用户名: 密码: 验证码:
三氧化二砷诱导非小细胞肺癌细胞凋亡及其信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     肺癌是我国发病率和死亡率最高的恶性肿瘤,人们都在努力寻找新的抗癌制剂或化疗方案以期提高肺癌的治愈率。肺癌已成为大城市中最常见的恶性肿瘤之一。化学治疗目前仍然是肺癌综合治疗的主要手段,细胞毒类药物主要杀伤肿瘤群体中的敏感细胞,原发或继发耐药细胞则是肿瘤复发与/或转移的根源。国内外学者一直在寻找更有效的化疗药物以解决不断出现的耐药和复发问题。
     我国学者成功应用三氧化二砷(AS2O3)治疗急性早幼粒细胞白血病(AcutePmmyelocytic Leukemia,APL),引起了国内外医学界的极大兴趣。AS2O3对于其抗癌作用的研究,已经从血液系统肿瘤进入实体肿瘤,先后相继开展了AS2O3抗消化道肿瘤、生殖系统肿瘤以及泌尿系统肿瘤作用及其机制的研究。国内外研究表明,三氧化二砷具有抑制内皮细胞增殖及血管生成,选择性抑制白血病细胞在内的多种肿瘤细胞生长,诱导肿瘤细胞分化及凋亡的作用。
     研究表明三氧化二砷可抑制前列腺癌细胞增殖并诱导凋亡,其机制可能与三氧化二砷活化半胱天冬酶(Caspase)-3,8,9有关。有学者报道高浓度三氧化二砷可诱导HL-60和U937细胞凋亡,bcl-2及c-myc基因表达逐渐降低,同时下调拓扑异构酶Ⅱ(TOPOⅡ)基因表达、降低TOPOⅡ的活性。三氧化二砷作用白血病ML-1细胞后,抑制细胞增殖同时引起细胞周期的G2/M期停滞。诱导肿瘤细胞凋亡是肿瘤治疗的重要目的和手段。AS2O3可诱导胆囊癌细胞凋亡蛋白下调Bcl-2的表达,Bcl-2过表达可抑制AS2O3诱导凋亡的作用。AS2O3在诱导U937凋亡过程中下调肿瘤相关基因c-myc、bcl-2的表达,同时下调拓扑异构酶Ⅱ(TOPOⅡ)表达、降低TOPOⅡ的活性,在抑制细胞增殖同时引起细胞周期的G2/M期停滞。国外研究表明AS2O3能够诱导肺癌A549细胞凋亡,下调生存素(Survivin)基因表达,AS2O3诱导K562细胞凋亡时上调Smac/DIABLO蛋白表达,降低Bcl-2/Bax比值,下调Survivin基因表达:AS2O3在诱导肺癌细胞株NCI-H157细胞凋亡过程中的对Survivin基因表达及与Caspase的影响未见报道。
     肿瘤细胞凋亡凋亡途径由Caspase家族蛋白酶介导和执行。Caspase家族在细胞凋亡的分子机制中作为重要的效应子执行凋亡。Caspase激活的凋亡有外源性和内源性两条途径,外源性途径通过细胞表面死亡受体介导,内源性途径即线粒体信号通路由bax/bcl-2通路的活化而启动,两条途径均导致Caspases级联激活,最终活化Caspase-3。凋亡抑制蛋白(inhibitor of apoptosis protein,lAPs)通过与Caspase相互作用来抑制细胞凋亡,Survivin是IAPs家族成员之一,在多种肿瘤细胞以及造血系统恶性肿瘤均高表达。Survivin通过直接抑制Caspase-3和Caspase-7的活性发挥抗凋亡作用。目前三氧化二砷诱导NCI-H157细胞凋亡过程中的Survivin及Caspase-3的作用目前尚未见报道。
     丝裂原活化蛋白激酶(Mitogen-Activated Protein Kinases,MAPK)信号转导系统是细胞外信号引起核反应的细胞信息传递的共同通路,包括细胞外信号调节激酶(Extracellular signal-regulated kinases,ERK)、C-JUN氨基末端激酶(c-junN-terminal kinases,JNK)和p38丝裂原活化蛋白激酶(p38 Mitogen-Activated ProteinKinases,p38)三个主要成员。多种细胞外刺激均可将信号传至细胞内,引起MAPK系统激酶连锁磷酸化。已有证据显示,MAPK信号传导通路的异常与肿瘤细胞增殖、分化、凋亡关系密切。ERK1和ERK2是ERK中的两个重要成员,磷酸化的ERK(P-ERK)是其活化形式,参与调节细胞的生长、分化、凋亡等生理过程,其中Ras—Raf-1—MEK1/2—ERK1/2通路是细胞外有丝分裂信号引起细胞增殖的共同通路。国外研究表明,在一些肿瘤细胞中,MEK抑制剂PD 98059通过抑制ERK活性进而抑制肿瘤生长,抑制MEK/ERK的活力可以放大紫杉醇、顺铂等化疗药物诱导肿瘤细胞凋亡作用。目前有关三氧化二砷诱导NCI-H157细胞凋亡过程中信号转导机制的研究并无报道。
     为进一步明确三氧化二砷诱导肺癌细胞凋亡的确切机理,本实验拟采用三氧化二砷作用于非小细胞肺癌NCI-H157细胞,观察三氧化二砷对NCI-H157细胞增殖抑制、诱导凋亡作用,进一步研究三氧化二砷在诱导凋亡过程中对Survivin基因表达及Caspase-3的影响,阐述MAPK信号转导通路在三氧化二砷诱导细胞凋亡过程中的可能机制。
     方法
     1、细胞增殖测定:
     采用MTT法检测细胞生长指数,绘制增殖曲线。
     2、细胞凋亡的检测:
     吖啶橙荧光染色形态学分析及流式细胞仪进行DNA含量检测细胞凋亡。透射电镜等技术进行细胞形态学观察。
     3、RT-PCR:
     检测Survivin mRNA表达。
     4、Western Blot:
     检测Survivin、Caspase-3蛋白及p-ERK1/2蛋白。
     5、统计学分析
     所有数据用3次独立实验的平均值表示,结果进行t检验、方差分析,用SPSS11.5统计软件进行数据分析。
     结果
     1、三氧化二砷对NCl-H157细胞增殖抑制及诱导凋亡作用
     三氧化二砷以时间、剂量依赖的方式抑制NCI-H157细胞增殖,24h、48h和72h抑制细胞增殖50%的药物浓度(IC_(50))分别为11.6μmol/L、8.1μmol/L及5.8μmol/L。
     2、三氧化二砷在诱导NCI-H157细胞凋亡过程中对Survivin基因表达、Caspase-3的影响
     RT-PCR结果显示,5/zmol/L三氧化二砷作用12h~48h Survivin mRNA表达逐渐下降。Western Blot解析结果显示,Survivin蛋白表达在5μmol/L三氧化二砷处理后逐渐下调,处理24h后出现17KD Capase-3的活性亚基,直至72h。
     3、ERK信号转导通路在三氧化二砷诱导NCI-H157细胞凋亡过程的影响
     (1)PD98059促进三氧化二砷对NCI-H157细胞增殖抑制作用
