用户名: 密码: 验证码:
前列腺癌非激素依赖转化中磷酸化蛋白差异及其作用途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     前列腺癌(prostate cancer, CaP)是一种老年男性常见病,其发病率在美国居男性恶性肿瘤之首,占男性死亡原因的第二位。自1941年Huggins等采用雄激素剥夺疗法治疗晚期前列腺癌取得显著疗效后,激素治疗逐渐成为治疗前列腺癌的一项重要的方法。内分泌治疗对大多数CaP有明显的疗效但有其局限性,一般仅能维持6~18个月,几乎所有CaP患者最终均转为雄激素非依赖前列腺癌(androgen- independent prostate cancer, AIPC),进而发展为激素难治性前列腺癌(hormone refractory prostate cancer, HRPC)。目前对HRPC缺乏有效的治疗方法,放疗、化疗、生物治疗等均不能有效地控制肿瘤进展,其平均生存期为9~18个月。目前临床对激素非依赖前列腺癌发病机制主要集中在细胞的克隆学说、肿瘤基因的激活或融合、抑癌基因的失活、抗凋亡基因的上调、雄激素的共刺激因子激活、雄激素受体的突变或超敏和前列腺组织雄激素合成等多个方面。虽然有关CaP雄激素依赖进展的研究及学说很多,但雄激素非依赖的发生机制至今尚不完全清楚。翻译后的蛋白质修饰在生物体的功能上起关键作用,而可逆的磷酸化几乎调节着细胞信号传导、细胞分化、细胞生长、细胞凋亡等几乎所有的生命活动。在前列腺癌内分泌治疗过程中非激素依赖转化过程成中,蛋白质的磷酸化也发挥重要的作用。
     二、研究目的
     利用蛋白组学技术和生物信息学研究激素依赖前列腺癌细胞转化为激素非依赖前列腺癌细胞过程中差异磷酸化蛋白的表达,从整体水平探索磷酸化蛋白质的作用模式、功能调节以及蛋白质群内相互作用,揭示可能介导转化过程的信号通路,有助于为更全面的了解前列腺癌非激素依赖转化的机制,为其治疗提供新的治疗靶点。
     三、实验方法
     (一)、培养人激素依赖性前列腺癌细胞株(LNCaP),并通过除去培养基中的雄激素诱导建立起激素非依赖性前列腺癌细胞株(LNCaP-AI),通过CCK-8法验证LNCaP-AI在去雄环境下的增值能力以及测定在不同雄激素浓度下分泌PSA的情况。
     (二)、分别提取LNCaP细胞和LNCaP-AI的总蛋白,采用固定金属螯合亲和层析(immobilized metal affinity chromatography, IMAC)富集两种细胞的磷酸化蛋白,并分离纯化,利用二维凝胶电泳技术分离两种细胞磷酸化蛋白质组样品,获得满意的两种细胞株的磷酸化蛋白双向凝胶电泳图谱,凝胶经银染显色后,PSQuest分析软件进行比较分析,筛选出差异3倍以上的且超过半数胶中均存在的蛋白点。将差异点从胶中切出,进行胶内酶解,得到肽段混合物。应用基质辅助的激光解吸飞行时间质谱(MALDI-TOF-MS)与串联质谱(MS/MS)方法对差异点进行磷酸化蛋白质鉴定。使用Mascot查询软件搜索SWISS-PROT以及NCBInr数据库做生物信息学分析。
     (三)、从2-DE筛选出的差异磷酸化蛋白中挑选了Peroxiredoxin-2和HSP27两种蛋白,应用western blot的方法进行验证。
     (四)、运用STRING数据库和软件对LNCaP-AI中所有的、上调的、下调的鉴定的磷酸化蛋白质进行一级相互作用预测,探讨其在信号通路中的作用。
     四、结果
     (一)、LNCaP前列腺癌细胞在去激素的环境下生长迅速受到抑制,一周左右开始处于自分泌状态,1个月后逐渐适应了去雄激素的环境,6个月后能够正常增殖和传代,成为激素非依赖的LNCaP-AI细胞亚系,其PSA分泌水平随雄激素水平的增高而增加,但表达PSA的水平要低于LNCaP细胞。
     (二)、采用磷酸化富集及二维凝胶电泳分离LNCaP细胞和LNCaP-AI细胞磷酸化蛋白质组样品,凝胶经银染显色后,PDQuest 7.1.0软件进行比较分析。共发现28个点差异在3倍以上,其中有13个点在LNCaP-AI细胞组表达上调,15个点在LNCaP细胞对照组表达上调。
     (三)、应用MALDI-TOF-MS质谱技术(Voyager-DE STR质谱仪,美国Applied Biosystems公司)对差异蛋白质点进行鉴定,用Mascot数据库。共鉴定出包括核磷蛋白(Nucleophosmin)、热休克蛋白β1(Heat shock protein beta-1, HSP27)、过氧化物还原酶2和6(Peroxiredoxin-2和Peroxiredoxin-6)等参与信号转导、细胞骨架调节、能量代谢等有关的17种蛋白质。
     (四)、应用Western-blot的方法对包括Peroxiredoxin-2 ,Heat shock protein beta-1在内的2种蛋白进行了验证,蛋白变化趋势与质谱鉴定结果一致。
     (五)、应用STRING数据库和文献支持分析,认为P53与HSP27的相互作用及MAPK信号通路、抗氧化蛋白活性的减低在激素非依赖前列腺癌转化过程中发挥重要作用,因此阻断MAPK信号通路或提高过氧化物还原酶活性可以提供一种新的治疗前列腺癌方法。
     五、结论
     LNCaP-AI细胞系是从LNCaP细胞系经过去雄激素干预后建立的细胞亚系,可以模拟临床上内分泌治疗过程中,前列腺癌由激素依赖发展为雄激素非依赖的过程,并且两者细胞具有同源性,两者有可比性,可以用来观察前列腺癌由激素依赖向非依赖转变过程的分子生物学变化。通过磷酸化蛋白富集策略,比较蛋白质组学和生物信息学,成功鉴定了包括信号转导蛋白、细胞骨架蛋白、能量代谢相关蛋白等17种在激素非依赖前列腺癌中差异表达的磷酸化蛋白。生物信息学分析认为P53与HSP27的相互作用及MAPK信号通路、抗氧化蛋白活性的减低在激素非依赖前列腺癌转化过程中发挥重要作用,因此阻断MAPK信号通路和提高过氧化物还原酶活性可提供一种新的治疗前列腺癌方法。
Background
     Prostate cancer(CaP)is a common disease in aged men. In America, CaP is the most common malignant illness in men, and the second leading cause of cancer death. The effect on prostate cancer of lowering circulating androgens by castration or by reducing plasma testosterone levels through interference with the estrogen-driven diencephalic pituitary feedback mechanism was first observed and described by Huggins in 1941. Patients who develop metastatic disease are often initially treated with hormone deprivation by medical castration or surgical castration. Most metastatic prostatic tumors can therefore be treated effectively by hormonal therapies. However, hormone ablation results in only a temporary regression of these tumors. Inevitably, some tumors in the population become androgen-independent prostate cancer(AICP) usually within 6–18 months, At present, Options following initial treatment include secondline hormonal therapy or systemic chemotherapy when metastatic disease develops. Chemotherapy had led to stabilization of disease and improvement of symptoms but did not increase survival in patients with AICP. The molecular mechanisms by which prostate cancer cells become androgen independent are unknown and remain the focus of intensive research. Several factors have been demonstrated to be involved in the development of androgen-independent growth in prostate cancer. For instance, preexisting genetic changes in prostate cancer stem cells, oncogenes, the inhibition of apoptosis, ligand-independent AR activation, AR hypersensitivity, change of AR specificity (AR mutations), gene fusions and Androgen synthesis in AIPC tissues have been observed in androgen-independent prostate cancer. The molecular Pathogenesis of androgen-independent prostate cancer is so complicated that the mechanism of this disease remain uncertain. Reversible Phosphorylation of proteins play s a key role in many cellular Processes including signal transduction, proliferation apoptosis, differentiation, cytoskeletal regulation and so on. It plays an important role in the pathogenesis of prostate cancer to the androgen-independent state.
