用户名: 密码: 验证码:
组织工程神经修复大鼠坐骨神经缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、骨髓间充质干细胞的培养、生物学特性及向类雪旺细胞诱导分化。
     目的:掌握大鼠骨髓间充质干细胞的分离、培养和扩增的方法,并探讨其生物学特性及向类雪旺细胞分化的条件。
     方法:无菌条件下取大鼠双侧股骨、胫骨和胸骨,并用吸取D-Hank’s液的注射器冲出骨髓细胞,置于含10%FBS、100U/ml双抗的L-DMEM培养基中,37℃、5%CO2环境下进行培养,应用全骨髓培养法结合贴壁分离的方法进行纯化。待细胞达95%融合时,用0.125%的胰酶-0.02%的EDTA消化2-3min后进行传代。倒置显微镜下观察原代及传代后的细胞生长特点。用MTT法测定大鼠骨髓间充质干细胞的生长曲线,从而进一步了解其生长特性。将骨髓间充质干细胞按顺序分别加入β-巯基乙醇、全反式视黄酸、Forskolin、神经调节蛋白、碱性成纤维细胞生长因子、血小板源性生长因子-AA向类雪旺细胞进行诱导,在倒置显微镜下观察生长情况及诱导后的形态学变化,S-100、GFAP免疫细胞化学染色并计算其阳性率,Western-blot法检测S-100、GFAP蛋白的表达。
     结果:原代培养显示原代细胞1-2天开始有少量细胞贴壁,形状不规则,呈梭形成纤维样细胞形态,7-9天左右细胞可长满培养瓶底,达95%以上融合,呈漩涡状,辐射状或鱼群样排列。传代后2h后部分细胞即开始贴壁,24h内即可完全贴壁,6-7天可铺满培养瓶底。传代10代以上,各代之间细胞生长均一,稳定。P2、P4、P6细胞生长曲线基本相同,分为潜伏期(第1-2天)、对数生长期(第3-5天)和平台期(第6-7天),且几代细胞间生长状况稳定。依次加入诱导剂后部分细胞向雪旺细胞形态转变,胞体呈椭圆形,有2-3个纤细的细胞突起,成纵形栅栏状排列,免疫细胞化学染色S-100和GFAP表达阳性率分别为71.34%和68.32%,Western-blot检测有S-100,GFAP表达,未诱导细胞则不表达。
     结论:1应用全骨髓培养法结合贴壁分离法成功建立了一种体外简单、快速的分离、纯化大鼠骨髓间充质干细胞的方法,并使其在体外迅速得到了增殖,而且性状稳定。2大鼠骨髓间充质干细胞可以在体外经诱导分化为类雪旺细胞。
     二、羊膜脱细胞基质的制备及生物相容性的研究
     目的:通过去污剂和酶消化法进行羊膜脱细胞基质的制备,并观察其作为组织工程支架材料的生物相容性。
     方法:取新鲜人羊膜冲洗后以1%tritonX-100溶液振荡24 h,0.25%胰蛋白酶37℃振荡4 h,充分漂洗,干燥后环氧乙烷消毒,并进行苏木精-伊红染色和扫描电镜检测,皮下埋置实验检测其组织相容性。四甲基偶氮唑盐法测定羊膜脱细胞基质浸提液对类雪旺细胞毒性。取培养的类雪旺细胞复合培养于羊膜脱细胞基质上,倒置显微镜下观察生长情况,并进行苏木精-伊红检测。
     结果:制备的羊膜脱细胞基质为白色菲薄、半透明的膜状物,柔韧性好,经苏木精-伊红和扫描电镜检测无细胞残留。皮下埋置实验检测其组织相容性好。羊膜脱细胞基质浸提液对类雪旺细胞毒性评分为1级,复合培养后可见羊膜脱细胞基质表面细胞黏附生长良好,细胞伸展,形态与正常培养细胞无差异。
     结论:经去污剂和酶消化法制备的羊膜脱细胞基质生物相容性良好,是一种理想的组织工程支架材料。
     三、类雪旺细胞复合羊膜脱细胞基质修复大鼠坐骨神经缺损的实验研究
     目的:探讨应用类雪旺细胞及羊膜脱细胞基质构建组织工程化神经修复大鼠坐骨神经缺损的实验效果,为临床研究提供资料。
     方法:以类雪旺细胞为种子细胞,羊膜脱细胞基质为支架材料,体外复合培养后构建组织工程化神经来修复大鼠10mm坐骨神经缺损。术后12周,通过大体观察、电生理检测、组织学、超微结构、逆行示踪及图像分析等多方面分析评价修复效果。
     结果:术后12周,实验组患肢溃疡基本愈合,移植段与近、远坐骨神经直径相当。组织学检查示含有大量的有髓神经纤维,且髓鞘较厚。透射电镜见再生神经纤维呈较成熟形态学表现,髓鞘板层清晰。电生理功能检测、逆行示踪检测被HRP标记的神经元及图像分析与自体神经移植组相比无显著差异。
     结论:类雪旺细胞复合羊膜脱细胞基质构建的组织工程化人工神经可以成功修复大鼠周围神经缺损,其效果接近于自体神经移植。
     四、创伤性脑组织匀浆对大鼠骨髓间充质干细胞分化为神经元样细胞的影响
     目的:观察创伤后24 h和正常脑组织匀浆诱导大鼠骨髓间充质干细胞向神经元样细胞分化的差别。
     方法:采用Gruncr改良法制作中度脑损伤大鼠模型,取伤后24 h和正常大鼠脑组织匀浆,对体外培养的第3代骨髓间充质干细胞进行诱导。在倒置显微镜下观察细胞形态学变化,并应用免疫细胞化学技术检测细胞内神经元特异性烯醇化酶的表达,比较创伤后和正常脑组织匀浆两组诱导率差别。
     结果:骨髓间充质干细胞经创伤性脑组织匀浆培养基诱导24 h后,细胞的胞体变大,36 h后部分细胞分化,回缩成圆形或梭形,48 h后部分细胞可见两个或多个突起伸出,类似神经元。免疫细胞化学技术检测显示,创伤性脑组织匀浆培养基诱导组神经元特异性烯醇化酶阳性表达为54.28±6.03%,正常脑组织匀浆诱导分化率较前者低,神经元特异性烯醇化酶阳性表达为32.76±3.25%,细胞生长状态略差。
     结论:脑组织匀浆可诱导大鼠骨髓间充质干细胞向神经元样细胞分化,创伤性脑组织匀浆可明显提高诱导率。
1 The culture of bone marrow mesenchymal stromal cells and induce to differentiate into Schwann-like cells
     Objective: To master the method for the isolation,culture and amplification of rat bone marrow mesenchymal stromal cells (BMSCs) in vitro and explore their biological characteristics and induce them to differentiate into Schwann-like cells.