     预先用20μmol/L PD98059处理NCI-H157细胞1小时,然后加入5μmol/L的三氧化二砷继续作用24 h、48 h、72h,加用PD98059后,24 h、48 h、72h细胞的增殖率分别由77.4%、59.2%、30.2%下降至62.7%、43.6%和16.1%(P<0.05),提示PD98059促进了三氧化二砷对NCI-H157细胞增殖抑制作用。
     (2)PD98059增强三氧化二砷对NCI-H157细胞凋亡作用
     ①单用20μmol/L的PD98059作用NCI-H157细胞24h,形态学可见细胞生长良好,未见到凋亡改变。单用5μmol/L的三氧化二砷作用NCI-H157细胞24h始,形态学观察可见细胞凋亡改变,用20μmol/L的PD98059预先处理NCI-H157细胞1h,然后加入5μmol/L的三氧化二砷继续共同孵育24h,同单用三氧化二砷组比,形态学凋亡改变更加明显。流式细胞仪分析提示,同单用三氧化二砷组比较,联合应用组处理NCI-H157细胞24h,,亚G_1期细胞比例由20.5%增加至39.3%(P<0.05)。
     ②三氧化二砷5μmol/L分别处理NCI-H157细胞5min~72h,Western Blot解析结果显示,p-ERK1/2蛋白在5 min即可出现,表达持续增强至3 h,后逐渐减弱,至72 h后消失。20μmol/L PD98059预先处理NCI-H157细胞1h后,加入三氧化二砷5μmol/L继续处理至24 h,未检测到p-ERK1/2 MAPK蛋白的表达,提示三氧化二砷可以活化ERK信号转导通路。
     ③20μmol/L PD98059预先处理NCI-H157细胞1 h后加入三氧化二砷5μmol/L共同孵育至24 h,Survivin mRNA表达由单用三氧化二砷组59.4%,降至联合应用的29.6%。Western Blot解析结果显示,Survivin蛋白的表达水平由单用三氧化二砷组的56.8%下调至联合组22.8%(P<0.01)。非激活状态32KD的proCaspase-3由单用三氧化二砷组的46.5%下调至12.8%,17KD的活性亚基明显增加(P<0.01),表明PD98059阻断ERK信号转导通路促进了三氧化二砷诱导细胞凋亡时的Survivin蛋白表达下调和Caspase-3活化。
     研究表明,三氧化二砷可选择性抑制多种人类肿瘤细胞生长,诱导肿瘤细胞凋亡与分化,高浓度的三氧化二砷处理HL60、K562和U937细胞,可见凋亡的形态学改变,低浓度下诱导这三种细胞株向单核/巨噬细胞样细胞分化,并下调肿瘤相关基因如c-myc、bcl-2、WT1等基因的表达。Yeh报道三氧化二砷可以抑制前列腺癌增殖并诱导细胞凋亡,其机制可能与三氧化二砷活化Caspase-3,8,9有关,进一步研究表明三氧化二砷诱导HL-60细胞凋亡下调bcl-2、Survivin基因表达,活化Caspase-3。本实验结果显示,三氧化二砷以时间、剂量依赖的方式抑制NCI-H157细胞增殖。三氧化二砷单独应用,在高于5μmol/L诱导NCI-H157细胞凋亡。5μmol/L三氧化二砷作用Survivin mRNA及蛋白表达表达逐渐下降,逐渐出现17KD Caspase-3的活性亚基。首次证实三氧化二砷诱导NCI-H157细胞凋亡过程中下调Survivin基因及蛋白表达、活化Caspase-3。
     国外研究表明,MEK抑制剂PD 98059可以抑制ERK的活性,抑制MEK/ERK信号转导通路可以放大多种化疗药物诱导肿瘤细胞凋亡的作用,应用MEK抑制剂可增强紫杉醇诱导的凋亡作用,ERK激活的同时具有介导细胞凋亡的作用。有学者报道MEK1抑制剂还可以明显的促进三氧化二砷诱导K562细胞凋亡。研究表明,ERK信号途径的激活对三氧化二砷诱导U937细胞的凋亡是必须的,我们应用ERK抑制剂PD98059协同三氧化二砷处理NCI-H157细胞,其杀伤细胞的作用明显高于三氧化二砷的单独作用。这说明ERK信号通路可能由三氧化二砷介导激活,而PD98059部分阻断ERK的活化后,能够促进三氧化二砷诱导NCI-H157凋亡,进一步检测磷酸化ERK1/2蛋白,结果证实三氧化二砷作用短时间内即活化了ERK1/2通路。基于已有的研究证实ERK信号传导系统在促进细胞增殖及抗凋亡方面起重要作用,由此我们推测,被三氧化二砷激活的ERK信号通路可能保护了NCI-H157细胞,使其具有一定的抗凋亡作用,启动了细胞凋亡的防御机制。本研究用PD98059预处理NCI-H157细胞与三氧化二砷共同培养,Survivin mRNA及蛋白的表达水平进一步下调,Caspase-3酶原表达水平明显下降,而17KD的Caspase-3活性亚基表达水平明显增加,提示抑制ERK信号促进三氧化二砷诱导NCI-H157细胞Survivin表达进一步下调和Caspase-3活化。首次证实三氧化二砷诱导NCI-H157细胞凋亡过程中激活了ERK信号转导通路,并下调Survivin表达,活化Caspase-3,提示二者均位于ERK信号的下游。
     结论
     1.三氧化二砷以时间、剂量依赖的方式抑制NCI-H157细胞增殖,诱导NCI-H157细胞凋亡。
     2.三氧化二砷诱导NCI-H157细胞凋亡过程中下调Survivin mRNA及蛋白表达,并活化Caspases-3,提示三氧化二砷诱导的NCI-H157细胞凋亡可能与下调Survivin基因表达及活化Caspase-3有关。
     3.抑制ERK信号转导通路增强三氧化二砷诱导NCI-H157细胞凋亡,并进一步下调Survivin表达、活化Caspase-3,提示ERK途径可能参与了三氧化二砷诱导NCI-H157细胞凋亡的信号转导系统,抑制该途径,可起到增强三氧化二砷诱导凋亡作用。
Lung cancer is a malignancy with a predominant morbidity and mortality.It gets to be a menace not only to the health but also to the existance of human being because of the fact that the elevation of the amplitude of its mortality being the first among all the tumors.The development of lung cancer is a complicated process,most likely it is the result of interaction between a group of environmental and hereditary factors.A vast amount of studies indicate that many gene.