     Objective
     By the way of proteomics and bioinformatics, we can known about global differential phosphoproteins in androgen-independent prostate and reveal the rule of the phosphoproteins, the function and interactions of as many proteins as possible at the global level. It is useful for us to elucidate the molecular mechanisms underlying the formation of AICP and to identify new molecular targets that can be used to develop treatments for the disease.
     Materials and methods
     1. We generated an androgen-independent LNCaP-AI prostatic carcinoma cell line from androgen-dependent LNCaP cells by in vitro cell culture medium with 10% fetal bovine serum(FBS) depleted of steroids by charcoal/dextan-treatment(CDS medium. Tumor cell growth was estimated by the CCK-8 assay, PSA protein was measured in cell culture supernatants from the LNCaP and LNCaP-AI cells with medium containing different concentrations of androgen.
     2. We extracted the total proteins of LNCaP and LNCaP-AI cell, then used immobilized metal affinity chromatography(IMAC) to enrich phosphoproteins from cell proteins. Proteins extracted from LNCaP and LNCaP-AI were separared by two-dimendional gel electophoresis(2-DE). Analytical gels were stained with silver nitate. The stained gels were analyzed with PDQuest software. The protein spots exhibiting statistically alternations between the two groups through computer image analysis. 3 fold differential protein spots were excised from preparative gels and digested into peptides and analyzed by MALDI-TOF-MS. Protein identification using peptide mass fingerprinting(PMF) was performed by the MASCOT search engine against the MSDB(Swissprot or NCBI) protein database.
     3. Two differential phosphorylated proteins ,Peroxiredoxin-2 and HSP27, from all the identified proteins were chosen to be testified by western blot analysis to substantiate the 2-DE results.
     4. By using String database and software to analysis the relationships between the up-regulated, down-regulated and all proteins in LNCaP-AI cells identified by proteomics respectively to discover the relationships and set the associations between the relationships and the biological process.
     Result
     1. Initially, the proliferation of LNCaP cells were suppressed rapidly in the absence of hormone and laid in autocrine status after about 1 week. 1 months later, the cells gradually adapted to the no hormone circumstance and 6 months later began to proliferate, at this time the cells become androgen independent LNCaP-AI cell line. LNCaP- AI showed to be androgen-independent and grows equally well with or without androgens. PSA level in LNCaP-AI cell culture supernatant increased parallelly with concentrations of androgen. The secretion of PSA is still responsive to androgens, but to a much lesser extent than in the original LNCaP.
     2. Through the PDQuest software analyzed the stained gels, a total 28 protein spots had been detected in protein profile of LNCaP-AI and LNCaP cells, which exhibiting a consistent, more than threefold phosphrylation level. Among them, 13 exhibiting protein up-regulation and 15 exhibiting down-regulation in LNCaP-AI cells, compared with LNCaP cells.
     3. Data were then searched with MASCOT, a total of 17 prosteins were identified, these differential phosphoproteins included cell signaling proteins, cytoskeletal proteins, energy metabolism regulators such as Nucleophosmin, Heat shock protein beta-1, Peroxiredoxin-2 , Peroxiredoxin-6, and so on.
     4. The western blot data showed that total HSP27 protein was found significantly up-regulated in LNCaP-AI cell lines, while total Pereoxiredoxin-2 protein was found significantly down-regulated in LNCaP-AI cell lined. The extents of the changes of these two proteins in LNCaP-AI were similar to that observed in the 2-DE analysis.
