用户名: 密码: 验证码:
大兴安岭东麓旱作丘陵区耕地质量演变与可持续利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用定量分析与定性分析相结合的方法对大兴安岭东麓旱作丘陵区耕地土壤化学性状和物理性状演变特征、环境质量演变特征、耕地土壤侵蚀的形成与演变,以及耕地质量演变的驱动因素与影响进行了系统的分析研究,提出了该区耕地可持续利用的技术措施和区域农业可持续发展的典型模式与对策等。研究结果如下:
     (1)经过20多年的演变,大兴安岭东麓旱作丘陵区耕地土壤有机质含量平均下降23.8%;土壤全氮含量下降31.9%;土壤碱解氮含量降低12%以上;土壤速效钾含量下降24.7%。土壤中交换性钙、交换性镁、有效硫、有效硅等中量元素含量较为丰富。微量元素中锌、铜、铁、锰等含量丰富。硼和钼呈现缺乏,缺乏面积分别占总耕地面积的87.2%和78.2%。
     (2)与20多年前相比,研究区耕地物理性状逐步恶化,主要表现在土壤结构变劣、容重增加、腐殖质层厚度和有效土层厚度减少、障碍层的形成、地表砾石含量增多。该区耕地出现了明显的次生障碍层,形成5~10cm的犁底层并不断加厚变硬,并形成一个地表砾石层。目前地表砾石度大于5%的面积比20多年前增加近20倍;耕地中有1/3~1/2以上的土壤分布在薄体和薄层暗棕壤上,该土壤腐殖质层较薄(<20cm),土体砾石含量高(>30%),砾石层位浅,一般20cm就出现大量砾石。而且随着坡度的升高,种植年限的延长,表层土壤砾石含量显著增加。
     (3)研究区耕地土壤综合污染指数均小于0.7,达到Ⅰ级标准,符合绿色食品产地土壤环境条件。因自然因素成土母质和成土过程不同,各类型耕地土壤重金属元素的汞、铬、砷、铅、铜含量有一定差异,但土壤镉含量的差异较小。该区土壤pH值在4.8~7.1之间,平均为6.0,呈微酸性~中性,各土类间pH值变化不大。研究区的河水和地下水都达到了农田灌溉水质标准的极限值,符合农田灌溉和绿色食品生产的水质标准。
     (4)按照全国土壤侵蚀类型区划,研究区属于东北黑土区的低山丘陵区,存在不同程度的侵蚀现象,主要分为水力侵蚀、冻融侵蚀两种类型,其中水力侵蚀占耕地侵蚀的99.8%。与第二次土壤普查期间比较,现有耕地面积比20多年前增加了3.3倍,耕地土壤侵蚀强度由微度发展到轻度。耕地土壤二级以上的明显侵蚀面积由12.2万hm2增加到52.7万hm2,增加了4.3倍;平均侵蚀模数由第二次土壤普查前的小于500 t/km2.年,增加到1935.7 t/km2.年;沟壑密度由0.06 km/km2增加到1.87 km/km2;30%左右的耕地因土壤侵蚀已经产生严重或比较严重的水土流失。耕地自开垦以来,表土层流失厚度总量为3~16.8cm,平均为8.4cm,年均流失厚度为0.2~1.1cm,严重地区个别年度表土层的流失量达5cm以上。其中暗棕壤表土层的总流失厚度为11.3cm,占腐殖质层厚度的51.3%;黑土土类的总流失厚度为9.5cm,占该土类腐殖质层厚度的28.83%;草甸土流失厚度为4.4cm,占该土类腐殖质层厚度的6.2%。根据土壤侵蚀程度分级标准,黑土土类的土层厚度占A层的6.2%,属轻度侵蚀;暗棕壤的侵蚀厚度占A层的51.8%,属中度侵蚀;草甸土土类的侵蚀厚度占A层的4.4%,属轻度侵蚀。研究区的总体侵蚀厚度为8.4cm,占A层的17.8%,属于轻度侵蚀程度。耕地土壤受侵蚀后,一方面造成水土流失,物理性状恶化,另一方面还存在养分流失的问题。平均每年流失土壤总量为916.7万t,流失有机质总量为42.5万t,流失的N、P、K养分相当于40%高浓度含量的复合肥5.9万t,是该地区年均化肥施用量的1.4倍。
     (5)耕地土壤<0.01mm颗粒含量、孔隙度、团聚体含量、田间持水量随坡度增大而减小,容重随坡度增大而增大。土壤有机质、全氮、有效磷、有效钾、有效铜、有效锰、有效硼、有效硅,随着坡度的升高明显下降;土壤有效铁、有效钼、有效硫含量,随着坡度的升高而增加;随着坡度升高酸性增强。降水的季节性分布不均、蒸发量的上升加重土壤侵蚀;气温的变化和灾害性天气频率的增加也导致耕地质量向退化方向演变。在人为因素中,不合理的垦荒种植,难以改变的小型四轮拖拉机表土翻耕方式,不科学的肥料使用、管理方式,以及人口增长和经济社会发展的负面影响,都促使耕地质量在演变中逐步形成退化。
     (6)提出了分区改良、合理布局、防止水土流失、科学施肥培肥地力、改革耕作制度等耕地可持续利用的技术措施和建立耕地可持续利用的立法机制、开发保育监督机制、政府专题议事规则、加强人才培养,发展区域特色经济等政策建议。针对研究区的实际,提出区域农业可持续发展的典型配套模式。
Based on the method of quantitative and qualitative analysis, this study was conducted to investigate the change of soil fertility characteristics, soil physical properties, soil environmental quality, soil erosion status of hilly dryland in the east of Great Xingan Mountains, and then the reasons for those changes were comprehensively investigated. At last, the technical and strategically pathways were put forward for sustainable utilization and agricultural sustainable developmental model in this area. The results were list as follows:
     (1) Compared with the parameters at 20 years ago in the studied regions, the soil organic matter content decreased 23.8%, soil total nitrogen content decreased 31.9%., alkali-hydrolysable nitrogen content decreased more than 12%, and soil available potassium decreased 24.7%. Soil medium elements and microelements remain consistently, such as exchangeable calcium, exchangeable magnesium, available sulfur, available silica and zinc, copper, iron, manganese, while 87.2% and 78.2% of the soils were short of boron and molybdenum, respectively.
     (2) The soil physical properties had a trend of depravation in the recent 20 years in the studied area, which representing in the decrease of soil structure quality, the increase of soil bulk density, the decline of humus and availability soil layer, the form of obstacle layers and the increase of surface gravel contents. Secondary soil obstacle layers were formed in the studied 20 years, which resulted in a surface gravel layer and a 5~10cm hard ploughpans. The surface areas with gravel contents≥5% were increased by 20 times compared with 20 years ago. One third to half of the farmland were distributed in thin dark-brown soil, which has thinner humus layer (<20cm) and higher gravel content (>30%) and the gravel appeared under ground 20cm in general. With the increasing of the slope and cultivation years, the gravel content in soil surface increased significantly.
     (3) The integration pollution index of soil in studied areas were below 0.7 in general, which reached to theⅠclass standard, belonging to soil standard for green food production. Due to the different of natural factors and soil parent material and soil pedogenesis process, soil heavy metals such as mercury, chromium, arsenic, lead, copper contents in different types of soils had certain differences while soil cadmium contents had no such obvious difference. Soil pH values in the areas were on the average of 6.0, between 4.8~7.1, was slightly acidic to neutral response. The water quality from river and ground had reached the limits of quality standards for irrigation in the studied areas, which accorded to the water quality standards use for green food production.