     AS_2O_3 can inhibit the growth of various lines of human cancer cells,due at least in part to its specific effect on topoisomerase(topo)Ⅱ.A variety of differentiation-inducing agents,such as camptothecin,VP16,geranylacetone and all-trans-retinoic acid,were shown to induce apoptosis in tumor and normal cells.AS_2O_3 alone is only a modest inducer of differentiation of AML cells in primary culture.AS_2O_3 restored RA sensitivity to previously resistant NCI-H157 cells. Therefore,AS_2O_3 seems to act as a potent differentiation- and apoptosis-inducing agent in cancer cells.U937 cells.When U937 cells were treated with AS_2O_3 in the absence of serum,mitogen-activated protein(MAP) kinase activity was markedly increased after the start of treatment and elevated.Prior to the activation of MAP kinase,increased activities of Ras,Raf-1,and MAP kinase kinase were found,but these enzymes were transiently activated by the treatment with AS_2O_3.These results suggest that the signal was transmitted sequentially from Ras,Raf-1,and MAP kinase kinase to MAP kinase. That a pathway with the persistent activation of MAP kinase in U937 cells in response to AS203 is at least one of the signal transduction pathways involved in the induction of apoptosis.It has been reported that AS_2O_3 utilizes the extracellular signal-regulated kinase(ERK) cascade for signal transduction,leading not only to cell differentiation but also to apoptosis.It is thus postulated that the ERK cascade may control AS_2O_3 induced cell differentiation and apoptosis simultaneously.
     Caspases are cysteine proteases as the executioners of apoptosis.They activated, initiator Caspases activate downstream Caspases,resulting in an amplification of the Caspase cascade.Active Caspases cleave critical cellular protein substrates and systematically dismantle the cell.The availability and activation of Caspases are crucial steps in the commitment of a cell to die,are known to survive for the life of the organism,inhibition of apoptosis is a primary consideration in setting up cellular survival mechanisms.When in close proximity Caspases can autoactivate. Baculoviruses harbor yet another type of Caspase inhibitor,the inhibitor of apoptosis proteins(IAPs).These proteins are characterized by the presence of a homologous domain named the baculoviral IAP repeat(BIR) domain and IAPs.Survivin,a single BLR domain containing IAP,is upregulated in many common human tumors, implicating that the deregulation of IAPs contributes to human disease.Understanding of the mechanism by which IAPs inhibit apoptosis has come with the demonstration that XIAP can physically interact with and block Caspase-3,-7,and -9.Survivin,a novel inhibitor of apoptosis,expressing in a cell cycle-dependent manner,regulates the G(2)/M phase of the cell cycle by associating with mitotic spindle microtubules;it directly inhibits Caspase-3 and Caspase-7activity.During tumorigenesis,Survivin expression is inversely correlated with apoptosis and is positively correlated with proliferation and angiogenesis.Survivin expression up-regulation predicts short survival and poor prognosis in human cancers.Survivin targeting antisense nucleotide and Survivin mutants induce apoptosis,reduce tumor growth potential,and Sensitize tumor cells to chemotherapeutic drugs and X-irradiation in vitro and in vivo.These results suggest that Survivin may has the potential function as a new target for the diagnosis and treatment of cancer.
     Mitogen-activated protein kinases(MAPKs) participate in signaling cascades from transmission of extracellular signals into their intracellular targets,which regulate important biologic activities.The MAP kinase family members have been implicated in events necessary for proliferation,differentiation,apoptosis,and certain kinds of stress responses.Three major groups of Map kinases exist:the p38 Map kinase family,the extracellular signal-regulated kinase(ERk) family,and the c-Jun NH2-terminal kinase (JNK) kinase.Map kinase signaling cascades are activated by a variety of different cellular stimuli(stress,cytokine) and mediate diverse responses,The ERK pathway is activated in response to several cytokines and growth factors,and primarily mediates mitogenic and antiapoptotic signals.It has been suggested that the excessive activation of the ERK-kinase cascade,which is generally known to play a role in cell survival,is an event necessary for AS_2O_3-mediated apoptosis.Such a hyperexcitation of the ERK-kinase cascade is due to the activation of an upper signal component Ras and the concomitant downregulation of the protein kinase A activity that may negatively regulate the Raf-1 function.However,signal transduction leading to AS_2O_3 mediated cell differentiation has not been explored.