     5. Supported by the STRING database and document analysis, the interaction of P53 and HSP27 and furthermore the MAPK pathway which involved in may play an important role of leading the transition of androgen-dependent prostate cells into androgen-independent prostate cells. Decrease of the function of eliminating peroxides generated during metabolism may be another important mechanism leads to the transition of androgen-dependent prostate cancer into androgen-independent prostate cancer.
     conclusion
     LNCaP-AI cell was developed from LNCaP cell under the circumstance of androgen ablation. This kind of CaP cell model could imitate the process from androgen-dependent prostate cancer to androgen-independent prostate cancer during endocrine therapy of CaP. LNCaP-AI cell was homology with LNCaP cell and could be compared with it. The cell model is an ideal model to study the pathogenesis for revealing signaling pathways of importance for transition of androgen dependent prostate cancer into androgen independent prostate cancer. We successfully identified 17 differential phosphoproteins including cell signaling proteins, cytoskeletal proteins, and energy metabolism regulators by IMPC strategy of phosphoprotein enrichment, proteomics technology and bioinformatics technology. Bioinformatics analysis reveals the interaction of P53 and HSP27 and furthermore the MAPK pathway which involved in and the decrease of the function of eliminating peroxides generated during metabolism may play an important role of leading the transition of androgen-dependent prostate cells into androgen-independent prostate cells. Thus, block of the MAPK signaling pathway and enhance the function of eliminating peroxides may be helpful to androgen-independent prostate cancer.
引文
[1] Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006, 56(2):106-130.
    [2] Denis LH, Griffiths K. Endocrine treatment in prostate cancer. Semin Surg Onco1, 2000, 18:52-74.
    [3] CrawfordE D, Rosenblum M, Ziada AM, etal. Hormone-refractory prostate cancer. Urology, 1999, 54(suppl6A):1-7.
    [4] De La, Taille A, Vacherot F, Salomon L, et al. Hormone-refractory prostate cancer: A multi-step and multi-event process. Prostate Cancer Prostatic Dis, 2001, 4:204-212. [ 5 ] Edwards J, Bartlett JM. The androgen receptor and signal-transduction pathways inhormone-refractory prostate cancer. Part 1: Modifications to the androgen receptor. BJU Int. 2005, 95(9):1320-1326.
    [6] Wang Y, Kreisberg JI, Ghosh PM. Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Curr Cancer Drug Targets. 2007, 7(6):591-604.
    [7] Tan WW, Novel agents and targets in managing patients with metastatic prostate cancer. Cancer Control, 2006,13(3):194-198.
    [8] Fritz H. Schro¨der. Progress in Understanding Androgen-Independent Prostate Cancer (AIPC): A Review of Potential Endocrine-Mediated Mechanisms. European urology, 2008, 53:1129-1137.
    [9] So A, G leave M,Hurtado-ColA, et al. Mechanisms of the development of androgen independence in prostate. World J Uro1, 2005, 23:1-9.
    [10] Sun H, Lesche R, Li DM, et al. PTEN modulatate cell cycle progression and cell survival by regulation phosphatidylinosital 3,4,5-triphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA, 1999, 96:6199-6204.
    [11] Li P,Nicosia SV,Bai W. Antagonism between PTEN/MMACI/TEP-1 and androgen receptor in growth and apoptosis of prostatic cancer cells. J Biol Chem. 2001, 276: 20444-20450.
    [12] Miyake H, Monia BP, Gleave ME. Inhibition of progression to androgen- independent by combined adjuvant treatment with antisense Bcl-XL and antisense Bcl-2 ligonucleotides plus taxol after castration in the Shionogi tumor model. Int J Cancer, 2000, 86:855-862.
    [13] Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005, 310:644-648.
    [14] Halkidou K,Cnanapragasam VJ, Mehta PB,et al. Expression of Tip60, an androgen recepertor coactivator, and its role in prostate cancer development. Oncogene, 2003, 22:266-277.
    [15] DiGiovanni J,Kiguchi K,Frijhoff A,et al. Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to nroplasia in transgenic mice. Proc Natl Acad Sci USA, 2000, 97:3455-3460.
    [16] Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, Wang PH, Chen YT, Chang C. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3,and MAPK, three distinct signal pathways in prostate cancer cells.Biochem Biophys Res Commun. 2003, 305(3):462-469.
    [17] Sadar MD, Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J Biol Chem, 1999, 274:7777-7783.
    [18] Foley R, Hollywood D, Lawler M. Molecular pathology of prostate cancer; the key to identifying new biomarkers of dieease. Endocrine-Related Cancer, 2004,11: 477- 488
    [19] Haapala K, Kuukasjarvi T, Hyytinen E, Rantala I, Helin HJ, Koivisto PA. Androgen receptor amplification is associated with increased cell proliferation in prostate cancer. Hum Pathol. 2007, 38:474-478.
    [20] Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y, Mahlam?ki E, Schraml P, Moch H, Willi N, Elkahloun AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, Kallioniemi OP. Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst. 1999, 91(20): 1758-1764.
    [21] Kang HY. Yeh S, Fujimoto N, et al. Cloning and characterization of human prostate coactivator ARA54,a novel protein that associates with the androgen receptor. J Biol Chem, 1999, 274:8570-8576.
    [22] Graft S, Shostak Y, Carey M, et al. A mechanism for homone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med, 1999,5:280-285
    [23] Yeh S, Lin HK, Kang HY, et al. From HER2/Neu signal cascade to androgen receptor and its coactivator: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA, 1999, 96:5458-5463.
    [24] Stanbrough M, Bubley GJ, Ross K, et al. Increased expressionof genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res, 2006, 66:2815-2825.
    [25] Jr GW, Cazares LH, Leung SM, et al . Protein chipsurfac enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures.Prostate Cancer Prostatic Dis, 1999, 2 (5):264-276.
    [26] Meehan KL, Holand JW, Dawkins HJ. Proteornic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate, 2002, 50(1):54-63.
    [27] Martin DB, Giford DR, Wright ME, et al. Quantitative proteins analysis of proteins released by neoplastic prostate epithelium. Cancer Res. 2004, 64 (1):347-355.
    [28] Francesco Giorgianni1, Yingxin Zhao, Dominic M. Desiderio, Sarka Beranova-Giorgianni1, Toward a global characterization of the phosphoproteome in prostate cancer cells: Identification of phosphoproteins in the LNCaP cell line Electrophoresis, 2007, 28, 2027-2034.