     Methods: BMSCs were collected from degermed femurs, tibias and sternum of 4 to 6-week-old SD rat by flushing the shaft with D-Hank’s using a syringe. Cells were disaggregated by gentle pipetting several times and plated in culture flask and re-fed every 2-3 days (L-DMEM with 10% FBS and 1% penicillin-streptomycin).When 95% fusion, cells were digested with 0.125% trypsogen and 0.02% EDTA 2 min and passaged. After successive isolation, purification, subculture and proliferation, the morphology was observed with phase contrast microscope. The growth curve of P2, P4, P6 were drawn with MTT. In order to induce BMSCs differentiate into Schwann-like cells,subconfluent cultures of BMSCs treated with beta-mercaptoethanol (β-ME) followed by all trans retinoic acid and cultured in the presence of forskolin, basic-FGF, PDGF-AA and heregulin, The proliferation and morphology before and after induction of BMSCs was observed with inverted microscope constantly. Immunocytochemistry of S-100 and glail fibrillary acidic protein(GFAP) ,the ratio of positively stained cells was counted. Western blot were used to identify the expressing of S-100 and GFAP.
     Results: The components of primarily cultured BMSCs were very complex. The marrow cells were round in the beginning and a few cells adhered to flask at 1-2 days, which were in irregular shape such as fusiform, polygon and so on. After changing half of the medium, the cell clone began to proliferate immediately. About 7-9 days later, cells might overgrow the bottom of culture flask and reached over 95% fusion. The cells arranged regularly as a whirlpool. Generated cells stuck on the wall more quickly than primary cells. From the 2nd hour, they began to adhered and completely adhered within 24h. The cell morphology was more uniform and all the cells arranged more regularly. Cells could spread the full flask bottom for 6 or 7 days. After subcultured 10 passages, the cells proliferated rapidly and kept the morphology unchanged. The growth curve of P2, P4, P6 were quite similar and the cells biological character kept stable. The result of growth curve showed that cell growth phase was composed of latency phase, logarithmic phase and platform phase. After the induction, BMSCs displayed morphologies of schwann cells, such as ellipsoidal cell bodies and fences-like array, with two or three sligh cell processes. The positive percentages of S-100 protein expression was 71.34%, GFAP was 68.32%. The expression of GFAP, S-100 protein was detected by western blot, but untreated BMSCs were not.
     Conclusion: 1 In this part, a simple new method which was used for the isolation, purification and cultivation in vitro of BMSCs from SD rat bone marrow by total marrow culture associating with adhering to flash has been established.The BMSCs could proliferate immediately and keep their biological character stable in vitro. 2 BMSCs could be induced into Schwann-like cells in vitro.
     2 Preparation and biocompatibility of human acellular amniotic membrane matrix
     Objective: In this experiment, human acellular amniotic membrane matrix (HAAM) was prepared and its biocompatibility was investigated as a scaffold in tissue engineering.
     Methods: Fresh human amnion was shaken in 1% tritonX-100 for 24 hours,and then treated with 0.25% trypsin for 4 hours at 37℃. The production was sterilized using ethylene oxide.The HAAM was stained with hematoxylin-eosin (HE) and observed with scanning electron microscope. The HAAM was implanted in the back of SD rats to investigate its histocompatibility.The cytotoxicity of HAAM to Schwann-like cells was measured by methyl thiazolyl tetrazolium method (MTT).The Schwann-like cells were seeded in HAAM,the specimen was observed under inverted microscope and stained with HE.
     Results: There were no residues of cells in the HAAM, which was a white, thin and semitransparent membrane with good flexibility. The biocompatibility of HAAM in the subcutaneous implant test was good. The cytotoxicity score was graded as one. The Schwann-like cells could be seeded and adhered on the surface of HAAM, then proliferated. Their appearances were the same as those cultured in normal conditions.
     Conclusion: The HAAM prepared by detergent-enzymatic approach has good biocompatibility. It is an ideal scaffold for tissue engineering.
     3 Study on using the Schwann-like cells and human acellular amniotic membrane matrix into a tissue -engineered nerve to restore the injured rat sciatic nerve defect
     Objective:Make of a tissue-engineered peripheral nerve by the Schwann-like cells and human acellular amniotic membrane matrix.Study of the effect on the sciatic nerve defect,so that provide proof for clinical research.
     Methods: The Schwann-like cells induced from BMSCs as seed cells and HAAM as scaffold material were co-cultured in vitro to construct tissue-engineered artificial nerve for reparing 10mm defect of rat sciatic nerve.Pure HAAM conduit and autografting were as control groups. Twelve weeks after operation,the recovery results and mechanism were analyzed and evaluated by means of gross observation, histology, electrophysiology, image analysis, retrograde tracing, etc.
     Results: The results showed the ulcer of affected limb healed at 12w after operation in the HAAM compound of schwann-like cells group,the diameter and appearance of graft is similar to the proximal and distal segment of sciatic nerve.Histological examination revealed that a great quantity of myelined nerve fibers with thick myelin regenerated.TEM showed that regenerative nerve fibres demonstrated mature morphology with distinct layers of myelin sheath. Electrophysiological examination,positive neurons labelled with HRP and image analysis showed there was no statistical difference between the HAAM compound of Schwann-like cells group with autografting group.
     Conclusion: The tissue-engineered peripheral nerve can restore the defect of rat sciatic nerve effectively and there was no marked difference of nerve regeneration when compared with autogenous nerve.
     4 Effects of brain homogenate on the differentiation of rat bone mesenchymal stormal cells into neuron-like cells following traumatic brain injury
     Objective: In this study,the different effects between traumatic brain tissue extracts and normal brain tissue extracts on the differentiation of rat bone mesenchymal stormal cells were observed.