     In order to characterize the mechanisms of apoptosis-inducing effect of AS_2O_3 on NCI-H157 cells,we examined the expression of Survivin and role of ERK pathway in AS_2O_3-induced apoptosis.
     Methods
     1、Assays for the proliferation
     The NCI-H157 cell proliferation was determined by MTT.
     2、Assay for apoptosis
     The apoptosis of NCI-H157 cell was assessed by morphological analysis.Cell Cycle Analysis Using a Becton Dickinson FACScan flow cytometer(Cambridge,MA) using a commercially available software program.
     3、Western Blot analysis
     Survivin,Caspase-3 and p-ERK were analyzed by Western blot 4、RT-PCR
     Survivin mRNA mRNA expression was detected by semi-quantitative RT-PCR.
     5、Statistical Analysis.
     The significance of differences between experimental conditions was determined using the two-tailed Student t test
     Results
     1.AS_2O_3 induced apoptosis in a dose and time- dependent fashion in NCI-H157 cells.
     2.Proliferation of NCI-H157 cells was inhibited by AS_2O_3 and the IC_50 at 24h, 48h and 72h were 11.6μmol/L、8.1μmol/L and 5.8μmol/L,respectively.Apoptosis of NCI-H157 cells were induced when the cells were treated with AS_2O_3 at concentrations of 5μmol/L and higher.cell hypodiploid percentage at 24h,48h and 72h was 13.7 %,20.5%及37.3%by flow cytometry analyses.respectively Compared with control,treatment with AS_2O_3 at 5μmol/L for 12 h,24 h and 48h resulted in decrease of Survivin protein expression.The cleaved active subunits of Caspase-3 were observed following AS_2O_3 treatment from 24h to 72h.
     3.We found that in NCI-H157 acute promyelocytic cell line treatment with the MEK inhibitors PD98059 greatly enhances apoptotic cell death induced by AS_2O_3 alone.Combined treatment results in downregulation of the Survivin in NCI-H157 cell line.The levels of p-ERK were determined by Western Blot analysis at 5 minute after treatment with AS_2O_3 alone.
     Discussions
     Someone reports that AS_2O_3 induced apoptosis of HL60,ML1 and U937 cell in high concentration,and induced differentiation toward monocyte/macrophage-like cells in low concentration.Our results showed that AS_2O_3 alone induced apoptosis of NCI-H157 cells and NCI-H157 in the concentration of more than 5μmol/L,but there is no apoptosis in less than 5μmol/L.Some observations were reported that MEK1/2 inhibitors potentiate the antitumor activity of various cytotoxic agents,including ara-C, cisplatin,and paclitaxel,suggests a possible role for MEK1/2 inhibitors in the treatment of human malignancies.At present,mechanism of AS_2O_3 is still unknown.It possibly actived APK,inhibit TopoⅡactivity,and up-regulated Tiaml or down-regulated the express of c-myc and bcl-2 mRNA to induce apoptosis.
     To explore details involved in the process,apoptosis-related protein Survivin was determined by Western Blot and RT-PCR,Caspase-3 also was tested by Western Blot. We found that exposure of NCI-H157 cells to AS_2O_3 resulted in down-regulation of Survivin and Caspase-3 protein,down-regulation of Survivin mRNA was also detected.Furthermore,Survivin downregulation and activation of Caspase-3 became more marked in coadministration of AS_2O_3 with PD98059,the results indicates MEK/ERK signaling pathway mediates progess of AS_2O_3-induced apoptosis involved in Survivin downregulation in the post-transcription level.
     Conclusions
     1.AS_2O_3 inhibited NCI-H157 cell proliferation in a time- and dose-dependent manner and induced NCI-H157 cell apoptosis
     2.AS_2O_3 induced NCI-H157 cell apoptosis accompany with Survivin downregulation and activation of Caspase-3.
     3.MEK/ERK signaling pathway is negative regulation in AS_2O_3- induced apoptosis in NCI-H157 cell.
引文
1 Maeda H,Hori S,Nishitoh H,et al.Tumor growth inhibition by arsenic trioxide(AS203)in the orthotopic metastasis model of androgen-independent prostate cancer.Cancer Res,2001,61(14):5432-5440.
    2 Nakagawa Y,Akao Y,Morikawa H,et al.Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines.Life Sci,2002,70(19):2253-2269.
    3 Bomstein J,Sagi S,Haj A,et al.Arsenic Trioxide inhibits the growth of human ovarian carcinoma cell line.Gynecol Oncol,2005,99(3):726-729.
    4 Cui X,Wakai T,Shirai Y,et al.Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells.Hum Pathol,2006,37(3):298-311.
    5 Yokoi K,Kim SJ,Thaker P,et al.Induction of apoptosis in tumor-associated endothelial cells and therapy of orthotopic human pancreatic carcinoma in nude mice.Neoplasia,2005,7(7):696-704.
    6 Fulda S,Debatin KM.Apoptosis signaling in tumor therapy.Ann N Y Acad Sci,2004,1028:150-156.
    7 Yoo J,Kim HR,Lee YJ.Hyperthermia enhances tumour necrosis factor-related apoptosis-inducing ligand(TRAIL)-induced apoptosis in human cancer cells.Int J Hyperthermia,2006,22(8):713-728.
    8 Germano IM,Uzzaman M,Benveniste RJ,et al.Apoptosis in human glioblastoma cells produced using embryonic stem cell-derived astrocytes expressing tumor necrosis factor-related apoptosis-inducing ligand.J Neurosurg,2006,105(1):88-95.
    9 Ishikawa H,Ohno T,Kato S,et al.Cyclooxygenase-2 impairs treatment effects of radiotherapy for cervical cancer by inhibition of radiation-induced apoptosis.Int J Radiat Oncol Biol Phys,2006,66(5):1347-1355.
