation of methylene blue into the DNA-crosslinked structure, Chem. Commun., 2007, 34 : 3544-3546
    [20] Yamada M., Tadera T., Kubo K., et al. Electrochemical deposition of biferrocene derivative-attached gold nanoparticles and the morphology of the formed film, J. Phys. Chem. B, 2003, 107 : 3703-3711
    [21] Zhao L., Siu A.C.L., Petrus J.A., et al. Leung, Interfacial Bonding of Gold Nanoparticles on a H-terminated Si (100) substrate obtained by electro- and electroless deosition, J. Am. Chem. Soc., 2007, 129 : 5730-5734.
    [22] Jena B.K., Raj C.R., Ultrasensitive nanostructured platform for the electrochemical sensing of hydrazine, J. Phys. Chem. C, 2007, 111 : 6228-6232.
    [23] Willner I., Willnera B., Katza E., Biomolecule–nanoparticle hybrid systems for bioelectronic applications, Bioelectrochemistry, 2007, 70 : 2-11.
    [24] Xia Q., Chen X., Liu J.H., Cadmium sulfide-modified GCE for direct signal-amplified sensing of DNA hybridization, Biophys. Chem., 2008, 101-107.
    [25] Wang J., Liu G.D., Merkoci A., Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc., 2003, 125 : 3214-3215.
    [26] Numnuam A., Chumbimuni-Torres K.Y., Xiang Y.,et al. Potentiometric detection of DNA hybridization, J. Am. Chem. Soc., 2008, 130 : 410-411.
    [27] Granot E., Patolsky F., Willner I., Electrochemical assembly of a CdS semiconductor Nanoparticle monolayer on surfaces structural properties and photoelectrochemical applications, J. Phys. Chem. B, 2004, 108 : 5875-5881.
    [28] Yildiz H.B., Freeman R., Gill R., et al. Electrochemical, photoelectrochemical, and piezoelectric analysis of tyrosinase activity by functionalized nanoparticles, Anal.Chem., 2008, 80 : 2811-2816.
    [29] Zayats M., Kharitonov A.B., Pogorelova S.P., et al. Probing photoelectrochemical processesin Au-CdS nanoparticle arrays by surface plasmon resonance: application for the detection of acetylcholine esterase inhibitors, J. Am. Chem. Soc., 2003, 125 : 16006-16014.
    [30] Gill R., Willner I., Shweky I., et al. Fluorescence resonance energy transfer in CdSe/ZnS DNA conjugates: probing hybridization and DNA cleavage, J. Phys. Chem. B, 2005, 109 : 23715-23719.
    [31] Jie G.F., Liu B., Pan H.C.,et al. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by Increasing sensitivity with gold nanoparticle amplification, Anal.Chem., 2007, 79 : 5574-5581.
    [32] Li Z., Chen Y., Li X., et al. Sequence-specific label-free DNA sensors based on silicon nanowires, Nano Lett., 2004, 4 : 245-247.
    [33] Liang M.M., Liu S.L., Wei M.Y.,et al. Photoelectrochemical oxidation of DNA by Ruthenium Tris(bipyridine) on a Tin oxide nanoparticle electrode, Anal.Chem., 2006, 78 : 621-623.
    [34] Frens G., Controlled nucleation for the regulation of the particle size in monodispersed gold suspensions, Nat. Phys. Sci., 1973, 241 : 20-22.
    [35] Zhang Y., Zhu Y.X., Huang G.L.,et al. Room temperature phosphorescence from inclusion complex ofβ-Cyclodextrin and 1-Bromonaphthalene in the presence of phenol and 1-Butanol, Chem. J. Chin. Univ., 2001, 22 : 1392-1399.
    [36] Chi Y.W., Duan J.P., Zhao Z.F., et al. A study on the electrochemical and electrochemiluminescent behavior of homogentisic acid at carbon electrodes, Electroanalysis, 2003, 15 : 208-218.