     Methods: Rat models of moderate brain injury were established by Modified Gruncr Method. The traumatic brain tissue extracts acquired on the point about 24 hours after the injury and normal brain tissue extracts were used to induce 3rd passage of bone mesenchymal stormal cells in vitro. The morphological changes of the cells were observed with inverted phase microscope.The expression of neuron-specific enolase was identified by immunocytochemical technique. The different effects between traumatic brain tissue extracts and normal brain tissue extracts on the differentiation of bone mesenchymal stormal cells were observed.
     Results: After 24-hours induction with traumatic brain tissue extracts, the cellular bodies changed large,36 hours later, part of the bone mesenchymal stormal cells body contracted into round or spindle shape. 48 hours later, neuron-like cells with two or more prominence could be seen.The immunocytochemical method showed that the ratio of neuron-specific enolase expressing was 54.28±6.03%. The differential ratio of bone mesenchymal stormal cells induced with normal brain tissue extracts was lower, and ratio of neuron-specific enolase expressing was 32.76±3.25%.
     Conclusion: Bone mesenchymal stormal cells can be induced differentiating into neuron-like cells. The induction proportion induced with traumatic brain tissue extracts is higher than with normal brain tissue extracts.
引文
1 Fu SY, Gordon T.The cellular and molecular basis of peripheral nerve regeneration. Mol Ne urobiol ,1997,14(1-2):67~116
    2 Zhang Y, Campbell G ,Anderson PN, et al. Molecular basis of interactionsbetween regenerating adult rat thalamic axons and Schwann cells in peripheral nerve grafts.II.Tenascin-C.J Comp Neuorl, 1995,361(2):210~224
    3 Navarro X, Rodriguez FJ, Ceballos D, et al. Engineering an artificial nerve graft for the repair of severe nerve injuries.Med Biol Eng Comput,2003,41(2):220~226
    4 Peng CK,Kao CL,Yang YP,et al.Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplanted grafts for skin regeneration.J Biomed Mater Res A.2008,March,84(3):622~30
    5 David J,Fred H,Irving L.Can stem cells aross the lineage boundaries? Nat Med,2001,7(4):393~395
    6 Timoty R,Fabio M,Gilmor L,et al.From marrow to brain:expression of neuronal Phenotypes in adult mice. Science,2000,290(5497):1775~1779
    7 Dezawa M, Takahashi I, Esaki M,et al. Sciatic regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells.Eur J Neurosci, 2001,14(11 ):1771~1776
    8 Cuevas P,Carceller F,Dujovny M,et al.Peripheral nerve regeneration by bone marrow stromal cells.Neurol Res,2002:24(7):634~638
    9 Friedenstein AJ,Gorskaja U,Kalugina NN.Fibroblast precursors in normal and irradiated mouse hematopoieticorgans.Experimental Hemateology,1976,4:267~274
    10 Friedenstein AJ,Chailakhyan RK , Gerasimov UV. Bone marrow osteogenic stem cells:in vitri cultivation and transplantation in difusion chambers. Cell and Tissue Kinetics,1987,20:263~272
    11 Castro-Malaspina H, Gay RE, Resnick G,et al. Characterization of human bone marrow fibroblast colony-formingc ells( CFU-F) and their progeny.Blood,1980,56:289~301
    12 Mets T,Verdonk G. In vitro aging of human bone marrow derived stromal cells.Mechanisms of Ageing and Development,1981,16:81~89
    13 Piersma AH, Brockbank KGM, Ploemacher RE, et al. Characterization of fibroblastic stromal cells from murine bone marrow.ExperimentalHematology,1985,13:237~243
    14 Owen ME, Friedenstein AJ. Stromal stem cells: marrow derived osteogenic precursors. Cell and Molecular Biology of Vertebrate Hand Tissues:Ciba Foundation Symposium,Chichester,U.K.1988,pp.42 ~60
    15 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood.2005; 105: 1815~22;
    16 Le Blanc K, Rasmusson I, Sundberg B,et al.Treatment of severe acute graftversus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 2004, 363:1439~41
    17 Schoeberlein A, Holzgreve W, Dudler L, et al.Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am J Obstet Gynecol, 2005,192:1044~52
    18 Chapel A, Bertho JM, Bensidhoum M, et al.Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome.J Gene Med, 2003,5:1028~38
    19 Zappia E, Casazza S, Pedemonte E, et al.Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy.Blood, 2005,106:1755~61,
    20 Caplan AI. The mesengenic process. Clin Plast Surg,1994,3:429~35
    21 Haynesworth SE,Goshima J ,Goldberg VM,et al. Characterization of cells with osteogenic potential from human marrow.Bone, 1992,13∶69
    22 Lu L, Zhao C, Liu Y, et al. Therapeutic benefit of TH-engineering mesenchymal stem cells for Parkinson’s disease. Brain Res Protoc,2005, 15:46~51
