用户名: 密码: 验证码:
4种纳米颗粒对人胃癌BGC-823细胞的生物学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:制备特定粒径范围的纳米活性炭(activated carbon nanoparticles,ACNP),探讨ACNP对人胃癌BGC-823细胞的作用及相关机制;同时,选择与ACNP在同一粒径范围的其他三种纳米颗粒(纳米SiO_2、纳米TiO_2、纳米ZnO),探讨不同化学组成的纳米颗粒对人胃癌BGC-823细胞的生物学效应及作用机制。
     方法:采用球磨法结合悬浮分离制备ACNP,用原子力显微镜和透射电镜对制备的ACNP进行表征,用透射电镜对其他三种纳米颗粒(纳米SiO_2、纳米TiO_2、纳米ZnO)进行表征;采用MTT法及乳酸脱氢酶(LDH)漏出量测定初步评价ACNP、纳米SiO_2、纳米ZiO_2以及纳米ZnO对BGC-823细胞的毒性;采用甲基绿-派洛宁染色法和透射电镜观察4种纳米颗粒对细胞形态及超微结构的影响;采用流式细胞术(FCM)检测细胞凋亡率和细胞周期;用流式细胞仪以罗丹明123(Rh123)作为荧光指示剂检测细胞线粒体膜电位(MMP)的改变;不同浓度ACNP、纳米SiO_2、纳米TiO_2作用24 h后,用活性氧(ROS)捕获剂双氢罗丹明123(DHR123)孵育细胞,DHR123在细胞内被ROS氧化为可发出荧光的Rh123,通过流式细胞仪检测细胞内Rh123的平均荧光强度(MFI)而测得细胞内ROS水平。
     结果:ACNP、纳米SiO_2、纳米ZnO为球状颗粒,平均粒径分别为(34±6)nm,(30±5)nm,(50±10)nm;纳米TiO_2为近球状颗粒,平均粒径为(20±5)nm。4种纳米颗粒均能明显抑制BGC-823细胞的增殖,呈剂量和时间依赖性。ACNP作用48,72h后的半数抑制浓度(IC_(50))分别为1.18,0.87mg/ml;纳米SiO_2作用24,48,72h后的IC_(50)分别为1.26,0.95,0.68mg/ml;纳米TiO_2作用72 h后的IC_(50)为0.88mg/ml;纳米ZnO作用24,48,72h后的IC_(50)分别为39.52,30.71,20.61μg/mL。4种纳米颗粒对BGC-823细胞毒性比较:纳米ZnO>纳米SiO_2>ACNP>纳米TiO_2。ACNP作用24h后,低浓度(0.1,0.2 mg/ml)组LDH漏出量与对照组相比没有显著差异,0.4mg/ml和0.8mg/ml浓度组LDH漏出量高于对照组(P<0.05);作用48h后,各ACNP组LDH漏出量均显著高于对照组。纳米SiO_2各浓度作用组LDH漏出量均显著高于对照组,在0.1~0.8mg/ml浓度范围内呈剂量依赖性。0.1mg/ml的纳米TiO_2作用24h,LDH漏出量与对照组相比没有显著差异,此后随着作用浓度的增加和作用时间的延长,各组LDH漏出量高于对照组(P<0.05)。纳米ZnO各浓度作用组LDH漏出量均显著高于对照组,在12.5~100.0μg/ml浓度范围内呈剂量依赖性。0.1 mg/ml的ACNP作用24 h后,细胞出现凋亡特征的形态学改变;凋亡细胞体积变小,细胞质浓缩,细胞核固缩、裂解。经0.2 mg/ml纳米SiO_2、0.2 mg/ml纳米TiO_2、12.5μg/ml纳米ZnO作用24 h后的细胞均出现坏死特征的形态学改变;坏死细胞膜破裂,核浓缩或溶解。在4种纳米颗粒作用组均可见纳米颗粒进入细胞及线粒体损伤。0.1,0.2 mg/ml的ACNP作用24 h后,细胞凋亡率分别为(5.01±1.16)%、(8.21±1.63)%,与对照组(2.48±0.58)%比较均有显著性差异;坏死率与对照组相比没有显著差异。纳米SiO_2、纳米TiO_2及纳米ZnO作用24 h,各浓度组细胞坏死率高于对照组(P<0.05),并呈明显剂量依赖性;凋亡率与对照组相比没有显著差异。经0.1,0.2 mg/ml ACNP作用24,48,72 h后,均可见细胞被明显阻滞在S期,G_0/G_1期细胞明显减少;DNA含量直方图上可见亚二倍体细胞峰,即凋亡细胞峰。纳米ZnO作用组也在24 h后即出现S期细胞增多,G_0/G_1期细胞减少;而纳米SiO_2和纳米TiO_2在作用48 h后才出现明显的S期细胞增多现象;在纳米SiO_2、纳米TiO_2及纳米ZnO作用组的DNA含量直方图上可见碎片峰,未见亚二倍体细胞峰(凋亡细胞峰)。ACNP(0.1,0.2,0.4 mg/ml)作用24h后,BGC-823细胞的MMP呈剂量依赖性降低;纳米SiO_2(0.1,0.2,0.4 mg/ml)及纳米TiO_2(0.1,0.2,0.4 mg/ml)作用于BGC-823细胞24 h后,MMP与对照组比较也有显著降低,并呈剂量依赖性;3种纳米颗粒引起细胞MMP降低的幅度比较:ACNP>纳米SiO_2>纳米TiO_2。0.1,0.2 mg/ml ACNP作用24 h后,代表细胞内ROS水平的Rh123平均荧光强度(MFI)分别为101.11±3.63、82.21±2.70,较对照组(62.18±2.05)明显升高(P<0.05);纳米SiO_2(0.1,0.2,0.4 mg/ml)作用24 h后,细胞内ROS水平显著降低,并呈剂量依赖性;0.1,0.2 mg/ml纳米TiO_2作用24 h后,细胞内ROS水平高于对照组(P<0.05)。