    10 Patlolla AK,Tchounwou PB.Cytogenetic evaluation of arsenic trioxide toxicity in Sprague-Dawley rats.Mutat Res,2005,587(1-2):126-133.
    11 Shen ZX,Chen GQ,Ni JH,et al.Use of arsenic trioxide(AS203)in the treatment of acute promyelocytic leukemia(APL):Ⅱ.Clinical efficacy and pharmacokinetics in relapsed patients. Blood,1997,89(9):3354-60.
    12 Yu J,Qian H,Li Y,et al.Therapeutic Effect of Arsenic Trioxide(AS203)on Cervical Cancer In Vitro and In Vivo through Apoptosis Induction.Cancer Biol Ther,2007,6(4).
    13 Haga N,Fujita N,Tsuruo T.Involvement of mitochondrial aggregation in arsenic trioxide(AS203)-induced apoptosis in human glioblastoma cells.Cancer Sci,2005,96(11):825-833.
    14 Lehmann S,Bengtzen S,Paul A,et al.Effects of arsenic trioxide(AS203)on leukemic cells from patients with non-M3 acute myelogenous leukemia:studies of cytotoxicity,apoptosis and the pattern of resistance.Eur J Haematol,2001,66(6):357-364.
    15 Shen L,Chen TX,Wang YP,et al.AS203 induces apoptosis of the human B lymphoma cell line MBC-1.J Biol Regul Homeost Agents,2000,14(2):116-119.
    16 Sordet O,Rebe C,Leroy I,et al.Mitochondria-targeting drugs arsenic trioxide and lonidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis.Blood,2001,97(12):3931-3940.
    17 Liu T,Brouha B,Grossman D.Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells.Oncogene,2004,23(1):39-48.
    18 Tamm I,Wang Y,Sausville E,et al.IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas(CD95),Bax,caspases,and anticancer drugs.Cancer Res,1998,58(23):5315-5320.
    19 Weikert S,Schrader M,Krause H,et al.The inhibitor of apoptosis(LAP)survivin is expressed in human testicular germ cell rumors and normal testes.Cancer Lett,2005,223(2):331-337.
    20 Idenoue S,Hirohashi Y,Torigoe T,et al.A potent immunogenic general cancer vaccine that targets survivin,an inhibitor of apoptosis proteins.Clin Cancer Res,2005,11(4):1474-1482.
    21 Liu JJ,Huang RW,Lin DJ,et al.Expression of survivin and bax/bcl-2 in peroxisome proliferator activated receptor-gamma ligands induces apoptosis on human myeloid leukemia cells in vitro.Ann Oncol,2005,16(3):455-459.
    22 Ferrandina G,Legge F,Martinelli E,et al.Survivin expression in ovarian cancer and its correlation with clinico-pathological,surgical and apoptosis-related parameters.Br J Cancer, 2005,92(2):271-277.
    23 Xiang R,Mizutani N,Luo Y,et al.A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication.Cancer Res,2005,65(2):553-561.
    24 Thomas S,Shah G.Calcitonin induces apoptosis resistance in prostate cancer cell lines against cytotoxic drugs via the Akt/survivin pathway.Cancer Biol Ther,2005,4(11):1226-1233.
    25 Marioni G,Ottaviano G,Marchese-Ragona R,et al.High nuclear expression of the apoptosis inhibitor protein survivin is associated with disease recurrence and poor prognosis in laryngeal basaloid squamous cell carcinoma.Acta Otolaryngol,2006,126(2):197-203.
    26 Zhang Y,Huang D,Yu G.Survivin expression and its relationship with apoptosis and prognosis in nasal and paranasal sinus carcinomas.Acta Otolaryngol,2005,125(12):1345-1350.
    27 Ito R,Asami S,Motohashi S,et al.Significance of survivin mRNA expression in prognosis of neuroblastoma.Biol Pharm Bull,2005,28(4):565-568.
    28 Li F,Ambrosini G,Chu EY,et al.Control of apoptosis and mitotic spindle checkpoint by survivin.Nature,1998,396(6711):580-4.
    29 Shin S,Sung BJ,Cho YS,et al.An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and-7.Biochemistry,2001,40(4):1117-1123.
    30 Adida C,Recher C,Raffoux E,et al.Expression and prognostic significance of survivin in de novo acute myeloid leukaemia.Br J Haematol,2000,1 11(1):196-203.
    31 Suzuki A,Ito T,Kawano H,et al.Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death.Oncogene,2000,19(10):1346-1353.
    32 Fuessel S,Herrmann J,Ning S,et al.Chemosensitization of bladder cancer cells by survivin-directed antisense oligodeoxynucleotides and siRNA.Cancer Lett,2006,232(2):243-254.
    33 Olie RA,Simoes-Wust AP,Baumann B,et al.A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy.Cancer Res,2000,60(11):2805-2809.
    34 Shinohara ET,Hallahan DE,Lu B.The Use of Antisense Oligonucleotides in Evaluating Survivin as a Therapeutic Target for Radiation Sensitization in Lung Cancer.Biol Proced Online,2004,6:250-256.
    35 Ai Z,Lu W,Qin X.Arsenic trioxide induces gallbladder carcinoma cell apoptosis via downregulation of Bcl-2.Biochem Biophys Res Commun,2006,348(3):1075-1081.
    36 Park JW,Choi YJ,Jang MA,et al.Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells.Biochem Biophys Res Commun,2001,286(4):726-734.
    37 Jin HO,Yoon SI,Seo SK,et al.Synergistic induction of apoptosis by sulindac and arsenic trioxide in human lung cancer A549 cells via reactive oxygen species-dependent down-regulation of survivin.Biochem Pharmacol,2006,72(10):1228-1236.
    38 Wu X,Chen Z,Liu Z,et al.Arsenic trioxide inhibits proliferation in K562 cells by changing cell cycle and survivin expression.J Huazhong Univ Sci Technolog Med Sci,2004,24(4):342-4,353.
    39 Scholz C,Wieder T,Starck L,et al.Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway.Oncogene,2005,24(11):1904-1913.