    [29] Seo J, Lee KJ. Post-translational modifications and the biological functions: proteomic approaches. J Biochem Mol Biol, 2004, 37:35-44.
    [30] Mumby M, Brekken D. Phosphoproteomics: new insights into cellular signaling. Genome Biol, 2005,6:230.
    [31] Roberto R, Stefano G, Georg CT. Phosphoproteome Analysis. BioscienceReports, 2005, 25(1/2):30-44.
    [32] Wu HY, Tseng VS, Liao PC. Mining phosphopeptide signals in liquid chromatography mass spectrometry data for protein phosphorylation analysis. J Proteome Res, 2007, 6(5):1812-18211.
    [33] Yang F,Stenoien DL,Strittmatter EF,Wang J,et a1. Phosphoproteome profiling of human skin fibroblast cells in response to low-and high-dose irradiation. J Proteome Res, 2006, 5(5):1252-1260.
    [34] Ong S E, Pandey A, An evaluation of the use of two dimensional gel electrophoresis in proteomics. Biomol Eng, 2001.18:195-205.
    [35] Long G. Wang, Xiao M Liu, Wilh Kreis, Danel R Budman, Phosphorylation/Dephosphorylation of androgen receptor as a determinant of androgen agonistic or antagonistic activity. Biochemical and Biophysucal Research Communications, 1999,259,21-28.
    [36] Yu Wang, Jeffrey I, Kreisberg, Paramita M.Ghosh. Cross-talk between the androgen receptor and the phosphstidylinositol 3-Kinase/Akt pathway in prostate cancer. current cancer drug targets, 2007,7,591-604.
    [37] Ritwik Ghosh, Guangyu Gu, Erin Tillman, Jialing Yuan,Yongqing Wang, Ladan Fazli, Paul S. Rennie, Susan Kasper. Increased Expression and Differential Phosphorylationof Stathmin MayPromote Prostate Cancer Progression. The Prostate. 67:1038 -1052 (2007).
    
    [1] Hele′ne Gustavsson, Karin Wele′n, Jan-Erik Damber. Transition of an Androgen-Dependent Human Prostate Cancer Cell Line Into an Androgen- Independent Sublines Associated With Increased Angiogenesis. The Prostate, 2005,62:364-373.
    [2] Mukherjee R, BartletJMS, Krishna NS, et al. Raf-l exprssion may influence progression to androgen insen sitive prostate cancer. Prostate. 2005,64(1):1-7
    [3] Kaighn M.E., Narayan K.S., Ohnuki Y., Lechner J.F., Jones L.W., Establishment and characterization of a human prostatic carcinoma cell line (PC-3).Invest Urol, 1979,17:16.
    [4] Stone K R, Mickey D D, Wunderli H, Mickey G H, Paulson D F, Isolation of a human prostate carcinoma cell line (DU 145).Int J Cancer, 1978,21:274.
    [5] Iizumi T,Yazaki T,Kanoh S,Kondo I, Koiso K, Establishment of a new prostatic carcinoma cell line (TSU-Pr1).J Urol,1987,137:1304.
    [6] Horoszewicz J S, Leong S S, Chu T M, Wajsman Z L,Friedman M, Papsidero L. et al. The LNCaP cell line-a new model for studies on human prostatic carcinoma. Prog Clin Biol Res,1980,37:115.
    [7] Benoit RM, Eiseman J, Jacobs SC, Kyprianou N. Reversion of human prostate tumorigenic growth by azatyrosine.Urology. 1995;46(3):370-7.
    [8] Sonnenscin C, Olea N, Pasanen E, etal. Negative controlsof cell proliferation: hulnan Prostate cancer cells and androgen,Cancer Res. l989, 49:3473-3481.
    [9] Montgomery BT, Young CY, Bilhartz DL, et a1. Hormonal regulation of prostate-specific antigen(PSA) glycoprotein in the human prostatic adenocarcinoma cell line LNCaP. Prostate,1992,21:63-73.
    [10] Veldscholte J, Ris-Stalpers C, et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells afects steroid binding characteristics and response to anti-androgen. Biochem Biophys Rev Commun,1990,173:534-540.
    [11] Israeli RS, Powell CT, Corr JG, et a1. Expression of the prostate- specfic membrane antigen. Cancer Res,1994,54:1807-1811.
    [12] Horoszewicz JS, Leong SS, Chu TM,et a1.The LNCaP cell line: a new model for studies on human prostatic carcinoma. Prog Clin Biol Res, 1980,37:125-132.
    [13] Culig Z, Klocker H, Bartsch G, Hobisch A.Androgen receptors in prostate cancer.Endocr Relat Cancer. 2002,Sep;9(3):155-170.
    [14] Culig Z, Klocker H, Bartsch G, Hobisch A.Androgen receptor mutations in carcinoma of the prostate: significance for endocrine therapy. Am J Pharmacogenomics. 2001,1(4):241-249.
    [15] Van Bokhoven,A.,Varella-Garcia,M.,Korch,C.,Johannes,W.U.,Smith,E. E.,Miller, H. L. et al: Molecular characterization of human prostate carcinoma cell lines. Prostate,57:205, 2003.
    [16] Hara T, Miyazaki J, Araki H, Yamaoka M, et a1. Novel mutation of androgen receptor: A possible mechanism of bicalutamide withdrawal syndrome. Cancer Res,2003,63:149-153.
    [17] Shi XB, Ma AH, Cliford G, et al. Molecular alterations associated with LNCaP cell progression to androgen ndependence. Prostate, 2004, 60: 257-271.
    [18] Shan LU, Sophia Y. Molecular mechanisms of androgen-independent growth of human prostate cancer LNCaP-AI Cells. Endocrinology, 1999, 140: 5054-5059.
    [19] Sobel R E, Sadar MD. Cell lines used in prostate cancer research: a compendium of old and new lines, J Urol,2005,173,342-359.