    [37] Carter M.T., Bard A.J., Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt (III) with DNA, J. Am. Chem. Soc., 1987, 109 : 7528-7530.
    [38] Carter M.T., Rodriguez M., Bard A.J., Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt (III) and iron (II) with 1, 10-phenanthroline and 2, 2'-bipyridine, J. Am. Chem. Soc., 1989, 111 : 8901-8911.
    [39] Pang D.W., Abruna H.D., Micromethod for the Investigation of the interactions between DNA and redox-active molecules, Anal. Chem., 1998, 70 : 3162-3169.
    [40] Ma H.Y., Zhang L.P., Pan Y.,et al. A novel electrochemical DNA biosensor fabricated with layer-by-layer covalent attachment of multiwalled carbon nanotubes and gold nanoparticles, Electroanalysis, 2008, 20 : 1220-1226.
    [41] Niu S.Y., Zhao M., Ren R., et al. Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using Manganese(II)-schiff base complex as hybridization indicaton, J. Inorg. Biochem., Article in Press.
    [42] Zhu N.N., Chang Z., Heb P.G.,et al. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes, Anal. Chim. Acta, 2005, 545 : 21-26.
    [43] Yang J. , Jiao K., Yang T., A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment, Anal. Bioanal. Chem., 2007, 389 : 913-921.
    [44] Tsai C.Y., Tsai Y.H., Pun1 C.C., et al. Electrical detection of DNA hybridization with multilayer gold nanoparticles between nanogap electrodes, Microsyst. Technol., 2005, 11 : 1432-1858.
    [45] Chang H.X., Yuan Y., Shi N.L., et al. Electrochemical DNA biosensor based on conducting polyaniline nanotube array, Anal. Chem., 2007, 79 : 5111-5115.
    [46] Peng H., Soeller C., Cannell M.B., et al. Electrochemical detection of DNA hybridization amplified by nanoparticles, Biosens. Bioelectron., 2006, 21 : 1722-1736.
    [1] Brakmann S., DNA-Based Barcodes, Nanoparticles, and Nanostructures for the Ultrasensitive Detection and Quantification of Proteins, Angew. Chem. Int. Ed., 2004, 43 : 5730-5734.
    [2] Drummond T.G., Hill M.G., Barton J.K., Electrochemical DNA biosensors, Nat. Biotechnol., 2003, 21 : 1192-1199.
    [3] Gerion D., Chen F.Q., Kannan B., et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays, Anal. Chem., 2003, 75 : 4766-4772.
    [4] Rosi N.L., Mirkin C.A., Nanostructures in Biodiagnostics, Chem. Rev., 2005, 105 : 1542-1562.
    [5] Zhang J., Song S.P., Zhang L.Y., et al. Sequence-Specific Detection of Femtomolar DNA via a Chronocoulometric DNA Sensor (CDS): Effects of Nanoparticle-Mediated Amplification and Nanoscale Control of DNA Assembly at Electrodes, J. Am. Chem. Soc., 2006, 26 : 8575-8580.
    [6] Zuo X.L., Song S.P., Zhang J., et al. A Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar ATP, J. Am. Chem. Soc., 2007, 129 : 1042-1043.
    [7] Zhu X.L., Han K., Li G.X., Magnetic nanoparticles applied in electrochemical detection of controllable DNA hybridization, Anal. Chem., 2006, 7 : 2442-2449.
    [8] Zhang J., Qi H., Li Y., et al. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with Ruthenium complex, Anal. Chem., 2008, 8 : 2888-2894.
    [9] Ding C.F., Zhong H., Zhang S.S., Ultrasensitive flow injection chemiluminescence detection ofDNA hybridization using nanoCuS tags, Biosens. Bioelectron., 2008, 23 : 1314-1318.
    [10] Pavlov V., Xiao Y., Gill R.,et al. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels, 2004, Anal. Chem., 7 : 2152-2156.
    [11] Hu K.C., Lan D.X., Li X.M., et al. Electrochemical DNA biosensor based on nanoporous Gold electrode and multifunctional encoded DNA?Au bio bar codes, Anal. Chem., 2008, 80 : 9124-9130.