     (4) In term of the national divisions of soil erosion type, the studied areas belonged to north-eastern hilly areas of black soil zone. There were different degrees of erosion, which mainly fall into two categories including water erosion and freeze-thaw erosion. Water erosion accounted for 99.8% of arableland erosion in this area. Freeze-thaw erosion only accounted for part of areas which called "land split" (2~5cm in width, 5~50cm in depth ) in the near Great Xingan Mountains forest due to the formation of frozen-thawed 20 years ago, while the area enlarged to 3.3 times more than before. The soil erosion intensity of arableland turned to micro-developed from mild. The soil erosion area above second class increased from 12.2×104 hm2 to 52.7×104 hm2, which increasing 4.3 times; The average soil erosion modulus were increased by 1935.7 t/km2/year from less than 500 t/km2/year. Gully density were increased by 1.87 km/km2 from 0.06 km/km2; 30% of the arableland has been subjected to serious soil erosion. The total thickness of soil loss for the 3~16.8cm, with an average of 8.4cm, an average annual loss of thickness 0.2~1.1cm, serious areas of individual annual soil loss amounted to more than 5cm since the reclamation of land, in which 11.3cm thickness soil layer was loss in dark brown soil, accounting for 51.3% of humus layer; 9.5cm thickness soil was loss in black soil, accounting for 28.8%of humus layer thickness; 4.4cm thickness soil was loss in meadow soil, accounting for humus layer thickness by 6.2% of the same soil type. In terms of the classification standards of the degree of soil erosion, black soil layer thickness accounts for 6.2% level of Class A, which is mild erosion; dark brown soil erosion accounts for 51.8% of A level, which is moderate erosion; meadow soil erosion thickness accounted for 4.4% of A level, which is slightly eroded. The overall erosion of the study area is a thickness of 8.4cm, accounting for 17.8% of A level, with a degree of slight erosion. Investigation of the studies showed that soil erosion resulted in, both deterioration of physical properties and nutrient loss. Average annual soil loss of the total amount is 9,167,000 t. The loss of organic matter reached 425,000 t. The loss of N, P, K nutrients equivalent to 59,000 t compound fertilizers with 40% content, 1.4 times of the total amount of chemical fertilizer use in this areas.
     (5) The soil particles <0.01mm content, porosity, aggregate content, field capacity decreased with the increase of slope, while bulk density increased with the slope. Soil pH value, organic matter, total nitrogen, available phosphorus, available potassium and effective copper, effective manganese, boron, silicon decreased with the increasing of slope, while soil available iron, molybdenum and efficient sulfur content increased with the slope. The seasonal uneven precipitation and evaporation increasing resulted in the worse of soil erosion; The temperature change and the increase of the frequency of severe weather also led to the degradation of arableland. Unreasonable cultivation, the small four-wheel tractor tillage system, and unscientific fertilization system, as well as the negative effects result from population growth and economic and social development were all led the degradation of soil quality.
     (6) Based on the analysis of natural and human activity factors which affected soil quality, the technical methods to sustainable utilization of cultivated land resources including district improvement, rational distribution, preventing soil erosion, rational fertility fertilization, reforming the faming systems were proposed. In addition, we also put forward corresponding strategic step such as enhancing legislative work to protect arable land, establishing the monitoring mechanisms for the conservation of farmland development of study area, and put the eco-environment restoration of farmland into the agenda of government, the establishment of Great Xingan Mountains green resources conservation areas, and developing the characteristics economic of the studied area. Finally, regional agriculture sustainable development patterns in the studied area were proposed.
引文
1.摆万奇,赵士洞.土地利用和土地覆被变化研究模型综述[J].自然资源学报,1997,12(2):169~175.
    2.边馥苓.GIS地理信息系统原理和方法[M].北京:测绘出版社,1996.
    3.蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展[J].地理科学进展,2003,03:12-17
    4.曹恭,梁鸣早.钙—平衡栽培体系中植物必需的中量元素[J].土壤肥料,2003,(2):1-4.
    5.曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    6.陈慧选,吴家华,白增森,等.太原市南郊区土壤8种重金属元素背景值的研究[J].1994(2):32-35.
    7.陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246.
    8.陈利容,刘奇勇.GIS在区域生态评价中的作用[J].河北农业科学,2008,09:42-47.
    9.陈申宽,阎认沛,武迎红,等.大豆连作年限与杂草发生关系的研究[J].植物保护,2000,
    26(1):44-45.
    10.陈世俭,胡霭堂.土壤铜形态及有机物质的影响[J].长江流域资源与环境, 1995, 4(4):
    367-371.