    [20] Wu HC, Hsieh JT, Gleave ME, Brown NM, Pathak S, Chung LW. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer. 1994,57(3):406-412.
    [21] Kokontis JM, Hay N, Liao S. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest.Mol Endocrinol.1998,12(7):941-953.
    [22] Hara T, Miyazaki J, Araki H, Yamaoka M, Kanzaki N, Kusaka M, Miyamoto M.Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res.2003,63(1):149-53.
    [23] Yuan TC, Veeramani S, Lin MF. Neuroendocrine-like prostate cancer cells: neuroendocrine trans differentiation of prostate adenocarcinoma cells.Endocr Relat Cancer. 2007,14(3):531-47.
    [24] Culig Z, Hoffmann J, Erdel M, Eder I E, Hobisch A, Hittmair A, et al. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in anew model system. Br J Cancer, 81:242, 1999.
    [25] Gao M, Ossowski L, Ferrari A C, Activation of Rb and decline in androgen receptor protein precede retinoic acid induced apoptosis in androgen- dependent LNCaP cells and their androgen-independent derivative. J Cell Physiol, 1999, 179:336.
    [26] Petros JA, Andriole GL, Serum PSA after antiandrogen therapy. Urol Clin North Am,1993,20:749-756.
    
    [1] Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000, 21(6): 1037-1053.
    [2] Yan JX, Wait R, Berkelman T, et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrosprayionization-mass spectrometry. Electrophoresis, 2000,21(17): 3666-3672.
    [3] Kalume D E, Molina H, Pandey A. Tackling the phosphoproteome: tools and strategies. Curr Opin Chem Biol , 2003,7: 64-69
    [4] Bodenmiller. B, Malmstrom, J, Gerrits, B, Campbell, D. et al, Phosphopepa phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Mol. Syst. Biol. 2007, 3, 139. [ 5 ] Shaw MM, Riederer BM. Sample preparation for two-dimensional gel electrophoresis. Proteomics. 2003,3(8):1408-1417.
    [6] Hopkinson A, McIntosh RS, Layfield R, et al. Optimised two-dimensional electrophoresis procedures for the protein characterisation of structural tissues. Proteomics, 2005,5(7):1967-1979.
    [7] Pandey A, Podtelejnikov AV, Blagoev B, et al. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Pros Natl Sci USA, 2000,97(1):179-184
    [8] Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol, 2001,19 (4): 379-382.
    [9] Schumacher JA, Crocker DK, Elenitoba-Johnson KS, et a1. Evaluation of enrichment techniques for mass spectrometry: identification of tyrosine- phosphoproteins in cancer cells. J Mol Diagn, 2007, 9(2):169-177.
    [10] Yan G, Li L, Tao Y, et al. Identification of novel phosphoproteins in signaling pathways triggered by latent menbrance protein 1 using functional proteomics technology. Proteomics, 2006,66(6):1810-1821.
    [11] Adams LD. Two-dimensional gel electrophoresis using the ISO-DALT system. Curr Protoc Mol Biol. 2001 May;Chapter 10:Unit 10.3.
    [12] Molloy MP. Two-dimensional eletrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem, 2000, 280(l):1 210.
    [13] Corbet JM, Dunn MJ, Posch A, et al. Positional reproducibility of protein spots in two-dimensional polyarylamide gel eletrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlabratory comparison. Eletrophoresis, 1994, 15(8-9):1205-1211.
    [14] Nita-Lazar A, Saito-Benz H, White FM. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics. 2008, 8(21): 4433-4443.
    [15] Matthias M, Shao EO, Mads G, et a1. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology,2002, 20(6):161-168。
    [16] Anna MS, Macro C. Mass spectrometry for protein identification and the study of post translational modifications. Ann Ist Super Sanita, 2005,41(4): 443-450
    [17] Rich B.E., Steitz J.A. Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, in vitro synthesis, and assembly. Mol Cell Biol. 1987, 7:4065-4074.
    [18] Alon Chen, Ella Kaganovsky, Shai Rahimipour, Nurit Ben-Aroya, Eli Okon, and Yitzhak Koch2. Two Forms of Gonadotropin-releasing Hormone (GnRH) Are Expressed in Human Breast Tissue and Over expressed in Breast Cancer: A Putative Mechanism for the Antiproliferative Effect of GnRH by Down-Regulation of Acidic Ribosomal Phosphoproteins P1 and P21. Cancer research, 2002, 62: 1036-1044.
    [19] Crisendi S, Mecucci C, Falini B, et al. Nucleophosmin and cancer. Nat Rev Cancer, 2006, 6(7): 493-505.
    [20] Maggi L.B. Jr., Kuchenruether M., Dadey D.Y., Schwope R.M., Grisendi S., Townsend R.R., Pandolfi P.P., Weber J.D. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol. 2008, 28:7050-7065
    [21] Li, Zhang X, Sejas DP, et al. Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J Bid Chem,2004, 279(40): 41275-41279
    [22] Subong EN, Shue MJ, Epstein JI, Briggman JV, Chan PK, Partin AW. Monoclonal antibody to prostate cancer nuclear matrix protein (PRO:4-216) recognizes nucleophosmin/B23. Prostate. 1999,39(4):298-304.
    [23] Tawfic S, Goueli SA, Olson MO, Ahmed K. Androgenic regulation of the expression and phosphorylation of prostatic nucleolar protein B23. Cell Mol Biol Res. 1993,39(1):43-51.
    [24] Grant J.W., Zhong R.Q., McEwen P., Church S.L. Human nonsarcomeric 20,000 Da myosin regulatory light chain cDNA. Nucleic Acids Res. 18:5892-5892(1990).
    [25] Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H., Zha X.-M., PolakiewiczR.D., Comb M.J. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.Nat. Biotechnol. 2005, 23:94-101.
    [26] Rodriguez-Sastre MA,Gonzalez-Maya L,Delgado,R,et al. Abnormal distribution of E-cadherin and beta-catenin in different histologic types of cancer of the uterine cervix. Gynecol Oncol, 2005,97:330-336.