    23 Kurozumi K, Nakamura K, Tamiva T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther,2005, 11:96~104
    24 Butnariu-Ephrat M, Robinson D, Mendes DG, et al. Resurfacing of gaot articular cartilage by chondrocytes derived from bone marrow. Clin Orthop, 1996,(330):234~243
    25 Prockop DJ.Marrow stromal cell as stem cells for nonhematopoietic tissues.Science,1997,276 (5309) :71~74
    26 Rickard DJ, Kassem M, Hefferan TE, et al. Isolation and characterization of osteoblast precursor cells from human bone marrow.J Bone Miner Res,1996,11 (3):312~324
    27 Majumdar MK, Banks V, Peluso DP, et al. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol , 2000 ,185 (1) :98~106
    28 Conget PA, Minguell JJ. Pheno typical and functional properties of huamn bone marrow mesenchymal progenitor cells.J Cell Physiol, 1999, 181 (1):67~73
    29 Li R.Culture methods for selective growth of normal rat and human Schwann cells.Methods Cell Biol,1998,57:167~186
    30冯江学,杨志.周围神经组织工程种子细胞的研究进展.医学文选.2006,25(2):304~306
    31 Caddiek J,Kingham PJ,Gardiner NJ,et al.Phenotypic and functional characteristics of mesenehymal stem cells differentiated along a Schwann cell lineage.GLIA,2006,54(8):840~849
    32 Chen CJ,Ou YC,Liao SL,et al.Transplantation of bone marrow stromal cells for peripheral repair. ExPerimental Neurology,2007,204(l):443~453
    33 Cuevas P,Carceller F,GarciaGomez I,et al.Bone marrow stromal cell implantation for peripheral nerve rePair.Neurol Res,2004,26(2):230~232
    34 Zhang P,He X,Liu K,et al.Bone marrow stromal cells differentiated into functional Schwann cells in injured rats sciaticnerve.Artif Cells Blood Substit Immobil Biotechnol,2004,32(4):509~518
    35 Mimura T,Dezawa M,Kanno H,et al.Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats.Neurosurg,2004,101(5):806~812
    36 Deng W,Obrocka M,Fiseher I,et al.In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP.Biochem Biophys Res Commun,2001,282(l):148~152
    37胡军,刘小林,朱家恺等.体外诱导称猴骨髓基质干细胞向雪旺细胞分化,中华创伤骨科杂志,2004,6(5):535~841
    38 Kim BJ,Kim SS,Kim YI,et al.Forskolin promotes astroglial differentiation of human central neurocytoma cells.Exp Mol Med,2004,36(l):52~56
    39 Leimeroth R,Lobsiger C,Lussi A,et al. Membrane-bound neuregulin 1 type IIII actively promotes Schwann cell differentiation of multipotent Progenitor cells.Dev Biol,2002,246(2):245~258
    40 Nave KA,Salzer JL.Axonal regulation of myelination by neuregulin 1.Curr Opin Neurobiol,2006,16(5):492~500
    41 Chaudhary LR,Avioli LV.Activation of extracellular signal-regulated kinases 1 and 2(ERK1 and ERK2) by FGF-2 and PDGF-BB in normal human osteoblastic and bone marrow stromal cells: differences in mobility and in-gel renaturation of ERK1 in human,rat,and mouse osteoblastic cells.Biochem Biophys Res Commun,1997,238(l):134~139
    42 Lobsiger CS,Schweitzer B,Taylor V,et al.Platelet-derived growth factor-BB supports the survival of cultured rat Schwann cell precursors in synergy with neurotrophin-3..Glia,2000,30(3):290~300
    1罗静聪,李秀群,杨志明等.脱细胞羊膜的制备及其生物相容性研究.中国修复重建外科杂志,2004,18(2):108~111
    2 Klein CL, Holger K, Mike O. Current methods in biomaterial testing and risk assessment. Clinical hemorheology, Volume: 16, Issue: 2, March 4, 1996, pp. 210
    3 Elisseeff J,Ferran A,Hwang S,et al.The role of biomaterials in stem cell differentiation:applications in the musculoskeletal system. Stem Cells ,2006,15(3):295~303
    4刘斌.人体胚胎学[M].北京:人民卫生出版社,1996,1~107。
    5 Troensgaard-Hansen E. Amniotic grafts in chronic wound ulceration. Lancet,1950,1: 859~863
    6 Pigeon J. Treatinent of second-degree burns with amniotic membranes. Can Med Asoc J, 1960, 83: 844~847
    7 Colocho G, Graham WP, Greene AE. Human amniotic membrane as a physiologic wound gressing. Arch Surg 1974,109(3): 370~373
    8 Akle CA,Adinolfi M, Welsh KI, et al.. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet, 1981, 2(8254): 1003~1005
    9陈有刚,朱家恺.人羊膜基底膜桥接大鼠神经缺损的动物实验研究.中华显微外科,1990,13(1): 20~24
    10 Davis GE, Blaker SN, Engvall E,et al. Human amnion membrane serve as a substratum for growing axon in vivo and vitro. Science,1987, 236(4805): 1106~1109
    11 Mohammad J, Shenaq J, FRCS Rabinovsky E, et al.Modulation of peripheral nerve regeneration: A tissue-engineering approach.The role of amnion tube nerve conduit across a 1-centimeter nerve gap. J Plast and Reconstr Surg, 2000, 105(2):660~666
    12 Tyszkiewicz JT,Uhrynowska-Tyszkiewicz IA,Kaminski A, et al.Amnion allografts prepared in the Central Tissue bank in Warsaw. AnnTransplant,1999,4(3-4):85
    13 Gray KJ, Shenaq SM, Spira M. Use of human amnion for microvascular interpositional grafts. Plast Reconstr Sung, 1987, 79(5): 778~785
    14 Dziadek M, Timpl R. Expression of nodogen and laminin in basement membrane during mouse embryogenesis and in teratocarcinoma cells. Dev Biol, 1985, 111(2):372~382