    [12] Zhu D.B., Tang Y.B., Xing D., et al. PCR free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence based bio bar code method, Anal. Chem., 2008, 80 : 3566-3571.
    [13] Zhang S.S., Zhong H., Ding C.F., Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles, Anal. Chem., 2008, 80 : 7206-7212.
    [14] Rodriguez M., Kawde A.N., Wang J., Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge, Chem. Commun., 2005, 4262-4269.
    [15] Nam J.M., Stoeva S.I., Mirkin C.A., Bio-bar-code-based DNA detection with PCR-like sensitivity, J. Am. Chem. Soc., 2004, 126 : 5932-5933.
    [16] Hahm J., Lieber C.M., Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors, Nano Lett., 2004, 4 : 51-54.
    [17]Wang J., Liu G., Merkoci A., Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc., 2003, 125 : 3214-3215.
    [18] Jung D.H., Kim B.H., Ko Y.K., et al. Covalent attachment and hybridization of DNA oligonucleotides on patterned single-walled carbon nanotube films, Langmuir, 2004, 20 : 8886-8891.
    [19] Wang J., Dai J., Yarlagadda T., Carbon nanotube-conducting polymer composite nanowires, Langmuir, 2005, 21 : 9-12.
    [20] Tang X., Bansaruntip S., Nakayama N., et al. Carbon nanotube DNA sensor and sensing mechanism, Nano Lett., 2006, 6 : 1632-1636.
    [21] Nam J.M., Park S.J., Mirkin C.A., Bio-barcodes based on oligonucleotide-modified nanoparticles, J. Am. Chem. Soc., 2002, 124 : 3820-3821.
    [22] Nam J.M., Thaxton C.S., Mirkin C.A., Nanoparticle-Based Bio-Bar Codes for the ultrasensitive detection of proteins, Science, 2003, 31 : 1884-1886.
    [23] Nam J.M., Wise A.R., Groves J.T., Colorimetric bio-barcode amplification assay for cytokines, Anal. Chem., 2005, 77 : 6985-6988.
    [24] Oh B.K., Nam J.M., Lee S.W., et al. A fluorophore-based bio-barcode amplification assay for proteins, Small 2, 2006, 103-108.
    [25] Hill H.D., Mirkin C.A., Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells, Nat. Protoc., 2006, 1, 1-13.
    [26] Thaxton C.S., Hill H.D., Georganopoulou D.G., et al. A bio-bar-code assay based upon dithiothreitol-induced oligonucleotide release, Anal. Chem., 2005, 77 : 8174-8178.
    [27] Shen L., Chen Z., Li Y.H., et al. Electrochemical DNAzyme sensor for lead based on amplification of DNA?Au bio-bar codes, Anal. Chem., 2008, 80 : 6323-6328.
    [28] He, P.L., Shen, L., Cao, Y.H., Li, D.F., 2007. Ultrasensitive electrochemical detection of proteins by amplification of aptamer?aanoparticle bio bar codes, Anal. Chem., 2007, 79 : 8024-8029.
    [29] Stoeva S.I., Lee J.S., Smith J.E.,et al. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes, J. Am. Chem. Soc., 2006, 128 : 8378-8379.
    [30] Stoeva S.I., Lee J.S., Thaxton C.S.,et al. Multiplexed DNA detection with biobarcoded nanoparticle probes, Angew. Chem. Int. Ed. 2006, 45 : 3303-3306.
    [31] Georganopoulou D.G., Chang L., Nam J.M.,et al. The role of cerebral amyloidβaccumulation in common forms of Alzheimer disease, Natl. Acad. Sci. U.S.A., 2005, 102 : 2273-2276.
    [32] Goluch E.D., Nam J.M., Georganopoulou D.G.,et al. A bio-barcode assay for on-chip attomolar-sensitivity protein detection, Lab Chip., 2006, 6 : 1293-1299.