    [27] Ciocca DR, Calderwood SK, Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperone, 2005,10(2):86-103.
    [28] HanI Fu, Hayer-Hartl M. Molecular chaperones in the cytosol: fromnascent chain to folded protein. Science. 2002,295:1852-1858.
    [29] Concannon, C. G., Gorman, A. M., Samali, A. On the role of HSP27 in regulating apoptosis. Apoptosis, 2003, 8(1): 61-70.
    [30] Concannon, C. G., Orrenius, S., Samali, A. HSP27 inhibits cytochrome c-mediated caspase activation by sequestering both procaspase-3 and cytochrome c. Gene Expr. 2001, 9(4-5): 195-201.
    [31] Jaattela, M. Escaping cell death: survival proteins in cancer. Exp. Cell Res 1999; 248(1): 30-43.
    [32] Ciocca, D. R., Oesterreich, S., Chamness, G. C., McGuire, W. L., Fuqua, S. A. Biological and clinical implications of heat shock protein 27,000 (HSP27): a review. J. Natl Cancer Inst. 1993, 85(19):1558-1570.
    [33] Cornford PA, Dodson AR, Parsons KF, et al. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res, 2000, 60: 7099-7105.
    [34] Johnston S.C., Whitby F.G., Realini C., Rechsteiner M., Hill C.P. The proteasome 11S regulator subunit REG alpha (PA28 alpha) is a heptamer. Protein Sci. 1997, 6:2469-2473.
    [35] Gehring N.H., Kunz J.B., Neu-Yilik G., Breit S., Viegas M.H., Hentze M.W., Kulozik A.E. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol Cell. 2005, 20:65-75.
    [36] Naoyuki Kataoka, Michael D. Diem, V.Narry Kim,1 Jeongsik Yong, Gideon Dreyfuss,Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon–exon junction complex, EMBO J. 2001,15;20(22): 6424-6433.
    [37] Roymans D, Willems R,Van Blockstaele DR,et al.Nucleoside diphosphate kinase(NDPK/NM23)and the waltz with multiple parters: possible consequences in tumour metastasis. Clin Exp Metastasis, 2003,19,465-476.
    [38] Chen Y., Gallois-Montbrun S., Schneider B., Veron M., Morera S., Deville-Bonne D., Janin J.Nucleotide binding to nucleoside diphosphate kinases: X-ray structure of human NDPK-A in complex with ADP and comparison to protein kinases. J Mol Biol. 2003,332:915-926.
    [39] Jensen SL, Wood DP Jr, Banks ER, Veron M, Lascu I, McRoberts JW, Rangnekar VM,Increased levels of nm23 H1/nucleoside diphosphate kinase A mRNA associated with adenocarcinoma of the prostate. World J Urol. 1996,14 Suppl 1:S21-25. [ 40 ] Silva C.H., Iulek J., Thiemann O.H. Three-dimensional structure of human adenine phosphoribosyltransferase and its relation to DHA-urolithiasis. Silva M Biochemistry 2004,43:7663-7671.
    [41] Rabilloud T., Heller M., Gasnier F., Luche S., Rey C., Aebersold R., Benahmed M., Louisot P., Lunardi J. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem. 2002,277:19396-19401.
    [42] Chen J.-W., Dodia C., Feinstein S.I., Jain M.K., Fisher A.B.1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem. 2000,275:28421-28427.
    [43] Crowley-Weber CL, Payne CM,G leason-Guzman M, et al. Development and molecular characterization of HCT-116 cellines resistant to the tumor promoter and multiple stress-inducer, deoxycholate. Careinogenesis, 2002, 23:2063-2068.
    [44] Park SY, Yu X, Ip C, Mohler JL, Bogner PN, Park YM. Peroxiredoxin 1 interacts with androgen receptor and enhances its transactivation. Cancer Res. 2007; 67(19):9294-9303.
    [45] Lachman H.M., Papolos D.F., Saito T., Yu Y.-M., Szumlanski C.L., Weinshilboum R.M. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996,6:243-250.
    [46] Gaudet MM, Chanock S, Lissowska J, Berndt SI, Peplonska B, Brinton LA, Welch R, Yeager M, Bardin-Mikolajczak A, Garcia-Closas M. Comprehensive assessment of genetic variation of catechol-O-methyltransferase and breast cancer risk. Cancer Res. 2006,66(19):9781-9785.
    [47] Connell P., Ballinger C.A., Jiang J., Wu Y., Thompson L.J., Hoehfeld J., Patterson C.Theco-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 2001, 3:93-96.
    [48] Kim RH, Peters M, Jang Y, et at, DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell.2005,7:263-273.
    [49] Shi W, Zhang X, Pintilie M, et a1. Dysregulated PTEN and negative receptor status in human breast cancer.Int J Cancer, 2003,104:195-203.
    [50] Clements CM,MeNally RS,Conti BJ,et a1.DJ-1,a cancer-and Parkindon’S disease-associated protein.stabilizes the antioxidant transcriptional master regulator Nrf2.Proc Natl Acad SCi USA, 2006,103:15091-15096.
    [51] Lin JF, Xu J, Tian HY, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer, 2007, 121(12):2596-2605.
    [52] Yeh CS, Wang JY, Cheng TL, et al. Fatty acid metabolisim pathway play an important role in carcinogenesis of human colorectal cancers by Microarray- Bioinformatics analysis. Cancer Letters,2006,233(2): 297- 308.
    [ 1 ] Zhou M, Veenstra TD. Proteomic analysis of protein complexes. Proteomics. 2007, 7(16):2688-2697.