    15 Greenburg JH, Seppa S, Seppa H. Role of collagen and fibronectin in neural crest cell adhesion and migration. Dev Bio1,1981, 87(2): 259~266
    16 Davis GE, Engvall E,Varon S,et al.Human amnion membrane as a substratum for cultured peripheral and central nervous system neurons. Brain Res,1987, 430(1): 1~10
    17 Gage FH. Human amnion membrane serve as a substratum for growing axons in vitro and in vivo. Exp Brain Res, 1988, 72(2): 371~380
    18 Szabo A,Haj M,Waxsman I,et al.Evaluation of seprafilm and amniotic membrane as adhesion prophylaxis in mesh repair of abdominal wall hernia in rats.Eur Surg Res,2000,32(2):125~8
    19 Miyata T,Fususe M,Yamane Y,et al.A biodegradable antiadhesion collagen membrane with slow release heparin.ASAIO Trans 1988 Jul-Sep,34(3):687~91
    20 Erdener A,Ulman I,Ilhan H,et al.Amniotic membrane wrapping:an alternative method to the splenorrhaphy in the injured spleen.Eur J Pediatr Surg, 1992 Feb,2(1):26~8
    21 Zachariou Z.Amniotic membranes as prosthetic material:experimental utilization data of a rat model.J Pediatr Surg, 1997 ,32(10):1458~6
    22 Jackson ND,Rosenblatt PL.Use of Interceed Absorbable Adhesion Barrier for vaginoplasty.Obstet Gynecol ,1994,84(6):1048~50
    23 Gray KJ,Shenaq SM,Engelmann UH,et al.Use of human amnion for microvascular interpositional grafts.Plast Reconstr Surg,1987 May,79(5):778~85
    24 Goto Y,Noguchi Y,Nomura A,et al. In vitro reconstitution of the tracheal epithelium.Am J Respir Cell Mol Biol,1999,20(2):312~318
    25 Morishima Y,Nomura A,Uchida Y,et al.Triggering the Induction of Myofibroblast and Fibrogenesis by Airway Epithelial Shedding.Am J Respir Cell Mol Biol,2001,24(1):1~11
    26 Koizumi N,Fullwood NJ.Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane.Invest Ophthalmol Vis Sci,2000,41(9):2506~13
    27马敏先,王永,张忠平等.兔髁突软骨细胞与羊膜间生物相容性研究.贵阳医学院学报,2006,31(4):327~329
    28赵宏伟,王贵学,危当恒等.“去细胞”羊膜基质种植人脐静脉内皮细胞的实验研究[J].医用生物力学,2006,21(4):286~290
    29王沂峰,梁晓萍,刘风华等.人羊膜负载小鼠阴道黏膜干细胞生长特点及鉴定.中华妇产科杂志,2006,41(9):633~634
    30闫国和,艾国平,汪代杰等.人羊膜负载猪骨髓间充质干细胞体外生长的形态特点.中国组织工程研究与临床康复,2007,11(15):2985~2989
    31闫国和,粟永萍,汪峰等.人羊膜负载猪角朊细胞构建皮肤表皮替代物的实验研究.中国临床康复,2005,9(22):245~247
    32张琪,顾晓明,俞光岩等.复合许旺细胞的羊膜衍生物膜修复神经缺损的动物实验.中华口腔医学杂志,2006,41(2):98~101
    33张毅,庄昭霞,卢凤琪等.牙周引导组织再生壳聚糖膜的生物相容性研究.山东大学学报(医学版),2002,40(2):115~117
    34 Ramires PA,Miccoli MA,Panzarini E,et al.In vitro and in vivo biocompatibility evaluation of a polyalkylimide hydrogel for soft tissue augmentation.J Biomed Mater Res B Appl Biomater,2005,72(2):230~238
    1 Fawcett JW , Keynes RJ. Peripheral nerve regeneration.Annu Rev Neurosic,1990,13:43~60
    2 Shen ZL,Berger A,Robert H,et al.A Schwann cell-Seeded intrinsic framework and its satisfactory biocompatibility for a bioartifical nerve graft.Microsurgery,2001,21:6~11
    3 Flores AJ,Lavemia CJ,Owens PW.Anatomy and physioIogy of peripheral nerve injury repair.Am J Orthop,2000,29(3):167~173
    4 Glasby MA, Gschmeisser SE, Hitchcock RJI, et al.The depamnent of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane. J Neurocytol, 1986,15(4): 479~510
    5 Ide C, Tohyama K, Yokota R, et al. Schwann cell basal lamina and nerve regeneration. Brain Res,1983, 288(1-2): 61~75
    6 Seckel BR.Enhancement of peripheral nerve regeneration. Muscle nerve,1990;13(9):785~800
    7 Bryan DJ, Wang KK, Chakalis-Haley DP. Effect of Schwann cells in the enhancement of peripheral-nerve regeneration.J Reconstr Microsurg, 1996,12(7):436~439
    8 Schlosshauer B, Müller E, Schr?der B, et al. Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration. Brain research, 2003,963:321~326
    9 Kon E, Muraglis A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of long bones. Biomed Res, 2000,49:328
    10 Kraus K, Kadiyala S, Wotton HM, et al. Critically sized osteo-erosteal fermoral defects: A dog model. J Invest Surg, 1999,12:115
    11 Wakikitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large full-thickness defects of articular cartilage and underlying bone. J Bone Joint Surg,1994,76:579
    12 Cui Q,Tang LS,Hu B,et al.Expression of trkA,trkB,and trkC in injured and regeneration retinal ganglion cells of adult rats.Invest Ophthhalmol Vis Sei,2002,43(6):1954~1964
    13顾立强,裴国献.周围神经损伤基础与临床.人民军医出版社,2001:94~100
    14 Evans GR,Brandt K,Niederbichler A,et al.Clinical long-term in vivo evaluation of poly(L- lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci-Polym E,2000,11(8):869~878
    1马维,牛彦平,张华.合并脑损伤大鼠骨折愈合过程中转化生长因子?1血清含量及在骨折位点的表达.中国临床康复, 2006, 10(42):88~91
    2王新生,崔慧先,刘华等.黄芪诱导骨髓间充质干细胞分化进程中细胞内钙离子浓度的动态变化.中国组织工程研究与临床康复,2007,11(42):8469~8472
    3董晓先,冷水龙,刘金保.黄芪诱导大鼠骨髓间充质干细胞分化为神经样细胞的基因表达谱.中国临床康复,2006,10(21):1~3.