    [33] Milica T.N., Mirjana I.C., Veana V., et al. Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement, J. Phys. Chem., 1990, 94 : 6390-6394.
    [34] Zhu N.N., Zhang A.P., Wang Q.J., et al. Lead sulfide nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization, Electroanalysis, 2004, 16 : 572-582.
    [35] Frens G., Controlled nucleation for the regulation of the particle size in monodisperse gold solution, Nat. Phys. Sci., 1973, 241 : 20-22.
    [36] Liu L.W., Lu Y.,Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes, NATURE PROTOCOLS, 2006, 1 : 246-252.
    [37] Derveaux S., Stubbe B.G., Roelant C., et al. Layer-by-layer coated digitally encoded microcarriers for quantification of proteins in serum and plasma, Anal.Chem., 2008, 80 : 85-94.
    [1] Mazzio E.A., Soliman K.F.A., Glioma cell antioxidant capacity relative to reactive oxygen species produced by dopamine, J. Appl. Toxicol., 2004, 24 : 99-106.
    [2] Komazaki Y., Inoue T., Tanaka S., Automated measurement system for H2O2 in the atmosphere by diffusion scrubber sampling and HPLC analysis of Ti(IV)–PAR–H2O2 complex, Analyst, 2001, 126 : 582-593.
    [3] Sánchez S., Pumera M., Cabruja E., et al. Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors, Analyst, 2007, 132 : 142-147.
    [4] Wang J., Liu G.D., Lin Y.H., Effects of dietary calcium,phosphorus and calcium/ phosphorus ratio on the growth and tissue mineralization of Litopenaeus vannamei reared in low salinity water, Analyst, 2006, 131 : 472-483.
    [5] Alpeeva I.S., Niculescu-Nistor M., Leon J.C.,et al. Palm tree peroxidise-based biosensor with unique characteristics for hydrogen peroxide monitoring,Biosens. Bioelectron., 2005, 21 : 742-748.
    [6] Zhao Q., Zhan D., Ma H., et al. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode, Front. Biosci., 2005, 10 : 326-334.
    [7] Gooding J. J., Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing, Electrochimica Acta., 2005, 50 : 3049-3060.
    [8] Wang J., Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis, 2005, 17 : 2-14.
    [9] Zhao Q., Gan Z., Zhuang Q., Electrochemical Sensors Based on Carbon Nanotubes, Electroanalysis, 2002, 14 : 1609-1613.
    [10] Cai C.X., Chen J., Bao J., et al. Applications of Carbon Nanotubes in Analytical Chemistry, Chin. J. Anal. Chem., 2003, 32 : 381-387.
    [11] Smart S.K., Cassady A.I., Lu G.Q. ,et al. The biocompatibility of carbon nanotubes, Carbon, 2006, 44 : 1034-1047.
    [12] Sljukic B., Banks C.E., Compton R.G., Iron Oxide Particles Are the Active Sites for Hydrogen Peroxide Sensing at Multiwalled Carbon Nanotube Modified Electrodes, Nano Lett., 2006, 6 :1556-1558.
    [13] Liu S.N., Cai C.X., Immobilization and characterization of alcohol dehydrogenase on single-walled carbon nanotubes and its application in sensing ethanol, J. Electroanal. Chem., 2007, 602 : 103-114.
    [14] Kandimalla V.B, Tripathi V.S., Ju H., A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application, Biomaterials, 2006, 27 : 1162-1174.
    [15] Liu G., Lin Y., Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes, Electrochem. Commun., 2006, 8 : 251-256.
    [16] Zhao H., Ju H., Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase, Anal. Biochem., 2006, 350 : 138-144.
    [17] Zhang M., Smith A., Gorski W., Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes, Anal. Chem., 2004, 76 : 5045-5050.
    [18] Katz E., Willner I., Biomolecule-Functionalized Carbon Nanotubes: Applications in Nanobioelectronics, ChemPhysChem., 2004, 5 : 1084-1104.