    40 Oliver CL,Miranda MB,Shangary S,et al.(-)-Gossypol acts directly on the mitochondria to overcome Bcl-2-and Bcl-X(L)-mediated apoptosis resistance.Mol Cancer Ther,2005,4(1):23-31.
    41 Caldas H,Jiang Y,Holloway MP,et al.Survivin splice variants regulate the balance between proliferation and cell death.Oncogene,2005,24(12):1994-2007.
    42 Xu ZX,Zhao RX,Ding T,et al.Promyelocytic leukemia protein 4 induces apoptosis by inhibition of survivin expression.J Biol Chem,2004,279(3):1838-1844.
    43 Saavedra HI,Knauf JA,Shirokawa JM,et al.The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway.Oncogene,2000,19(34):3948-3954.
    44 Pant D,Ghosh A.Automated oncogene detection in complex protein networks with applications to the MAPK signal transduction pathway.Biophys Chem,2005,113(3):275-288.
    45 Wu CH,Chen YF,Wang JY,et al.Mutant K-ras oncogene regulates steroidogenesis of nomial human adrenocortical cells by the RAF-MEK-MAPK pathway.Br J Cancer,2002,87(9):1000-1005.
    46 Shapiro P.Ras-MAP kinase signaling pathways and control of cell proliferation:relevance to cancer therapy.Crit Rev Clin Lab Sci,2002,39(4-5):285-330.
    47 Kanai M,Konda Y,Nakajima T,et al.Differentiation-inducing factor-1(DIF-1)inhibits STAT3 activity involved in gastric cancer cell proliferation via MEK-ERK-dependent pathway.Oncogene,2003,22(4):548-554.
    48 Dhillon AS,Meikle S,Peyssonnaux C,et al.A Raf-1 mutant that dissociates MEK/extracellular signal-regulated kinase activation from malignant transformation and differentiation but not proliferation.Mol Cell Biol,2003,23(6):1983-1993.
    49 Chow SK,Chan JY,Fung KP.Inhibition of cell proliferation and the action mechanisms of arsenic trioxide(AS203)on human breast cancer cells.J Cell Biochem,2004,93(1):173-187.
    50 Lu M,Xia L,Luo D,et al.Dual effects of glutathione-S-transferase pi on AS203 action in prostate cancer cells:enhancement of growth inhibition and inhibition of apoptosis.Oncogene,2004,23(22):3945-3952.
    51 Fang J,Chen SJ,Tong JH,et al.Treatment of acute promyelocytic leukemia with ATRA and AS203:a model of molecular target-based cancer therapy.Cancer Biol Ther,2002,1(6):614-620.
    52 Park JY,Ryang YS,Shim KY,et al.Molecular signaling cascade in DNA bisintercalator,echinomycin-induced apoptosis of HT-29 cells:evidence of the apoptotic process via activation of the cytochrome c-ERK-caspase-3 pathway.Int J Biochem Cell Biol,2006,38(2):244-254.
    53 Sawatzky DA,Willoughby DA,Colville-Nash PR,et al.The involvement of the apoptosis-modulating proteins ERK 1/2,Bcl-xL and Bax in the resolution of acute inflammation in vivo.Am J Pathol,2006,168(1):33-41.
    54 MacKeigan JP,Collins TS,Ting JP.MEK inhibition enhances paclitaxel-induced tumor apoptosis.J Biol Chem,2000,275(50):38953-38956.
    55 Seidman R,Gitelman I,Sagi O,et al.The role of ERK 1/2 and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian carcinoma cells.Exp Cell Res;2001,268(1):84-92.
    56 Wang X,Martindale JL,Holbrook NJ.Requirement for ERK activation in cisplatin-induced apoptosis.J Biol Chem,2000,275(50):39435-39443.
    57 Lunghi P,Costanzo A,Levrero M,et al.Treatment with arsenic trioxide(ATO)and MEK1 inhibitor activates the p73-p53AIPl apoptotic pathway in leukemia cells.Blood,2004,104(2):519-525.
    58 Buckley S,Driscoll B,Barsky L,et al.ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2.Am J Physiol,1999,277(1 Pt 1):L159-166.
    59 Rice PL,Beard KS,Driggers LJ,et al.Inhibition of extracellular-signal regulated kinases 1/2 is required for apoptosis of human colon cancer cells in vitro by sulindac metabolites.Cancer Res,2004,64(22):8148-8151.
    60 Choi IJ,Kim JS,Kim JM,et al.Effect of inhibition of extracellular signal-regulated kinase 1 and 2 pathway on apoptosis and bcl-2 expression in Helicobacter pylori-infected AGS cells.Infect Immun,2003,71(2):830-837.
    61 Lee SH,Lee CW,Lee JW,et al.Induction of apoptotic cell death by 2'-hydroxycinnamaldehyde is involved with ERK-dependent inactivation of NF-kappaB in TNF-alpha-treated SW620 colon cancer cells.Biochem Pharmacol,2005,70(8):1147-1157.
    62 Cheng Y,Chang LW,Tsou TC.Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells.Arch Toxicol,2006,80(6):310-318.
    63 Kurosawa M,Numazawa S,Tani Y,et al.ERK signaling mediates the induction of inflammatory cytokines by bufalin in human monocytic cells.Am J Physiol Cell Physiol,2000,278(3):C500-508.
    1.Boulton TG,Cobb MH.Identification of multiple extracellular signal-regulated kinases(ERKs)with antipeptide antibodies.Cell Regul 1991;2(5):357-71.
    2.Boulton TG,Nye SH,Robbins DJ,Ip NY,Radziejewska E,Morgenbesser SD,et al.ERKs:a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF.Cell 1991;65(4):663-75.
    3.Mehdi MZ,Azar ZM,Srivastava AK.Role of Receptor and Nonreceptor Protein Tyrosine Kinases in H2O2-Induced PKB and ERK1/2 Signaling.Cell Biochem Biophys 2007;47(1):1-10.