     结论:ACNP在体外能抑制人胃癌BGC-823细胞的增殖,可使细胞阻滞于S期,诱导细胞凋亡,显示出较强的抗肿瘤活性。ACNP诱导肿瘤细胞凋亡的可能机制是诱导细胞发生氧化应激,生成ROS,并进一步通过活化线粒体信号转导途径诱导细胞凋亡;ACNP可进入细胞核,可能直接作用于核内遗传物质,阻断细胞有丝分裂,诱导细胞凋亡。纳米SiO_2、纳米TiO_2、纳米ZnO能对BGC-823细胞造成以细胞坏死为主的毒性损伤。纳米SiO_2可以产生Si和SiO自由基,诱导细胞氧化损伤,使其膜性结构通透性增加,细胞内容物(包括细胞内酶)漏出至膜外,造成细胞坏死。纳米TiO_2作为一种常见的光催化纳米材料,能够通过产生ROS或使BGC-823细胞内氧化应激增加,使细胞内ROS水平升高,ROS引起膜脂质过氧化,导致细胞膜及线粒体膜通透性增大。富集可溶性金属成分的纳米ZnO对膜结构的损伤作用明显强于其他三种纳米颗粒,能破坏细胞膜,导致细胞肿胀、坏死,其细胞毒性明显大于其他三种纳米颗粒。化学组成不同的纳米颗粒对细胞的生物学效应既有共性又有个性。纳米颗粒的细胞生物学效应可能受粒径、形状、表面特征、化学组成等多种因素的影响。
Objective:To prepare the activated carbon nanoparticles(ACNP) of specific particle size and investigate the effects of ACNP on the human gastric carcinoma cell line BGC-823 in vitro.The silicon dioxide nanoparticles(nano-SiO_2),titanium dioxide nanoparticles(nano-TiO_2) and zinc oxide nanoparticles(nano-ZnO) were also used to investigate the effects of nanoparticles with different chemical composition on the human gastric carcinoma cell line BGC-823 in vitro.
     Methods:ACNP were prepared by ball-mill grinding and floating-filtrating method. The particle size and morphology of ACNP were studied by atomic force microscopy (AFM) and transmission electron microscopy(TEM).The particle sizes and morphology of nano-SiO_2,nano-TiO_2 and nano-ZnO were studied by TEM.BGC-823 cells were treated with ACNP,nano-SiO_2,nano-TiO_2 and nano-ZnO at various concentrations for different durations.The inhibitory effects of the nanoparticles on the proliferation of BGC-823 cells were observed by MTT assay.The lactate dehydrogenase(LDH) leakages in the culture medium were determined with LDH activity detection kit.LDH leakage reflects the integrality of cell membrane.The alterations in morphology were observed by Methyl Green-Pyronin staining and TEM. The apoptotic rate and the cell cycle of BGC-823 cells were examined by flow cytometry(FCM).After being treated with ACNP,nano-SiO_2,nano-TiO_2 for 24 hours, the mitochondrial membrane potential(MMP) was labeled by rhodamine123(Rh123) and examined by FCM.Dihydrorhodamine123(DHR123) was used as a reactive oxygen species(ROS) capture.The mean fluorescent intensity(MFI) of Rh123 which was the product of intracellular oxidation was examined by FCM,and the level of ROS was thus measured.