    4 Guo L,Yin F,Meng HQ,et al.Differentiation of mesenchymal stem cells into dopaminergic neuron-like cells in vitro.Biomed Environ Sci ,2005,18(1):36~42
    5 Dezawa M,Kanno H,Hoshino M,et al.Specific induction of neuron cells from bone marrow stromal cells and application for autologous transplantation.J Clin Invest,2004,113(12):1701~1710
    6 Deng W,Obrocka M,Fishcher I,er al.In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclicAMP.Biochem Biophys Res Commun,2001,282(1):148~152
    7 Long X,Olszewski M,Huang W,et al.Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells.Stem Cells Dev,2005,14(1):65~69
    8 Kim BJ,Seo JH,Bubien JK,et al.Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro.Neureport,2002,13(9):1185~1188
    9朱伟,孙俊英,岑建龙等.成人骨髓间充质干细胞向成骨细胞定向诱导分化的实验研究.实用医学杂志,2007,23(18):2822~2825
    10霍春月,张玉富,鄢雯等.骨髓间充质干细胞体外诱导分化软骨细胞表型的可行性.中国临床康复,2006,10(41):69~72
    11姜辉,汪曾炜,王辉山等.5-氮胞苷体外诱导人骨髓间充质干细胞转化为心肌样细胞的实验.中国临床康复,2006,10(45):8~11
    12 Woodbury D ,Schwarz EJ ,Prockop DJ , et al . Adult rat and human bone marrow stromal cells differentiate into neurons .J Neurosci Res ,2000,61(4):364~370
    13 Sanchez-Ramos J , Song S,Cardozo-Pelae F,et al.Adult bone marrow stromal cells differentiate into neural cells in vitro.Exp Neurol ,2000,164(2):247
    14项鹏,夏文杰,王连英等.丹参注射液诱导间质干细胞分化为神经元样细胞.中山医科大学学报,2001 ,22(5):321~324
    15刘金保,董晓先,董燕湘等.当归诱导骨髓间充质干细胞分化为神经元样细胞.广东医学杂志,2003, 24(5),466~468
    16肖庆忠,李浩威,温冠媚等.麝香多肽体外诱导成年大鼠和人骨髓间充质干细胞定向分化为神经元的研究.中国病理生理杂志,2002,18 (10):1179~1182
    17刘薇,肖美玲,吴家华等.脑组织提取液促进体外培养神经干细胞增殖.中国病理生理杂志,2006,22,(3):524~527
    18杨柳,邓传宗,顾晓松等.脑组织提取液对体外培养雪旺氏细胞影响的观察.南通医学院学报,1999,19(4):372~373
    19梅晰凡,秦书俭旦,范广宇等.损伤脊髓组织液对大鼠骨髓基质细胞向神经细胞诱导分化的研究.中国临床解剖学杂志,2005, 23(3)264~267
    20牛朝诗,孔杰.损伤脑组织匀浆诱导骨髓间质干细胞向神经细胞分化的研究.立体定向和功能神经外科杂志,2006, 19(5):270~272
    21牛朝诗,李健,孔杰等.人脑组织匀浆液诱导大鼠骨髓间质干细胞分化为神经细胞.立体定向和功能神经外科杂志,2005,18(2):75~78
    22 Xiaoguang Chen,Mark Katakowski,Yi Li, et al. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts:growth factor production.J Neurosci Res,2002,69(5):687~691
    23 Dekosky ST,Goss JR,Miller PD,et al. Upregulation of nerve growth factor following cortical trauma. Exp Neurol,1994,130(2):173~7
    24 Oyesiku NM,Evans CO,Houston S,et al. Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res ,1999,833(2):161~172
    1 C Ide,T Osawa,K Tohyama.Nerve Regenaration through Allogenic Nerve Graft with Special Role of the Schwan Cell Basal Lamina.Progress in Neurobiology,1990,34:1~38
    2 Casella G T,Bunge R P,Wood P M.Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro Clia,1996,17:327~328
    3 Verdu E,Rodriguez F J,Gudino-Cabrera-G,et a1.Expansion of adult Schwann cells from mouse perdegenerated peripheral nerves.J Neurosci Methods,2000,99:111~ 117
    4 Brockes JP, Fields K.L,Raff MC. Studies on Culture Rat SchwannCells.I.Establishment of Purified from Cultures of Peripheral Nerve.Brain Research,1979,165:195~118
    5劳杰,熊良俭,顾玉东等.改良成年SD大鼠雪旺细胞培养的实验研究.中华手外科杂志,1999,15(2):l06~110
    6沈尊理,Berger Alfred,Hiemer robert等.无血清法培养新生和成年兔雪旺细胞.中华手外科杂志,2001,17:54~55
    7 Levi AD,Burge RP. Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol,1994,130(1):41~52
    8 Levi AD,Guenard V,Aebischer P, et al.The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve.J Neurosci,1994,14(3):1309~19
    9 Mackinnon SE,Hudson AR,Bain JR,et al.An assessment of nerve regeneration in the immunosuppressed host.Plast Reconstr Surg 1987,79:436~444
    10 Keilhoff G,Fansa H,Schneider W,et al.In vivo predegeneration of peripheral nerves:an effective technique to obtain activated Schwann cells for nerve conduits.J Neurosci Methods,1999,89:17~24
    11 Fansa H,Keilhoff G , Frerichs P,et al.Effect of predegeneration of peripheral nerves on plasticity of cultivated Schwann cells and their cell number in vitro. Handchir Plast Chir,1999,31(6):367~372
    12劳杰,熊良俭,顾玉东,等.应用激活态的SC填充导管修复周围神经缺损的初步研究.中华手外科杂志,2000,16:236~240
    13 Peulve P, Laquerriere A, Paresy M,et al Establishment of Adult Rat Schwann Cell Cultures:Effet of Adult Rat Schwann Cell Cultureds:Effect of b-FGF,α-MSH,NGF,PDGF,and TGF-βOn Cell Cycle.Experimental Cell Research,1994,214:543~550
    14 Rogister B,Delree P,Leprince P,et al.Transtorming growth factor beta as a neuronglial signal during peripheral nervous system response to injury.Neurosci Res,1993, 34(1):32~43
    15程飚,陈峥嵘,林建平.FK506对雪旺细胞体外增殖能力的影响.复旦学报(医学科学版),2003,May,30(3):208~210
    16程飚,陈峥嵘,汪洋等.神经妥乐平促进雪旺细胞体外增殖作用的研究.中华手外科杂志,2002,18(1):49~51
    17 Gansmuller A,Clerin K,Kruger F,et al.Tracing transplanted oligodendrocyte during migration and maturation in shiverer mouse brain.Glia,1991,4(6):580~590
    18张文捷,周跃,陈箐等.胶质细胞源性神经营养因子基因修饰的雪旺细胞对大鼠坐骨神经缺损的修复作用.中华手外科杂志,2001,20(3):186~187
    19 Mckay R. Stem cells in the central nervous system . J Science,1997, 276 (5309): 66~71
    20 Gage FH. Mammalian neural stem cells.J Science,2000, 287(5457):1433~1438
    21 Friedenstein AJ , Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells:invitro cultivation and transplantation in diffusion chambers.Cell Tissue Kinet,1987,20 :263~272
    22路艳蒙,傅文玉,朴英杰.大鼠间充质干细胞的培养.解剖学杂志,2000 ,23 :160~163
    23 Shih-chieh Huang,Nien-Jung Chen,Shie-Liang Hsieh,et al. Isolation and characterization of size-sieved stem cells from human bone marrow.Stem cells,2002,20 :249~258