    4.Gout S,Morin C,Houle F,Huot J.Death receptor-3,a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation.Cancer Res 2006;66(18):9117-24.
    5.Hibi M,Lin A,Smeal T,Minden A,Karin M.Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain.Genes Devl993;7(11):2135-48.
    6.Han J,Lee JD,Bibbs L,Ulevitch RJ.A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.Science 1994;265(5173):808-11.
    7.Zhou G,Bao ZQ,Dixon JE.Components of a new human protein kinase signal transduction pathway.J Biol Chem 1995;270(21):12665-9.
    8.Shi YH,Wang YX,Bingle L,Gong LH,Heng WJ,Li Y,et al.In vitro study of HIF-1 activation and VEGF release by bFGF in the T47D breast cancer cell line under normoxic conditions:involvement of PI-3K/Akt and MEK1/ERK pathways.J Pathol 2005;205(4):530-6.
    9.Abe MK,Saelzler MP,Espinosa R 3rd,Kahle KT,Hershenson MB,Le Beau MM,et al.ERK8,a new member of the mitogen-activated protein kinase family.J Biol Chem 2002;277(19):16733-43.
    10.Tekin D,Xi L,Zhao T,Tejero-Taldo MI,Atluri S,Kukreja RC.Mitogen-activated protein kinases mediate heat shock-induced delayed protection in mouse heart.Am J Physiol Heart Circ Physiol 200l;281(2):H523-32.
    11.Drechsler Y,Dolganiuc A,Norkina O,Romics L,Li W,Kodys K,et al.Heme oxygenase-1 mediates the anti-inflammatory effects of acute alcohol on IL-10 induction involving p38 MAPK activation in monocytes.J Immunol 2006;177(4):2592-600.
    12.Kuldo JM,Westra J,Asgeirsdottir SA,Kok RJ,Oosterhuis K,Rots MG,et al.Differential effects of NF-{kappa}B and p38 MAPK inhibitors and combinatibns thereof on TNF-{alpha}-and IL-1 {beta}-induced proinflammatory status of endothelial cells in vitro.Am J Physiol Cell Physiol 2005;289(5):C 1229-39.
    13.Tulasne D,Bori T,Watson SP.Regulation of RAS in human platelets.Evidence that activation of RAS is not sufficient to lead to ERK.1-2 phosphorylation.Eur J Biochem 2002;269(5):1511-7.
    14.Tognon C,Garnett M,Kenward E,Kay R,Morrison K,Sorensen PH.The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erkl/2 and PI3-kinase-Akt signaling for fibroblast transformation.Cancer Res 2001;61(24):8909-16.
    15.Kuo HC,Lee HJ,Hu CC,Shun HI,Tseng TH.Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells.Toxicol Appl Pharmacol 2006;210(1-2):55-62.
    16.Menendez JA,Vellon L,Colomer R,Lupu R.Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase(oncogenic antigen-519)synergistically enhances Taxol(paclitaxel)-induced cytotoxicity.Int J Cancer 2005;115(1):19-35.
    17.Domina AM,Vrana JA,Gregory MA,Hann SR,Craig RW.MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells,and at additional sites with cytotoxic okadaic acid or taxol.Oncogene 2004;23(31):5301-15.
    18.Pushkarev VM,Starenki DV,Saenko VA,Namba H,Kurebayashi J,Tronko MD,et al.Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells.Endocrinology 2004;145(7):3143-52.
    19.Hoshino R,Chatani Y,Yamori T,Tsuruo T,Oka H,Yoshida 0,et al.Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors.Oncogene 1999;18(3):813-22.
    20.Sivaraman VS,Wang H,Nuovo GJ,Malbon CC.Hyperexpression of mitogen-activated protein kinase in human breast cancer.J Clin Invest 1997;99(7):1478-83.
    21.Maemura M,lino Y,Koibuchi Y,Yokoe T,Morishita Y.Mitogen-activated protein kinase cascade in breast cancer.Oncology 1999;57 Suppl 2:37-44.
    22.Pozzi A,Yan X,Macias-Perez I,Wei S,Hata AN,Breyer RM,et al.Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation.J Biol Chem 2004;279(28):29797-804.
    23.Davido DJ,Richter F,Boxberger F,Stahl A,Menzel T,Luhrs H,et al.Butyrate and propionate downregulate ERK phosphorylation in HT-29 colon carcinoma cells prior to differentiation.Eur J Cancer Prev 2001;10(4):313-21.
    24.Towatari M,Iida H,Tanimoto M,Iwata H,Hamaguchi M,Saito H.Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells.Leukemia 1997;11(4):479-84.
    25.Gioeli D,Mandell JW,Petroni GR,Frierson HF Jr,Weber MJ.Activation of mitogen-activated protein kinase associated with prostate cancer progression.Cancer Res 1999;59(2):279-84.
    26.Kim HT,Tasca S,Qiang W,Wong PK,Stoica G.Induction of p53 accumulation by Moloney murine leukemia virus-tsl infection in astrocytes via activation of extracellular signal-regulated kinases 1/2.Lab Invest 2002;82(6):693-702.
    27.Rincon M,Flavell RA,Davis RA.The JNK and P38 MAP kinase signaling pathways in T cell-mediated immune responses.Free Radic Biol Med 2000;28(9):1328-37.
    28.Liang Q,Molkentin JD.Redefining the roles of p38 and JNK signaling in cardiac hypertrophy:dichotomy between cultured myocytes and animal models.J Mol Cell Cardiol 2003;35(12):1385-94.
    29.Kaneto H.The JNK pathway as a therapeutic target for diabetes.Expert Opin Ther Targets 2005;9(3):581-92.
    30.Bozyczko-Coyne D,Saporito MS,Hudkins RL.Targeting the JNK pathway for therapeutic benefit in CNS disease.Curr Drug Targets CNS Neurol Disord 2002;1(1):31-49.