    [19] Zhao Q., Zhan D., Ma H., et al. Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode, Front. Biosci., 2005, 10 : 326-334.
    [20] Zhao F., Wu X.E., Wang M.K., et al. Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials, Anal. Chem., 2004, 76 : 4960-4967.
    [21] Moulthrop J.S., Swatloski R.P., Moyna G., High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions, Chem. Commun., 2005, 56 : 1552-1559.
    [22] Luo H.M., Dai S., Bonnesen P.V., et al. Extraction of cesium ions from aqueous solutions using calixarene-bis(tert-octylbenzo-crown-6) in ionic liquids, Anal. Chem., 2004, 76 : 3078-3083.
    [23] Hussey C.L., in G. Mamantov and A.I. Popov (Eds),‘Chemistry of Nonaqueous Solutions Current Progress’(VCH, New York, 1994) p. 227.
    [24] Carlin R. T., Wilkes J.S., in Mamantov and A.I. Popov (Eds), Chemistry of Nonaqueous Solutions Current Progress (VCH, New York, 1994) p. 277.
    [25] Rogers R.D., Seddon K.R., (Eds), Ionic Liquids Industrial Applications to Green Chemistry (ACS, Washington, DC, 2002).
    [26] Wasserscheid P., Welton T., (Eds),‘Ionic liquids in Synthesis’(Wiley–VCH, Weinheim, 2002).
    [27] Lo W.H., Yang H.Y., Wei G.T., One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids, Green Chemistry, 2003, 5 : 639-641.
    [28] Fukushima T., Kosaka A., Ishimura Y., Molecular ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes, Science, 2003, 300 : 2072-2074.
    [29] Zhao Y.F., Gao Y.Q., Zhan D.P., Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode, Talanta, 2005, 66 : 51-57.
    [30] Zou Y., Sun L., Xu F., Biosensor based on polyaniline–Prussian Blue/multi-walled carbon nanotubes hybrid composites, Biosens. Bioelectron., 2007, 22 : 2669-2674.
    [31] Pisklak T.J., Macías M., Coutinho D.H., et al. Topics in Cata., 2006, 38 : 269-272.
    [32] Munteanu F.D., Lindgren A., Emnéus J., et al. Bioelectrochemical Monitoring of Phenols and Aromatic Amines in Flow Injection Using Novel Plant Peroxidases, Anal. Chem., 1998, 70 : 2596-2600.
    [33] Huang W., Jia J., Zhang Z., et al. Hydrogen peroxide biosensor based on microperoxidase-11 entrapped in lipid membrane, Biosens.Bioelectron., 2003, 18 : 1225-1230.
    [34] Wang M.K., Zhao F., Liu Y., et al. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes, Biosens. Bioelectron. 21 (2005) 159-166.
    [35] Laviron E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 1979, 101 : 19-28.
    [36] Ding C.F., Zhang M.L., Zhao F., et al. Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room-temperature ionic liquid, Anal. Biochem., 2008, 378 : 32-37.
    [37] Xu J.Z., Zhu J.J., Wu Q.,et al. Methylene Blue as a novel electrochemical hybridization indicator, Electroanalysis, 2003, 15 : 219-223.
    [38] Zong S.Z., Cao Y., Ju H.X., Direct electron transfer of Hemoglobin immobilized in Multiwalled Carbon Nanotubes enhanced grafted collagen matrix for electrocatalytic detection of Hydrogen Peroxide, Electroanalysis, 2007, 19 : 841-846.
    [39] Xi F.N., Liu L.J., Wu Q. et al. One-step construction of biosensor based on chitosan–ionic liquid–horseradish peroxidase biocomposite formed by electrodeposition, Biosens. Bioelectron., 2008, 24 : 29-34.
    [40] Yu J.J., Zhao T., Zhao F.Q et al. Direct electron transfer of hemoglobin immobilized in a mesocellular siliceous foams supported room temperature ionic liquid matrix and the electrocatalytic reduction of H2O2, Electrochimica Acta., 2008, 53 : 5760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700