     Results:ACNP,nano-SiO_2,and nano-ZnO particles were spherical.The average diameters of ACNP,nano-SiO_2,and nano-ZnO were(34±6)nm,(30±5)nm and(50±10) nm,respectively.Nano-TiO_2 particles were nearly spherical.The average diameter of nano-TiO_2 was(20±5) nm.ACNP,nano-SiO_2,nano-TiO_2 and nano-ZnO significantly inhibited the proliferation of BGC-823 cells in dose-and time-dependent manners.The 50%inhibitory concentrations(IC_(50)) of ACNP after 48 and 72 hours were 1.18 and 0.87 mg/ml,respectively,while those of nano-SiO_2 after 24,48 and 72 hours were 1.26,0.95 and 0.68 mg/ml,those of nano-ZnO after 24,48 and 72 hours were 39.52,30.71 and 20.61μg/mL,respectively.The IC_(50) of nano-TiO_2 after 72 hours was 0.88mg/ml.The comparison of the cytotoxicities of four kinds of nanoparticles was nano-ZnO>nano-SiO_2>ACNP>nano-TiO_2.At 24 hours after treated with 0.1mg/ml and 0.2mg/ml ACNP,the LDH leakages were not higher than that of the control group. However,the LDH leakages at concentrations of 0.4 mg/ml and 0.8 mg/ml were higher than that of the control group(P<0.05).At 48 hours after treated with ACNP,the LDH leakages of four ACNP groups were significantly higher than that of the control group. The LDH leakages of nano-SiO_2(0.1mg/ml to 0.8mg/ml) groups significantly increased in a dose-dependent manner.At 24 hours after treated with 0.1 mg/ml nano-TiO_2,the LDH leakage was not higher than that of the control group.As the dose of nano-TiO_2 increased and the time prolonged,the LDH leakages of nano-TiO_2 groups increased.The LDH leakages of nano-ZnO(12.5μg/ml to 100.0μg/ml) groups significantly increased in a dose-dependent manner.The cells treated with 0.1mg/ml ACNP for 24 hours exhibited morphological characteristics of apoptosis including condensation of the cytoplasm,condensation and fragmentation of the nuclear chromatin.The cells treated with 0.2 mg/ml nano-SiO_2,0.2mg/ml nano-TiO_2 or 12.5μg/ml nano-ZnO for 24 hours exhibited morphological characteristics of necrosis including disintegration of the plasma membranes,nuclear condensation and nuclear lysis.Mitochondrial damage was observed in the cells treated with ACNP,nano-SiO_2, nano-TiO_2 or nano-ZnO.These nanoparticles could enter the cells.At 24 hours after treated with 0.1 mg/ml and 0.2 mg/ml ACNP,the apoptotic rates were(5.01±1.16)% and(8.21±1.63)%,respectively,both of which were significantly higher than that of the control group(2.48±0.58)%.The necrotic rates were not higher than that of the control group.At 24 hours after treated with nano-SiO_2,nano-TiO_2 or nano-ZnO,the necrotic rates significantly increased in a dose-dependent manner while the apoptotic rates were not higher than that of the control group.In ACNP group,the percentage of cells at S phase was higher than that in control group,while the percentage of G_0/G_1-phase cells decreased significantly after 24 hours exposure.The typical "Sub-G_1 peak"(apoptotic peak) was also detected in ACNP group.In nano-ZnO group,the percentage of S-phase cells increased while the percentage of G_0/G_1-phase cells decreased significantly after 24 hours exposure.In nano-SiO_2 and nano-TiO_2 groups,the percentage of S-phase cells increased after 48 hours exposure.After treated with 0.1, 0.2,0.4 mg/ml ACNP for 24 hours,the MMP of BGC-823 cells decreased in a dose-dependent manner.After treated with 0.1,0.2,0.4 mg/ml nano-SiO_2 or nano-TiO_2 for 24 hours,the MMP of BGC-823 cells decreased in a dose-dependent manner,too. After treated with 0.1 mg/ml and 0.2 mg/ml ACNP for 24 hours and incubated with 5μmol/L DHR123 for 1 hour,the MFI of oxidized Rh123(or the cellular ROS levels) were 101.11±3.63 and 82.21±2.70,respectively,both of which were significantly higher than that of the control group(62.18±2.05)(P<0.05).After treated with 0.1, 0.2,0.4 mg/ml nano-SiO_2 for 24 hours,the cellular ROS levels deceased in a dose-dependent manner.After treated with 0.1 mg/ml and 0.2 mg/ml nano-TiO_2 for 24 hours,the cellular ROS levels were higher than that of the control group(P<0.05).
     Conclusion:ACNP could inhibit proliferation,cause S-phase arrest and induce apoptosis of BGC-823 cells which demonstrated strong cytotoxicity in vitro.ACNP may induce oxidative stress in BGC-823 cells by overproduction of ROS,and then induce apoptosis of BGC-823 cells via activating mitochondrial signal transduction pathway. Furthermore,Fine activated carbon particles entered the nuclei of tumor cells,which would damage DNA,inhibit DNA replication,and induce cell apoptosis.Nano-SiO_2, nano-TiO_2 and nano-ZnO could directly induce necrosis of BGC-823 cells via disintegrating plasma membranes.In conclusion,nanoparticles with different chemical composition could induce cytotoxicity in BGC-823 cells.The biological effects of nanoparticles may be attributed to particle size and shape,surface characteristics, chemical composition,and some other more factors.
引文
[1]金一和,孙鹏,张颖花.纳米材料对人体的潜在性影响问题[J].自然杂志,2001,23(5):306-307.
    [2]沈星灿,何锡文,梁宏.纳米粒子特性与生物分析[J].分析化学,2003:31(7):880-885.
    [3]Service RF.Nanomaterials show signs of toxicity[J].Science,2003,300(5617):243.
    [4]Brumfiel G.A little knowledge...[J].Nature,2003,424(6946):246-248.
    [5]Lam CW,James JT,McCluskey R,et al.Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J].Toxicol Sci,2004,77(1):126-134.
    [6]Oberd6rster E.Manufactured nanomaterials(fullerenes,C60) induce oxidative stress in the brain of juvenile largemouth bass[J].Environ Health Perspect,2004,112(10):1058-1062.
    [7]Borm PJ.Particle toxicology:from coal mining to nanotechnology[J].Inhal Toxicol,2002,14(3):311-324.
    [8]曲秋莲,张英鸽,杨留中,等.纳米活性炭吸附丝裂霉素C腹腔化疗的实验研究[J].中华肿瘤杂志,2006,28(4):257-260.
    [9]Chen Z,Meng H,Xing G,et al.Acute toxicological effects of copper nanoparticles in vivo[J].Toxicol Lett.2006,163(2):109-120.
    [10]Wang B,Feng WY,Wang TC,et al.Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice[J].Toxicol Lett.2006,161(2):115-123.
    [11]Jennifer C.Nanoparticles cut tumors' supply lines[J].Science,2002,296(5577):2314-2315.