    31.Kennedy NJ,Davis RJ.Role of JNK in tumor development.Cell Cycle 2003;2(3):199-201.
    32.Zhang R,Al-Lamki R,Bai L,Streb JW,Miano JM,Bradley J,et al.Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner.Circ Res 2004;94(11):1483-91.
    33.Filomeni G,Aquilano K,Civitareale P,Rotilio G,Ciriolo MR.Activation of c-Jun-N-terminal kinase is required for apoptesis triggered by glutathione disulfide in neuroblastoma cells.Free Radic Biol Med 2005;39(3):345-54.
    34.Hochedlinger K,Wagner EF,Sabapathy K.Differential effects of JNK1 and JNK2 on signal specific induction of apoptosis.Oncogene 2002;21(15):2441-5.
    35.Eferl R,Ricci R,Kenner L,Zenz R,David JP,Rath M,et al.Liver tumor development.c-Jun antagonizes the proapoptotic activity of p53.Cell 2003;112(2):181-92.
    36.Tournier C,Hess P,Yang DD,Xu J,Turner TK,Nimnual A,et al.Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway.Science 2000;288(5467):870-4.
    37.Gao Y,Signore AP,Yin W,Cao G,Yin XM,Sun F,et al.Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway.J Cereb Blood Flow Metab 2005;25(6):694-712.
    38.Song JJ,Lee YJ.Daxx deletion mutant(amino acids 501-625)-induced apoptosis occurs through the JNK/p38-Bax-dependent mitochondrial pathway.J Cell Biochem 2004;92(6):1257-70.
    39.Bachelor MA,Bowden GT.Ultraviolet A-induced modulation of Bcl-XL by p38 MAPK in human keratinocytes:post-transcriptional regulation through the 3'-untranslated region.J Biol Chem 2004;279(41):42658-68.
    40.Ono K,Han J.The p38 signal transduction pathway:activation and function.Cell Signal 2000;12(1):1-13.
    41.Brown GE,Stewart MQ,Bissonnette SA,Elia AE,Wilker E,Yaffe MB.Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase.J Biol Chem 2004;279(26):27059-68.
    42.Matsumoto-Ida M,Takimoto Y,Aoyama T,Akao M,Takeda T,Kita T.Activation of TGF-betal-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats.Am J Physiol Heart Circ Physiol 2006;290(2):H709-15.
    43.Piao CS,Yu YM,Han PL,Lee JK.Dynamic expression of p38beta MAPK in neurons and astrocytes after transient focal ischemia.Brain Res 2003;976(1):120-4.
    44.Meng AH,Ling YL,Zhang XP,Zhao XY,Zhang JL.CCK-8 inhibits expression of TNF-alpha in the spleen of endotoxic shock rats and signal transduction mechanism of p38 MAPK.World J Gastroenterol 2002;8(1):139-43.
    45.Bazuine M,Ouwens DM,Gomes de Mesquita DS,Maassen J A.Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity.Eur J Biochem 2003;270(19):3891-903.
    46.Somwar R,Koterski S,Sweeney G,Sciotti R,Djuric S,Berg C,et al.A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation.J Biol Chem 2002;277(52):50386-95.
    47.Carter BZ,Mak DH,Schober WD,Cabreira-Hansen M,Beran M,McQueen T,et al.Regulation of survivin expression through Bcr-Abl/MAPK cascade:targeting survivin overcomes imatinib resistance and increases imatinib sensitivity in imatinib-responsive CML cells.Blood 2006;107(4):1555-63.
    48.Qi X,Tang J,Pramanik R,Schultz RM,Shirasawa S,Sasazuki T,et al.p38 MAPK activation selectively induces cell death in K-ras-mutated human colon cancer cells tlirough regulation of vitamin D receptor.J Biol Chem 2004;279(21):22138-44.
    49.Menendez JA,Vellon L,Mehmi I,Teng PK,Griggs DW,Lupu R.A novel CYR61-triggered ‘CYR61-alphavbeta3 integrin loop’ regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway.Oncogene 2005;24(5):761-79.
    50.Hayne C,Tzivion G,Luo Z.Raf-1/MEK/MAPK pathway is necessary for the G2/M transition induced by nocodazole.J Biol Chem 2000;275(41):31876-82.
    51.Chen SE,Jin B,Li YP.TNF-{alpha} REGULATES MYOGENESIS AND MUSCLE REGENERATION BY ACTIVATING p38 MAPK.Am J Physiol Cell Physiol 2006.
    52.Takaishi H,Taniguchi T,Takahashi A,Ishikawa Y,Yokoyama M.High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells.Biochem Biophys Res Commun 2003;305(1):122-8.
    53.Lee HS,Miau LH,Chen CH,Chiou LL,Huang GT,Yang PM,et al.Differential role of p38 in IL-1 alpha induction of MMP-9 and MMP-13 in an established liver myofibroblast cell line.J Biomed Sci 2003;10(6 Pt 2):757-65.
    54.Jones NC,Tyner KJ,Nibarger L,Stanley HM,Comelison DD,Fedorov YV,et al.The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell.J Cell Biol 2005;169(1):105-16.
    55.Kumamoto H,Takahashi N,Ooya K.K-Ras gene status and expression of Ras/mitogen-activated protein kinase(MAPK)signaling molecules in ameloblastomas.J Oral Pathol Med 2004;33(6):360-7.
    56.Cohen M,Meisser A,Haenggeli L,Bischof P.Involvement of MAPK pathway in TNF-alpha-induced MMP-9 expression in human trophoblastic cells.Mol Hum Reprod 2006;12(4):225-32.
    57.Luo L,Li DQ,Doshi A,Farley W,Corrales RM,Pflugfelder SC.Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface.Invest Ophthalmol Vis Sci 2004;45(12):4293-301.
    58.Holvoet S,Vincent C,Schmitt D,Serres M.The inhibition of MAPK pathway is correlated with down-regulation of MMP-9 secretion induced by TNF-alpha in human keratinocytes.Exp Cell Res 2003;290(1):108-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700