    [2] Von Mering C, Jensen LJ, Kuhn M, et al. STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 2007, 35 (Database issue):D358-362
    [3] Hino M., Kurogi K., Okubo M.-A., Murata-Hori M., Hosoya H. Small heat shock protein 27(HSP27) associates with tubulin/microtubules in HeLa cells. Biochem Biophys Res. 2000, 271:164-169
    [4] Bubendorf, L., Kolmer, M., Kononen, J., Koivisto, P., Mousses, S., Chen, Y., Mahlamaki, E., Schraml, P., Moch, H., Willi, N., Elkahloun, A. G., Pretlow, T. G., Gasser, T. C., Mihatsch, M. J., Sauter, G., Kallioniemi, O. P. Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J. Natl. Cancer Inst. 1999, 91(20): 1758-1764.
    [5] Rocchi, P., So, A., Kojima, S., Signaevsky, M., Beraldi, E., Fazli, L., Hurtado-Coll, A., Yamanaka, K., Gleave, M. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res. 2004, 64(18): 6595-6602.
    [6] Cornford, P. A., Dodson, A. R., Parsons, K. F., Desmond, A. D., Woolfenden, A., Fordham, M., Neoptolemos, J. P., Ke, Y., Foster, C. S. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 2000, 60(24): 7099-7105.
    [7] Bostwick, D. G. Immunohistochemical changes in prostate cancer after androgen deprivation therapy. Mol. Urol. 2000, 4(3): 101-106;discussion 107.
    [8] Gibbons, N. B., Watson, R. W., Coffey, R. N., Brady, H. P., Fitzpatrick, J. M. Heat-shock proteins inhibit induction of prostate cancer cell apoptosis. Prostate 2000, 45(1): 58-65.
    [9] Rocchi, P., So, A., Kojima, S., Signaevsky, M., Beraldi, E., Fazli, L., Hurtado-Coll, A., Yamanaka, K., Gleave, M. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res. 2004, 64(18): 6595-6602.
    [10] Concannon, C. G., Gorman, A. M., Samali, A. On the role of Hsp27 in regulating apoptosis. Apoptosis 2003, 8(1): 61-70.
    [11] Fuchs D, Berges C, Opelz G, Daniel V, Naujokat C. Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. J Cell Biochem. 2008; 103(1):270-283.
    [12] Venkatakrishnan CD, Tewari AK, Moldovan L, Cardounel AJ, Zweier JL, Kuppusamy P, Ilangovan G. Heat shock protects cardiac cells from doxorubicin-induced toxicity by activating p38 MAPK and phosphorylation of small heat shock protein 27. Am J Physiol Heart Circ Physiol. 2006;291(6):H2680-2691.
    [ 13 ] Kostenko S, Johannessen M, Moens U. PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cell Signal. 2009, 21(5):712-718.
    [14] TA Navas1, AN Nguyen1, T Hideshima2, M Reddy1, JY Ma1, E Haghnazari1, M Henson1, EG Stebbins1, I Kerr1, G O’Young1, AM Kapoun1, S Chakravarty1, B Mavunkel1, J Perumattam1, G Luedtke1, S Dugar1, S Medicherla1, AA Protter1, GF Schreiner1, KC Anderson2 and LS Higgins1. Inhibition of p38a MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating HSP27, Bcl-XL, Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo. Leukemia 2006, 20: 1017-1027.
    [15] Cornelia O’Callaghan-Sunol, Vladimir L. Gabai, Michael Y. Sherman. HSP27 Modulates p53 Signaling and Suppresses Cellular Senescence. Cancer Res. 2007; 67 (24), 11779-11788.
    [16] Gao C, Zou Z, Xu L, Moul J, Seth P, Srivastava S. p53-dependent induction of heat shock protein 27 (HSP27) expression. Int J Cancer. 2000,15,88(2):191-194.
    [17] Kobel M, Pohl G, Schmitt WD, et al. Activation of mitogen-activated protein kinase is required for migration and invasion of placental site trophoblastic tumor.Am J Pathol, 2005,167(3):879- 885.
    [18] Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 mitogen-activated protein kinase cascade in human neutrophils stimulated by IL-l beta.J Immunol, 2001,167:5940-5947.
    [19] Liacini A, Sylvester J,Li WQ, et al. Inhibition of interleukin-1 stimulated MAP kinases, activating protein-1(AP-1) and nuclear factor kappa B(NF-kappaB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol, 2002, 21: 251-262.
    [20] Zeigler ME, Chi Y, Schmidt T, et al. Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes.J Cell Physiol,1999,180:271-284.
    [21] Hayashida T, Decaestecker M, Schnaper HW. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta dependent responses in human mesangial cells. FASEB J, 2003,17:1576-1578.
    [22] Kyriakis JM, Woodgett JR, Avruch J. The stress-activated protein kinases. A novel ERK subfamily responsive to cellular stress and in flammatory cytokines.Ann NY AcadSci,1995,766:303-319
    [23] Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev, 2003,22(4):395-403.
    [24] Raviv Z, Katie E, Seger R. MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells. While MEKK2 translocates from the cytosol to the nucleus upon stimulation. J Cell Sci, 2004,117(Pt9 ):1773-1784.
    [25] Raingeaud J, Gupta S, Rogers JS, et al. Proinflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem,1995,270:7420-7426.
    [26] Roberts ML, Cowsert LM. Interleukin-1 beta and reactive oxygen species mediate activation of c-Jun NH2-terminal kinases in human epithelial cells by two independent pathways. Biochem Bio phys Res Commun,1998,251:166-172.
    [27] Dong C, Davis RJ, Flavell RA. Signaling by the JNK group of MAP kinases. C-jun N-terminal Kinase. J Clin Immunol,2001,21(4):253-257.
    [1] Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006, 56(2):106-130.
    [2] Denis LH, Griffiths K. Endocrine treatment in prostate cancer. Semin Surg Onco1, 2000, 18:52-74.
    [3] CrawfordE D, Rosenblum M, Ziada AM, etal. Hormone-refractory prostate cancer. Urology,1999, 54(suppl6A):1-7.
    [4] De La, Taille A, Vacherot F, Salomon L, et al. Hormone-refractory prostate cancer: A multi-step and multi-event process. Prostate Cancer Prostatic Dis, 2001, 4:204-212.
    [5] Edwards J, Bartlett JM. The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 1: Modifications to the androgen receptor.BJU Int. 2005, 95(9):1320-1326.