    [12]John DH,Mark B,Ricardo F,et al.Tumor regression by targeted gene delivery to the neovasculature[J].Science,2002,296(5577):2404-2407.
    [13]Hans ML,Lowman AM.Biodegradable nanoparticles for drug delivery and targeting[J].Current Opinion in Solid State and Materials Science,2002,6(4):319-327.
    [14]Feng LY,Li SP,Yan YH,et al.The effect of CaCO_3 and TiO_2 nanometer particles on A549 and L929 cells[J].Bioceramics,2000,13:325-328.
    [15]Cao XY,Dai HL,Yan YH.Selective anti-hepatoma treated with titanium oxide nanoparticles in vitro[J].Journal of Wuhan University of technology-Materials Science,2003,18(1):52-54.
    [16]唐胜利,袁媛,刘志苏,等.羟基磷灰石纳米粒子对人肝癌BEL-7402细胞毒性的评价[J].肝脏,2003,8(1):21-24.
    [17]Sun EJ,Li SP,Yan YH,et al.Selective inhibition of hepatocarcinoma cells by apatite nanoparticles[J].Chinese Journal of Biomedical engineering,2002,11(2):67-71.
    [18]付莉,冯卫,彭芝兰,等.羟基磷灰石纳米粒子对卵巢癌作用的体外实验研究[J].中国生物医学工程学报,2007,26(4):584-609.
    [19]刘执玉.淋巴的基础与临床[M].北京:科学出版社,2003,104-176.
    [20]Yokota T,Saito T,Narushima Y,et al.Lymph-node staining with activated carbon CH40:a new method for axillary lymph-node dissection in breast cancer[J].Can J Surg,2000,43(3):191-196.
    [21]Nakase Y,Hagiwara A,Kin S,et al.Intratumoral administration of methotrexate bound to activated carbon particles:antitumor effectiveness against human colon carcinoma xenografts and acute toxicity in mice[J].J Pharmacol Exp Ther,2004,311(1):382-387.
    [22]张李,梁寒.纳米活性炭的特性及其在胃癌治疗中的应用[J].国际肿瘤学杂志,2007,34(1):52-55.
    [23]Hagiwara A,Torii T,Sawai K,et al.Local injection of anti-cancer drugs bound to carbon particles for early gastric cancer—a pilot study[J].Hepatogastroenterology,2000,47(32):575-578.
    [24]孙岚,张英鸽,杨留中.纳米活性炭在小鼠体内的分布、存留及淋巴靶向性[J].军事医学科学院院刊,2005,29(4):349-351.
    [25]曲秋莲,张英鸽.胃癌靶向缓释制剂——活性炭吸附抗癌药研究进展[J].中华医学实践杂志,2008,7(5):399-401.
    [26]尹静波,陈红丹,罗坤,等.生物可降解5-氟尿嘧啶载药微球的制备及性能研究[J].高等学校化学学报,2005,26(6):1174-1176.
    [27]汪冰,丰伟悦,赵宇亮,等.纳米材料生物效应及其毒理学研究进展[J].中国科学B辑化学,2005,35(1):1-10.
    [28]黄宁平,黄丹,徐敏华,等.超微粒TiO_2对U937细胞光杀伤效应及机理研究[J].生物化学与生物物理进展,1997,24(5):470-473.
    [29]杜仕国,施冬梅,邓辉.纳米材料的特异效应及其应用[J].自然杂志,2000,22(2):101-106.
    [30]Oberd(o|¨)rster G,Oberd(o|¨)rster E,Oberd(o|¨)rster J.Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J].Environ Health Perspect,2005,113(7):823-839.
    [31]应贤平,仲伟鉴.纳米二氧化钛颗粒毒理学进展[J].毒理学杂志,2006,20(5):334-336.
    [32]Denizot F,Lang R.Rapid colorimetric assay for cell growth and survival.Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability[J].J Immunol Methods,1986,89(2):271-277.
    [33]高远,姬汴生,巴玉峰,等.藻酸双酯钠保护血红素所致神经细胞损伤的途径[J].中国临床康复,2006,10(23):60-62.
    [34]洪庆涛,宋岳涛,唐一鹏,等.细胞培养液乳酸脱氢酶漏出率的比色测定及其应用[J].细胞生物学杂志,2004,26(1):89-92.
    [35]Lobner D.Comparison of the LDH and MTT assays for quantifying cell death:validity for neuronal apoptosis?[J].J Neurosci Methods,2000,96(2):147-152.
    [36]Kodavanti UP,Schladweiler MC,Ledbetter AD,et al.Pulmonary and systemic effects of zinc-containing emission particles in three rat strains:multiple exposure scenarios[J].Toxicol Sci,2002,70(1):73-85.
    [37]胡敏,肖纯.显示细胞DNA和RNA的甲基绿.派洛宁技术的改进[J].江西中医学院学报,2005,17(1):66-67.
    [38]周建光,刘长云,黄亚莉,等.甲基绿-派洛宁-马休黄组合染色法检测神经元凋亡[J].海军医学杂志,2002,23(4):289-290.
    [39]龚志锦,詹镕洲.病理组织制片和染色技术[M].上海:上海科学技术出版社,1994,148-359.
    [40]姜泊,张亚历,周殿元.分子生物学常用实验方法[M].北京:人民军医出版社,1996.170-183.
    [41]Geiser M,Rothen-Rutishauser B,Kapp N,et al.Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells[J].Environ Health Perspect,2005,113(11):1555-1560.