    24 Deryugina El,Muller-Sieburg CE. Stromal cells in longterm cultures :keys to the elucidation of hematopoietic development.Crit Rev Immunol,1993,13 :115~150
    25 Pereira RF, Halford KW, OHara MD, et al.cultured adherent cells from marrow can serve as long-tasting precursor cells for bone cartilage and lung in irradiated mice .Proc Natl AcadSci USA,1995,92(11):4857~4861
    26 Kadiyala S,Young RG.Thlede MA,et a1.Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro.Cell Transplant,1997,(2): 125~134
    27 Richards M, Huibreftse BA, Caplaan AI,et al. Marrow-derived progenitor cell injections enhance new bone formation during distraction.J Orthop Res, 1999, 17(6):900~908
    28 Sekiya I,Vuoristo JT ,Larson BL,et a1.In vitro cartilage formation by human adult stem cells from bone marrow stroma a defines the sequence of cellular and molecular events during chondrogeniesis.ProcN at1A cad SciUSA,2002,99(7):4397~4402
    29 Dennis JE, M erriam A, AwadaIIah A, et al. A quadripotetial mesenchymal progenitor cell isolated from the marrow of an adult mouse.J Bone Miner Res,1999,14(5):700~709
    30 Munoz-Elias G,Woodbury D, Black IB. Marrow stromal cells mitosis and neuronal differentiation :stem cell and precursor function.Stem Cells ,2003,21(4):437~448
    31 Ferrari G,Cusella-de, Angelis G, Coletta Muscle regeneration by bone marrow-derived myogenic progenitors.Science ,1998, 279(5356):1528~1530
    32 LaBarge MA, Blau HM.Biological progression from adult bone marrow to mononucleate musle stem cell to multinucleate mulscle fiber in response to injury .Cell ,2002,111(4):589~601
    33 Pittenger M, Fackay AM,Jaiswal SC,et al.multilineage potential of adult human mesenchymal stem cells.Science,1999,284(5411):143~147
    34 Brzoska M, Geiger H, Gauer S, et al. Epithelial Differentiation of Human Adipose Tissue-Derived Adult Stem Cells. Biochem Biophys Res Commun, 2005,330(1):142~150
    35 Nakagami H, Morishita R,Maeda K.Adipose Tissue-Dirived Stromal Cells as a Novel Option for Regenerative Cell Therapy.Journal of Atherosclerosis and Thrombosis, 2006, 13(2): 77~81
    36 Talens-Visconti R, Bonora A, Jover R, et al. Human Mesenchymal Stem Cells from Adipose Tissue: Differentiation into Hepatic Lineage. Toxicol in Vitro, 2007, 21(2): 324~329
    37 Deng W, Obrocka M, Fischer I,et al.In vitro differentiation of humanmarrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun,2001 ,282(1):148~52
    38 Kim BJ, Seo JH, Bubien JK, et al.Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro.Neuroreport,2002 ,3(9):1185~1188
    39 Villanueva S, Glavic A, Ruiz P, et al.Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction.Dev Bio1,2002 ,241(2):289~301
    40 Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4): 364-370
    41 Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. J Exp Neurol, 2000, 164(2): 247~256
    42 Dezawa M, Takahashi I, Esaki M, et al. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone marrow stromal cells. Eur J Neurosci,2001, 14(11): 1771~1776
    43 Mimura T, Dezawa M, Kanno H, et al. Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. J Neurosurg, 2004, 101(5):806~812
    44 Cuevas P, Carceller F, Dujovny M, et al. Peripheral nerve regeneration by bone marrow stromal cells. J Neurological Research,2002, 24(7): 634~635
    45 Cuevas P, Carceller F, Garcia-Gomez I, et al. Bone marrow stromal cell implantation for peripheral nerve repair.J Neurol Res,2004, 26(2):230~232
    46 Kamada T, Koda M, Dezawa M,et al. Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord. Journal of Neuropathology and Experimental Neurology,2005, 64(1):37~45
    47 Keirstead HS, Ben-Hur T, Rogister B, et al. Polysialylated neural celladhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci, 1999, 19 (17): 7529~7536
    48 Murakami T, Fujimoto Y, Yasunaga Y, et al. Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair. Brain Res, 2003,974(1-2): 17~24
    49 Takeshi M,Yoshinori F,Yuji Y,et al.Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair. Brain researeh,2003,(974):17~24
    50 Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell based therapies. Tissue Eng, 2001,7:211~228
    51 Wickham MQ, Geoffrey RE, Jeffrey MG, et al. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clinical orthopaedics and related research, 2003,412:196~212
    52 Sunil Rangappa, Chen Fen, Eng Hin Lee, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg ,2003,75:775~779
    53 Kristine Q, Andrew C, Brent E, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes.Biochemical and Biophysical Research Communication, 2004,314:420~427
    54杨立业,刘相名,孙兵等.脂肪组织源性基质细胞表达神经元表型的实验研究.中华神经医学杂志,2002, 1 (1): 45~48
    55 Aust L, Devlin B, Foster SJ, et al. Yield of Human Adipose-Derived Adult Stem Cells from Liposuction Aspirates. Cytotherapy, 2004, 6(1): 7~14
    56 Winter A, Breit S, Parsch D, et al. Cartilage-Like Gene Expression in Differentiated Human Stem Cell Spheroids: A Comparison of Bone Marrow-Derived and Adipose Tissue-Derived Stromal Cells. Arthritis Rheum, 2003, 48(2): 418~429
    57 Brzoska M, Geiger H, Gauer S, et al. Epithelial Differentiation of Human Adipose Tissue-Derived Adult Stem Cells. Biochem Biopys Res Commun, 2005, 330(1):142~150