    [6] Wang Y, Kreisberg JI, Ghosh PM. Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Curr Cancer Drug Targets. 2007, 7(6):591-604.
    [7] Peng J, Gygi SP, Prosteomics: the move tomixtures. J Mass Spectrom,2001,36: 1083-1091.
    [8] Mullner M, Neumann M, Lottspeich L. Proteomics-a new way for drug target discovery. Drug Res.1998,48(1):93-95.
    [9] Adams LD. Two-dimensional gel electrophoresis using the ISO-DALT system. Curr Protoc Mol Biol. 2001,10:Unit 10.3. [ 10 ] Molloy MP. Two-dimensional eletrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem, 2000, 280(l):1210.
    [11] Corbet JM, Dunn MJ, Posch A, et al. Positional reproducibility of protein spots in two-dimensional polyarylamide gel eletrophoresis using immobilized pH gradientisoelectric focusing in the first dimension: an interlabratory comparison. Eletrophoresis, 1994, 15(8-9):1205-1211.
    [12] Pandey A, Podtelejnikov AV, Blagoev B, et al. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Pros Natl Sci USA, 2000, 97(1):179-184
    [13] Oda Y, Nagasu T, Chait BT. Enrichment analysis of phos-phorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol, 2001, 19 (4): 379-382.
    [14] Schumacher JA, Crocker DK, Elenitoba-Johnson KS, et a1. Evaluation of enrichment techniques for mass spectrometry: identification of tyrosinephospho- proteins in cancer cells. J Mol Diagn, 2007, 9(2):169-177.
    [15] Yan G, Li L, Tao Y, et al. Identification of novel phosphoproteins in signaling pathways triggered by latent menbrance protein 1 using functional proteomics technology. Proteomics, 2006,66(6):1810-21.
    [16] Matthias M, Shao EO, Mads G, et a1. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in Biotechnology,2002, 20(6):161-168。
    [17] Anna MS, Macro C. Mass spectrometry for protein identification and the study of post translational modifications. Ann Ist Super Sanita, 2005,41(4): 443-450
    [18] Rodland KD. Proteomics and cancer diagnosis: the potential of masss pectrometry. Clin Biochem.2004,37(7 ) :579-583
    [19] Jr GW, Cazares LH, Leung SM, et al. Protein chip surfac enhanced laser desorption/ ionization(SELDI)mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis, 1999,2 (5):264-276.
    [20] Wang S, Diamond DL, Hass GM.et al. Identification of prostate specific membrane antigen(PSMA)as the target of monoclonal antibody 107-1A4 by protein chip array surface-enhanced laser desorption/ionization (SELDI) technology.Int J Cancer, 2001, 92 (6):871-876
    [21] Wagner M, Naik DN, Pothen A, et al. Computational protein biomarker prediction: a case tudy for prostate cancer. BMC Bio informatics,2004 ,5 (1)26.
    [22] Qu Y,Adam BL,Yasui Y. et al.Boosted decision tree analysis of surface enhanced laserd esorption/ionization mass spectral serum profiles discriminates prostatecancer from non cancer patients. Clin Chem,2002,48(10):1835-1843.
    [23] Lehrer S, Roboz J, Ding H, et al. Putative protein markers in the sera of men with prostatic neoplasms. BJU Int,2003,92(3):223-226.
    [24] Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a patern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res,2002,62(13):3609-3614.
    [25] Downes MR, Byrne JC, Pennington SR, Dunn MJ, Fitzpatrick JM, Watson RW. Urinary markers for prostate cancer. BJU Int. 2007,99(2):263-268.
    [26] Ornstein DK, Gilespie JW, Paweletz CP, et al. Proteornic analysis of laser capture micro dissected human prostate cancer and in vitro prostate cellines. Ellectrophoresis, 2000,21 (11):2235-2242
    [27] Alaiya AA, Franzen B, Auer G, et al. Cancer proteomics: from identification of novel markers to creation of artifical learning models for tumor classification. Electmphoesis, 2000,21 (6):1210-1217.
    [28] Meehan KL, Holand JW, Dawkins HJ. Proteornic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate, 2002, 50(1):54-63.
    [29] Liu JW, Shen JJ, Tanzillo-Swarts A , et al. AnnexinⅡexpression is reduced or lost in prostate cels and its re-inhibits prostate cancer cell migration. oncogene, 2003, 22(10): 1475-1485.
    [30] Jian-feng Lin, Jun Xu, Hong-yu Tian, Xia Gao, Qing-xi Chen, Qi Gu, Gen-jun Xu, Jian-da Song and Fu-kun Zhao. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis.Int J Cancer,2007,121: 2596-2605
    [31] Ahram M, Best CJ, Flaig ML. et al. Proteomic analysis of human prostate cancer. Mol Carcinog, 2002,33(1):9-15
    [32] Wright ME, Eng J, Sherman J. Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biol, 2003, 5(1): 23.
    [33] Martin DB, Giford DR, Wright ME, et al. Quantitative proteins analysis of proteins released by neoplastic prostate epithelium. Cancer Res.2004,64 (1) :347-355.
    [34] Meehan KL, Sadar MD. Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry.Proteomics,2004, 4(4):1116-1134.
    [35] Gioeli D, Ficarro SB, Kwiek JJ. et al. Androgen receptor phosphorylation Regulation and identification of the phosphorylation sites. J Biol Chem,2002, 277(32); 29304-29314.
    [36] Francesco Giorgianni1, Yingxin Zhao, Dominic M. Desiderio, Sarka Beranova Giorgianni, Toward a global characterization of the phosphoproteome in prostate cancer cells: Identification of phosphoproteins in the LNCaP cell line Electrophoresis, 2007, 28, 2027-2034.
    [37] Nagano K, Masters JR, Akpan A, et al. Diferential protein synthesis and expression levels in normal and neoplastic human prostate cells and their regulation by typeⅠandⅡinterferons. Oncogene,2004,23 (9):1693-1703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700