    [42]周莉,聂毓秀.细胞.见:石玉秀主编.组织学与胚胎学[M].北京:人民卫生出版社,1997.23.
    [43]Kerr JF,Winterford CM,Harmon BV.Apoptosis.Its significance in cancer and cancer therapy[J].Cancer,1994,73(8):2013-2026.
    [44]Allen RG,Tresini M.Oxidative stress and gene regulation[J].Free Radic Biol Med,2000,28(3):463-499.
    [45]Qanungo S,Das M,Haldar S,et al.Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells[J].Carcinogenesis,2005,26(5):958-967.
    [46]Zhao Y,Yang LF,Ye M,et al.Induction of apoptosis by epigallocatechin-3-gallate via mitochondrial signal transduction pathway[J].Prev Med,2004,39(6):1172-1179.
    [47]张圣明,刘加强.线粒体.见:李伯勤,张圣明主编.医学超微结构基础[M].山东:山东科学技术出版社,2003.131-133.
    [48]Chapple IL.Reactive oxygen species and antioxidants in inflammatory diseases[J].J Clin Periodontol,1997,24(5):287-296.
    [49]Papa S,Skulachev VP.Reactive oxygen species,mitochondria,apoptosis and aging[J].Mol Cell Biochem,1997,174(1-2):305-319.
    [50]Cotgreave IA,Gerdes RG.Recent trends in glutathione biochemistry—glutathione-protein interactions:a molecular link between oxidative stress and cell proliferation?[J].Biochem Biophys Res Commun,1998,242(1):1-9.
    [51]Pendergrass W,Penn P,Possin D,et al.Accumulation of DNA,nuclear and mitochondrial debris,and ROS at sites of age-related cortical cataract in mice[J].Invest Ophthalmol Vis Sci,2005,46(12):4661-4670.
    [52]Kawanishi S,Murata M.Mechanism of DNA damage induced by bromate differs from general types of oxidative stress[J].Toxicology,2006,221(2-3):172-178.
    [53]Burdon RH.Superoxide and hydrogen peroxide in relation to mammalian cell proliferation[J].Free Radic Biol Med,1995,18(4):775-794.
    [54]马力,林治卿,张华山,等.非暴露式气管滴注3种典型纳米材料对大鼠肝、肾的毒性效应[J].生态毒理学报,2008,3(6):584-589.
    [55]Xia T,Korge P,Weiss JN,et al.Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction:implications for ultrafine particle toxicity[J].Environ Health Perspect,2004,112(14):1347-1358.
    [56]Marchetti P,Decaudin D,Macho A,et al.Redox regulation of apoptosis:impact of thiol oxidation status on mitochondrial function[J].Eur J Immunol,1997,27(1):289-296.
    [57]Kim WH,Park WB,Gao B,et al.Critical role of reactive oxygen species and mitochondrial membrane potential in Korean mistletoe lectin-induced apoptosis in human hepatocarcinoma cells[J].Mol Pharmacol,2004,66(6):1383-1396.
    [58]Macho A,Hirsch T,Marzo I,et al.Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis[J].J Immunol,1997,158(10):4612-4619.
    [59]Halestrap AP,Doran E,Gillespie JP,et al.Mitochondria and cell death[J].Biochem Soc Trans,2000,28(2):170-177.
    [60]Jia P,Chen G,Huang X,et al.Arsenic trioxide induces multiple myeloma cell apoptosis via disruption of mitochondrial transmembrane potentials and activation of caspase-3[J].Chin Med J(Engl),2001,114(1):19-24.
    [61]Regula KM,Kirshenbaum LA.Apoptosis of ventricular myocytes:a means to an end[J].J Mol Cell Cardiol,2005,38(1):3-13.
    [62]Smith JA,Weidemann MJ.Further characterization of the neutrophil oxidative burst by flow cytometry[J].J Immunol Methods,1993,162(2):261-268.
    [63]范轶欧,张颖花,张晓艽,等.吸入二氧化硅纳米颗粒和微米颗粒对雄性大鼠精子及其功能的影响[J].卫生研究,2006,35(5):549-553.
    [64]Swarnalatha B,Anjaneyulu Y.Photocatalytic oxidation of 2,4-dinitrophenol in aqueous titanium dioxide slurries[J].J Sci Ind Res,2003,62(9):909-915.
    [65]王君,王诗献,张朝红.超声波激活纳米氧化锌损伤牛血清白蛋白的研究[J].无机化学学报,2008,24(3):461-466.
    [66]Chen G,Zhao J,Liu X,et al.Electrochemical sensing DNA damage with nano-titanium dioxide and repair with a medicinal herb species resveratrol[J].J Biotechnol,2007,127(4):653-656.
    [1]Service RF.Nanomaterials show signs of toxicity[J].Science,2003,300(5617):243.
    [2]Brumfiel G.A little knowledge...[J].Nature,2003,424(6946):246-248.
    [3]Lam CW,James JT,McCluskey R,et al.Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J].Toxicol Sci,2004,77(1):126-134.
    [4]Oberd(o|¨)rster E.Manufactured nanomaterials(fullerenes,C_(60)) induce oxidative stress in the brain of juvenile largemouth bass[J].Environ Health Perspect,2004,112(10):1058-1062.
    [5]Borm PJ.Particle toxicology:from coal mining to nanotechnology[J].Inhal Toxicol,2002,14(3):311-324.
    [6]曲秋莲,张英鸽,杨留中,等.纳米活性炭吸附丝裂霉素C腹腔化疗的实验研究[J].中华肿瘤杂志,2006,28(4):257-260.