    11.陈世俭.有机物质添加量对污染土壤铜形态及活性的影响[J].土壤与环境,1999,8(1):
    22-25.
    12.陈晓燕.紫色土坡面土壤侵蚀预测模型应用研究[D].西南农业大学,2003.
    13.程昌秀,严泰来,朱德海,等.GIS辅助下的图斑地类识别方法研究—以土地利用动态监测为例[J].中国农业大学学报,2001,6(3):55-59.
    14.储少岗,杨春,徐晓白,等.典型污染地区底泥和土壤中残留多氯联苯(PCBs)的情况调查[J].中国环境科学,1995,15(3):199-203.
    15.崔文华,辛亚军,于彩娴,等.呼伦贝尔市大兴安岭东麓黑土区土壤侵蚀研究[J].土壤,2005(37),4:17-22.
    16.窦理波,徐东文.关于耕地总量动态平衡的浅显思考[J].新西部(下半月),2007,6:9-14.
    17.杜军.论土地危机与对策[J].前进论坛,2000,12(6):8-11.
    18.封建民,王涛,谢吕卫,等.黄河源区生态环境退化[J].地理科学进展,2004,23(6):56- 62.
    19.封志明.耕地与粮食安全战略:藏粮于土,提高中国土地资源的综合生产能力[J].地理学与国土研究,2000,16 (3):1-5.
    20.冯泽蔚,谭春燕,罗桂琴,等.连续油菜免耕对土壤肥力影响初步研究[J].安徽农学通报,2008,14(17):114-115.
    21.傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246.
    22.富有,于蓉芳.中国耕地的基础地力与土壤改良[J].中国农业出版社,1996(12):15-30.
    23.甘海华,彭凌云.江门市新会区耕地土壤养分空间变异特征[J].应用生态学报,2005,16(8):1437-1442.
    24.高洪军,朱平,彭畅,等.黑土有机培肥对土地生产力及土壤肥力影响研究[J].吉林农业大学学报,2007,29(1):65-69.
    25.高强,刘淑霞,王瑞有,等.黑土区土壤养分状况变化及施肥措施[J].吉林农业大学学报,2001,23(1):65-68.
    26.高志强,刘纪远.我国耕地面积重心及耕地生态背景质量的动态变化[J].自然资源学报,1998,13(1):92-95.
    27.高志强,刘纪远,庄大方.中国土地资源生态环境质量状况分析[J].自然资源学报,1999,14 :92-96.
    28.高中贵,彭补拙,喻建华,等.经济发达区土地利用变化对土壤性质的影响—以江苏省昆山市为例[J].自然资源学报,2005,20(1):44-51.
    29.谷淑湘,王建明,刘凤梅,等.阿荣旗耕地质量状况及改良利用措施[J].内蒙古农业科技,2006,4:43-46.
    30.顾清,庞海云,丁险峰,等.中量营养元素在农业生产上的应用[J].现代化农业,2006,11:16-18.
    31.归秀娥.我国耕地资源可持续利用面临的问题与对策[J].经济大视野,2008,7,102-103.
    32.郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响—以河北省遵化市为例[J].地理学报,2001,56(4):447-455.
    33.海全胜,玉山,阿拉腾图雅,等.基于GIS的阿荣旗耕地土壤养分分布规律研究[J].内蒙古师范大学学报(自然科学汉文版),2007,36(3):363-365,370.
    34.郝芳华,常影,宁大同,等.中国耕地资源面临的挑战与可持续利用对策[J].环境保护,2003,4:30-33.
    35.何国松,赵曦,钟学兵,等.咸宁市咸安区耕地资源变化态势与对策[J].资源开发与市场,2004,20(4):240-246.
    36.何同康.土地资源评价的主要方法及其特点比较[J].土壤学进展,1983,11(6):1-12.
    37.何艳芬,马超群,朱金花,等.吉林东部山区耕地动态变化研究[J].地理科学,2003,23(2):245-250.
    38.呼伦贝尔盟土肥站.呼伦贝尔土种志[M].内蒙古人民出版社,1991.
    39.呼伦贝尔盟土壤普查办公室.呼伦贝尔盟土壤[M].内蒙古人民出版社,1992.