    58 Zuk PA, Zhu M, Ashjian P, et al. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol Biol Cell, 2002, 13(12): 4279~4295
    59 Ashjian PH, Elbarbary AS, Edmonds B, et al. In Vitro Differentiation of Human Processed Lipoaspirate Cells into Early Neural Progenitors. Plast Reconstr Surg, 2003, 111(6): 1922~1931
    60 Nakagami H, Morishita R,Maeda K. Adipose Tissue-Dirived Stromal Cells as Novel Option for Regenerative Cell Therapy.Journal of Atherosclerosis and Thrombosis, 2006,13 (2): 77~81
    61 Fraser JK, Wulur I , Alfonso Z. Fat Tissue: An Underappreciated Source of Stem Cells for Biotechnology. Trends in Biotechnology, 2006, 24(4): 150~154
    62 Safford KM,Safford SD,Gimble JM,et al.Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp.Neuro1,2004,187:319~328
    63 Kang SK, Putnam LA, Ylostalo J,et a1.Neurogenesis of Rhesus adipose stromal cells. J Cell Sc,2004,117: 4289~4299
    64 Kingham PJ, Kalbermatten DF, Mahay D,et a1.Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neuro1,2007,207(2):267~274
    1 Tyszkiewicz JT,Uhrynowska-Tyszkiewicz IA,Kaminski A, et al .Amnion allografts prepared in the Central Tissue bank in Warsaw. Ann Transplant,1999,4(3-4):85
    2 Enosawa S, Sakuragawa N, Suzuki S. Possible use of amniotic cells for regenerative medicine. Nippon Rinsho,2003,61(3):396~400
    3 Okawa H, Okuda O, Arai H,et al. Amniotic epithelial cells transform into neuron-like cells in the ischemic brain.Neuroreport,2001,12(18):4003~4007
    4 Sakuragawa N, Kakinuma K, Kikuchi A, et al. Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells.J Neurosci Res,2004,78(2):208~214
    5 Miki T, Lehmann T, Cai H, et al. Stem cell characteristics of amniotic epithelial cells.Stem Cells,2005,(Epub ahead of print)
    6 Uchida S,Inanaga Y,Kobayashi M,et al.Neurotrophic function of conditioned medium from human amniotic epithelial cells.J Neurosci Res,2000,62(4):585~590
    7 Marvin KW,Keelan JA,Eykholt RL,et al.Expression of angiogenic and neurotrophic factors in the human amnion and choriodecidua.Am J Obstet Gynecol,2002,187(3):728~734
    8 Eluan MA, Sakuragawa N. Evidence for synthesis and release of catecholamines by human amniotic epithelial cells.Neuroreport, 1997, 8: 3435~3438
    9 Elwan MA. Synthesis of dopamine from L-3, 4-dihydroxyphenlamaine by human amniotic epithelial cells. Eur J Pharmacol, 1998, 354(1): R1~R2
    10 Davis GE.Human amnion membrane serve as a substratum for growing axon in vivo and vitro.Science,1987,236,(4805):419~426
    11 Mohammad J, Shenaq J, Rabinovsky E,et al. Modulation of peripheral nerve regeneration: a tissue-engineering approach.The role of amnion tube nerve conduit across a 1-centimeternerve gap. Plast Reconstr Surg, 2000,105(2):660
    12 Mligiliche N, EndoK, OkamotoK, et al. Extracellular matrixof human amnion manufactured intotubes as conduitsfor peripheral nerve regeneration. J Biomed Mater Res,2002, 63(5): 591~600
    13王平,彭学良,刘晋才等.含神经生长因子的羊膜基质管桥接修复神经缺损的实验研究.中华显微外科杂志, 2001,24(1):42~45
    14阚世廉,费起礼,宫可同等.自体、异体雪旺细胞及其培养液植入羊膜基底膜修复神经缺损的比较研究.中华手术外科杂志,1999,15(1):45~47
    15张琪,顾晓明,俞光岩等.复合许旺细胞的羊膜衍生物膜修复神经缺损的动物实验.中华口腔医学杂志,2006,41(2):98~101
    16 Fansa H,Keilhoff G,Plogmeier K, et al.Successful implantation of Schwann cells in acellular muscles. Reconstr Microsurg,1999,15(1):61~65
    17 Sakuragawa N, Thangavel R, Mizuguchi M, et al. Expression of markers for both neuronal and glial cells in human amniotic epithelial cells.Neurosci Lett,1996,209(1):9~12
    18 Ishii T, Ohsugi K, Nakamura S, et al. Gene expression of oligodendrocyte markers in human amniotic epithelial cells using neural cell-type-specific expression system.Neurosci Lett,1999,268(3):131~134
    19 Sakuragawa N,Misawa H,Ohsugi K,et al.Evidence for active acetylcholine metabolism in human amniotic epithelial cell sapplicable to intracerebral allografting for neurologic disease.Neurosci Lett,1997,232(1):53~56
    20 Backlund E0,Granberg P0,Hamberger B,et al.Transplantation of a adrenal medullary tissue to striatum in Parkinsonism first clinical trials.Neurosurg,1985,62(2):169~173
    21 Kakishita K,Elwan MA,Nakao N,et al.Human amniotic epithelial cellsproduce dopamine and survive after implantation into the striatum of a rat model of Parkinson′s disease:a potential source of donor for transplantation therapy.Exp Neurol,2000,165(1):27~34
    22 Koji Kakishita,Naoyuki Nakao,Norio Sakuragawa,et al.Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions.Brain Research,2003,980(1):48~56
    23朱梅,陈东.羊膜上皮细胞移植治疗帕金森病大鼠的实验研究.中国老年学杂志,2006,26(2):227~229
    24 Dluzen DE,Mcdermott JL,Anderson LI,et al.Age-related changes in nigrostriatal dopaminergic function are accentuated in +/-brain-derived neurotrophic factor mice.Neuroscience, 2004,128(1): 201~208
    25 Sankar V,Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research.Neuroscience,2003,118(1):11~17
    26吴智远,卢奕.人羊膜细胞移植治疗大鼠脊髓损伤的实验研究.中华神经外科杂志,2006,22(9):572~574
    27卢奕,惠国桢.移植人羊膜细胞对大鼠创伤性脑损伤的实验研究.中华神经外科杂志,2006,22(3):170~172
    28 Okawa H,Okuda O,Arai H,et al.Amniotic epithelial cells transform into neuron like cells in the ischemic brain.Neuroreport,2001,12(18):4003~4007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700