    [7]Chen Z,Meng H,Xing G,et al.Acute toxicological effects of copper nanoparticles in vivo[J].Toxicol Lett.2006,163(2):109-120.
    [8]Wang B,Feng WY,Wang TC,et al.Acute toxicity of nano-and micro-scale zinc powder in healthy adult mice[J].Toxicol Lett.2006,161(2):115-123.
    [9]孙晓宁,孙康宁,朱广楠.纳米颗粒材料的毒性研究与安全性展望[J].材料导报,2006,20(5):5-7.
    [10]Chalupa DC,Morrow PE,Oberd6rster G,et al.Ultrafine particle deposition in subjects with asthma[J].Environ Health Perspect,2004,112(8):879-882.
    [11]Warheit DB,Laurence BR,Reed KL,et al.Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats [J].Toxicol Sci,2004,77(1):117-125.
    [12]Muller J,Huaux F,Moreau N,et al.Respiratory toxicity of multi-wall carbon nanotubes[J].Toxicol Appl Pharmacol,2005,207(3):221-231.
    [13]Jia G,Wang H,Yan L,et al.Cytotoxicity of carbon nanomaterials:single-wall nanotube,multi-wall nanotube,and fullerene[J].Environ Sci Technol,2005,39(5):1378-1383.
    [14]Afaq F,Abidi P,Matin R,et al.Cytotoxicity,pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide[J].J Appl Toxicol,1998,18(5):307-312.
    [15]Oberdorster G,Finkelstein J N,Johnston C.Acute pulmonary effects of ultrafine particles in rats and mice[J].Res Rep Health Eff Inst,2000,96:5-74.
    [16]Oberd(o|¨)rster G.Toxicokinetics and effects of fibrous and nonfibrous particles[J].Inhal Toxicol,2002,14(1):29-56.
    [17]Renwick LC,Donaldson K,Clouter A.Impairment of alveolar macrophage phagocytosis by ultrafine particles[J].Toxicol Appl Pharmacol,2001,172(2):119-127.
    [18]Dick CA,Brown DM,Donaldson K,et al.The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types[J].Inhal Toxicol,2003,15(1):39-52.
    [19]Bermudez E,Mangum JB,Wong BA,et al.Pulmonary responses of mice,rats,and hamsters to subchronic inhalation of ultrafine titanium dioxide particles[J].Toxicol Sci,2004,77(2):347-357.
    [20]Oberdorster G,Sharp Z,Atudorei V,et al.Translocation of inhaled ultrafine particles to the brain[J].Inhal Toxicol,2004,16(6-7):437-445.
    [21]Gelperina SE,Khalansky AS,Skidan IN,et al Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate)nanoparticles in healthy rats and rats with intracranial glioblastoma[J].Toxicol Lett,2002,126(2):131-141.
    [22]Lademann J,Weigmann H,Rickmeyer C,et al.Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice[J].Skin Pharmacol Appl Skin Physiol,1999,12(5):247-256.
    [23]Pfl(u|¨)cker F,Wendel V,Hohenberg H,et al.The human stratum corneum layer:an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide[J].Skin Pharmacol Appl Skin Physiol,2001,14(Suppl 1):92-97.
    [24]Schulz J,Hohenberg H,Pfl(u|¨)cker F,et al.Distribution of sunscreens on skin[J].Adv Drug Deliv Rev,2002,54(Suppl 1):S157-S163.
    [25]Shvedova AA,Castranova V,Kisin ER,et oil.Exposure to carbon nanotube material:assessment of nanotube cytotoxicity using human keratinocyte cells[J].J Toxicol Environ ttealth A,2003,66(20):1909-1926.
    [26]Rahman Q,Lohani M,Dopp E,et al.Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts[J].Environ Health Perspect,2002,110(8):797-800.
    [27]刘岚,唐萌,何整,等.Fe_3O_4及Fe_3O_4-Glu纳米颗粒的毒性和致突变性研究[J].环境与职业医学,2004,21(1):14-17.
    [28]范轶欧,张颖花,张晓艽,等.吸入二氧化硅纳米颗粒和微米颗粒对雄性大鼠精子及其功能的影响[J].卫生研究,2006,35(5):549-553.
    [29]Xia T,Korge P,Weiss JN,et al.Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction:implications for ultrafine particle toxicity[J].Environ Health Perspect,2004,112(14):1347-1358.
    [30]Cui D,Tian F,Ozkan CS,et al.Effect of single wall carbon nanotubes on human HEK293 cells[J].Toxicol Lett,2005,155(1):73-85.
    [31]Fumelli C,Marconi A,Salvioli S,et al.Carboxyfullerenes protect human keratinocytes from ultraviolet-B-induced apoptosis[J].J Invest Dermatol,2000,115(5):835-841.
    [32]Foley S,Crowley C,Smaihi M,et al.Cellular localisation of a water-soluble fullerene derivative[J].Biochem Biophys Res Commun,2002,294(1):116-119.
    [33]Kamat JP,Devasagayam TP,Priyadarsini KI,et al.Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications[J].Toxicology,2000,155(1-3):55-61.
    [34]Sayes CM,Gobin AM,Ausman KD,et al.Nano-C_(60) cytotoxicity is due to lipid peroxidation[J].Biomaterials,2005,26(36):7587-7595.
    [35]M(o|¨)ller W,Hofer T,Ziesenis A,et al.Ultrafine particles cause cytoskeletal dysfunctions in macrophages[J].Toxicol Appl Pharmacol,2002,182(3):197- 207.
    [36]Liu Y,Liang P,Chen Y,et al.Spectrophotometric study of fluorescence sensing and selective binding of biochemical substrates by 2,2'-bridged bis(beta-cyclodextrin)and its water-soluble fullerene conjugate[J].J Phys Chem B,2005,109(49):23739-23744.
    [37]Lu G,Maragakis P,Kaxiras E.Carbon nanotube interaction with DNA[J].Nano Lett,2005,5(5):897-900.
    [38]Zheng M,Jagota A,Strano MS,et al.Structure-based carbon nanotube sorting by sequence-dependent DNA assembly[J].Science,2003,302(5650):1545-1548.
    [39]Lockman PR,Koziara JM,Mumper RJ,et al.Nanoparticle surface charges alter blood-brain barrier integrity and permeability[J].J Drug Target,2004,12(9-10):635-641.
    [40]Oberdorster G,Sharp Z,Atudorei V,et al.Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats[J].J Toxicol Environ Health A,2002,65(20):1531-1543.
    [41]Kreuter J.Nanoparticulate systems for brain delivery of drugs[J].Adv Drug Deliv Rev,2001,47(1):65-81.
    [42]Wang H,Wang J,Deng X,et al.Biodistribution of carbon single-wall carbon nanotubes in mice[J].J Nanosci Nanotechnol,2004,4(8):1019-1024.
    [43]Rajagopalan P,Wudl F,Schinazi RF,et al.Pharmacokinetics of a water-soluble fullerene in rats[J].Antimicrob Agents Chemother,1996,40(10):2262-2265.
    [44]Moussa F,Pressac M,Genin E,et al.Quantitative analysis of C_(60)fullerene in blood and tissues by high-performance liquid chromatography with photodiode-array and mass spectrometric detection[J].J Chromatogr B Biomed Sci Appl,1997,696(1):153-159.
    [45]Wang J,Chen C,Li B,et al.Antioxidative function and biodistribution of [Gd@C_(82)(OH)_(22)]_n nanoparticles in tumor-bearing mice[J].Biochem Pharmacol,2006,71(6):872-881.
    [46]Yamago S,Tokuyama H,Nakamura E,et al.In vivo biological behavior of a water-miscible fullerene:~(14)C labeling,absorption,distribution,excretion and acute toxicity[J].Chem Biol,1995,2(6):385-389.
    [47]Kirchner C,Liedl T,Kudera S,et al.Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles[J].Nano Lett,2005,5(2):331-338.
    [48]Sayes C M,Fortner J D,Guo W,et al.The differential cytotoxicity of water-soluble fullerenes[J].Nano Lett,2004,4(10):1881-1887.
    [49]Dugan LL,Turetsky DM,Du C,et al.Carboxyfullerenes as neuroprotective agents[J].Proc Natl Acad Sci USA,1997,94(17):9434-9439.
    [50]Yin H,Too HP,Chow GM.The effects of particle size and surface coating on the cytotoxicity of nickel ferrite[J].Biomaterials,2005,26(29):5818-5826.
    [51]Hoshino A,Fujioka K,Oku T,et al.Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification[J].Nano Lett,2004,4(11):2163-2169.
    [52]何晓晓,刘芳,王柯敏,等.不同功能化基团修饰的硅纳米颗粒与人皮肤角质形成细胞系(HaCaT)的生物效应[J].科学通报,2006,51(10):1156-1162.
    [1]Service RF.Nanomaterials show signs of toxicity[J].Science,2003,300(5617):243.
    [2]Lain CW,James JT,McCluskey R,et al.Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J].Toxicol Sci,2004,77(1):126-134.
    [3]Oberd6rster E.Manufactured nanomaterials(fullerenes,C_(60)) induce oxidative stress in the brain of juvenile largemouth bass[J].Environ Health Perspect,2004,112(10):1058-1062.
    [4]Dick CA,Brown DM,Donaldson K,et al.The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types[J].Inhal Toxicol,2003,15(1):39-52.
    [5]曲秋莲,张英鸽,杨留中,等.纳米活性炭吸附丝裂霉素C腹腔化疗的实验研究[J].中华肿瘤杂志,2006,28(4):257-260.
    [6]Chalupa DC,Morrow PE,Oberd6rster G,et al.Ultrafine particle deposition in subjects with asthma[J].Environ Health Perspect,2004,112(8):879-882.
    [7]Warheit DB,Laurence BR,Reed KL,et al.Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J].Toxicol Sci,2004,77(1):117-125.
    [8]Muller J,Huaux F,Moreau N,et al.Respiratory toxicity of multi-wall carbon nanotubes[J].Toxicol Appl Pharmacol,2005,207(3):221-231.
    [9]Jia G,Wang H,Yan L,et al.Cytotoxicity of carbon nanomaterials:single-wall nanotube,multi-wall nanotube,and fullerene[J].Environ Sci Technol,2005,39(5):1378-1383.
    [10]Oberd(o|¨)rster G.Toxicokinetics and effects of fibrous and nonfibrous particles[J].Inhal Toxicol,2002,14(1):29-56.
    [11]Renwick LC,Donaldson K,Clouter A.Impairment of alveolar macrophage phagocytosis by ultrafine particles[J].Toxicol Appl Pharmacol,2001,172(2):119-127.
    [12]Afaq F,Abidi P,Matin R,et al.Cytotoxicity,pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide[J].J Appl Toxicol,1998,18(5):307-312.
    [13]Oberd(o|¨)rster G,Finkelstein JN,Johnston C.Acute pulmonary effects of ultrafine particles in rats and mice[J].Res Rep Health Eff Inst,2000,96:5-74.
    [14]Bermudez E,Mangum JB,Wong BA,et al.Pulmonary responses of mice,rats,and hamsters to subchronic inhalation of ultrafine titanium dioxide particles[J].Toxicol Sci,2004,77(2):347-357.
    [15]Gelperina SE,Khalansky AS,Skidan IN,et al.Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma[J].Toxicol Lett,2002,126(2):131-141.
    [16]Oberd6rster G,Sharp Z,Atudorei V,et al.Translocation of inhaled ultrafine particles to the brain[J].Inhal Toxicol,2004,16(6-7):437-445.
    [17]Schulz J,Hohenberg H,Pfl(u|¨)cker F,et al.Distribution of sunscreens on skin[J].Adv Drug Deliv Rev,2002,54(Suppl 1):S157-S163.
    [18]Shvedova AA,Castranova V,Kisin ER,et al.Exposure to carbon nanotube material:assessment of nanotube cytotoxicity using human keratinocyte cells[J].J Toxicol Environ Health A,2003,66(20):1909-1926.
    [19]刘岚,唐萌,何整,等.Fe_3O_4及Fe_3O_4-Glu纳米颗粒的毒性和致突变性研究[J].环境与职业医学,2004,21(1):14-17.
    [20]范轶欧,张颖花,张晓艽,等.吸入二氧化硅纳米颗粒利微米颗粒对雄性大鼠精子及其功能的影响[J].卫生研究,2006,35(5):549-553.
    [21]Sayes CM,Gobin AM,Ausman KD,et al.Nano-C_(60) cytotoxicity is due to lipid peroxidation[J].Biomaterials,2005,26(36):7587-7595.
    [22]Cui D,Tian F,Ozkan CS,et al.Effect of single wall carbon nanotubes on human HEK293cells[J].Toxicol Lett,2005,155(1):73-85.
    [23]M(o|¨)ller W,Hofer T,Ziesenis A,et al.Ultrafine particles cause cytoskeletal dysfunctions in macrophages[J].Toxicol Appl Pharmacol,2002,182(3):197-207.
    [24]Lu G,Maragakis P,Kaxiras E.Carbon nanotube interaction with DNA[J].Nano Lett,2005,5(5):897-900.
    [25]Zheng M,Jagota A,Strano MS,et al.Structure-based carbon nanotube sorting by sequence-dependent DNA assembly[J].Science,2003,302(5650):1545-1548.
    [26]Oberd(o|¨)rster G,Sharp Z,Atudorei V,et al.Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats[J].J Toxicol Environ Health A,2002,65(20):1531-1543.
    [27]Wang H,Wang J,Deng X,et al.Biodistribution of carbon single-wall carbon nanotubes in mice[J].J Nanosci Nanotechnol,2004,4(8):1019-1024.
    [28]Yamago S,Tokuyama H,Nakamura E,et al.In vivo biological behavior of a water-miscible fullerene:~(14)C labeling,absorption,distribution,excretion and acute toxicity[J].Chem Biol,1995,2(6):385-389.
    [29]Sayes C M,Fortner J D,Guo W,et al.The differential cytotoxicity of water-soluble fullerenes[J].Nano Lett,2004,4(10):1881-1887.
    [30]Dugan LL,Turetsky DM,Du C,et al.Carboxyfullerenes as neuroprotective agents[J].Proc Natl Acad Sci USA,1997,94(17):9434-9439.
    [31]Wang J,Chen C,Li B,et al.Antioxidative function and biodistribution of[Gd@C_(82)(OH)_(22)]_n nanoparticles in tumor-bearing mice[J].Biochem Pharmacol,2006,71(6):872-881.
    [32]Yin H,Too HP,Chow GM.The effects of particle size and surface coating on the cytotoxicity of nickel ferrite[J].Biomaterials,2005,26(29):5818-5826.
    [33]何晓晓,刘芳,王柯敏,等.不同功能化基团修饰的硅纳米颗粒与人皮肤角质形成细胞系(HaCaT)的生物效应[J].科学通报,2006,51(10):1156-1162.
    [1]张李,梁寒.纳米活性炭的特性及其在胃癌治疗中的应用[J].国际肿瘤学杂志,2007,34(1):52-55.
    [2]曲秋莲,张英鸽,杨留中,等.纳米活性炭吸附丝裂霉素C腹腔化疗的实验研究[J].中华肿瘤杂志,2006,28(4):257-260.
    [3]孙岚,张英鸽,杨留中.纳米活性炭在小鼠体内的分布、存留及淋巴靶向性[J].军事医学科学院院刊,2005,29(4):349-351.
    [4]胡敏,肖纯.显示细胞DNA和RNA的甲基绿-派洛宁技术的改进[J].江西中医学院学报,2005,17(1):66-67.
    [5]周建光,刘长云,黄亚莉,等.甲基绿-派洛宁-马休黄组合染色法检测神经元凋亡[J].海军医学杂志,2002,23(4):289-290.
    [6]Kerr JF,Winterford CM,Harmon BV.Apoptosis.Its significance in cancer and cancer therapy[J].Cancer,1994,73(8):2013-2026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700