    40.呼伦贝尔市档案史志局.呼伦贝尔志[M].内蒙古文化出版社.
    41.呼伦贝尔市统计局.呼伦贝尔市统计年鉴[M].内蒙古文化出版社,1980-2007.
    42.胡红帆.联合国粮农组织粮食安全特殊计划[J].世界农业,2000,(2):3-5.
    43.胡月明,万洪富,吴志峰,等.基于GIS的土壤质量模糊变权评价[J].土壤学报,2001,38(3):266-274.
    44.黄福奎.论遥感技术在十地利用动态监测中的应用[J].中国土地科学,1998,12(3):21-25.
    45.黄家柱,胡如忠,宋建平,等.卫星遥感与地理信息系统在淮阴市可持续发展中的应用[J] .中国人口.资源与环境,1999,03:41-45.
    46.黄家柱,赵锐.遥感与GIS在长江二角洲地区资源与环境动态监测中的应用[J].长江流域资源与环境,2000,9 (1):34-39.
    47.黄健,张惠琳,傅文玉,等.东北黑土区土壤肥力变化特征的分析[J].土壤通报,2005,36(5):659-663.
    48.黄杏元,汤勤.地理信息系统[M].北京:高等教育出版社,2001.
    49.江忠善,郑粉莉.坡面水蚀预报模型研究[J].水土保持学报,2004,01:54-57.
    50.蒋廷惠,胡霭堂,秦怀英.土壤中锌的形态分布及其影响因素[J].土壤学报,1993,30(3):260-266.
    51.焦菊英,贾燕锋,景可,等.自然侵蚀量和容许土壤流失量与水土流失治理标准[J].中国水土保持科学2008,4:71-84.
    52.靳长兴.坡度在坡面侵蚀中的作用[J] .地理研究,1996,03:
    53.康红,朱保安,洪利辉,等.免耕覆盖对旱地土壤肥力和小麦产量的影响[J].陕西农业科学,2001,9:1-3.
    54.孔德工,唐其展,田忠孝,等.南宁市蔬菜基地土壤重金属含量及评价[J].农业环境科学学报,2004(1):21-24.
    55.孔祥斌,张凤荣,齐伟,等.集约化农区土地利用变化对土壤养分的影响[J] .地理学报,2003,58(3):333-342.
    56.李春平.山东省区域特色农业发展研究[J].安徽农业科学,2007,35(28):9062-9064.
    57.李桂林,陈杰.城市边缘带土地利用特征与土壤资源压力[J] .长江流域资源与环境,2005,14(5):580-584.
    58.李磊,李小娟,崔伟宏,等.基于GIS和RS的县级土地利用动态监测系统研究[J].地理学与国土研究,2001,17(2):28-33.
    59.李利峰,成升魁.生态占用—衡量可持续发展的新指标[J].自然资源学报,2000,15(4):375-382.
    60.李平,李秀彬,刘学军,等.我国现阶段土地利用变化驱动力的宏观分析[J].地理研究,2001,20(2):129-138.
    61.李天文,袁勘省,许五弟,等.基于GIS的土壤水蚀预报能量力学模型研究[J] .水土保持通报, 2004,5:13-16.
    62.李新举,胡振琪,刘宁,等.黄河三角洲土壤肥力质量的时空演变—以垦利县为例[J].植物营养与肥料学报,2006,12(6):778-783.
    63.李秀彬.中国近20年来耕地面积的变化及其政策启示[J].自然资源学报,1999,14(4):329-333.
    64.李秀军,杨富亿,刘兴土,等.松嫩平原西部盐碱湿地“稻~苇~渔”模式研究[J].中国生态农业学报,2007,15(5):174-177.
    65.李阳兵,邵景安,魏朝富,等.岩溶山区不同土地利用方式下土壤质量指标响应[J].生态与农村环境学报,2007,23(1):12-15.
    66.李瑜,郑少锋.农业区位理论与西部退耕还林区农业产业布局研究[J].农业现代化研究,2007,28(2):147-150.
    67.李玉,杜丽娟.河北省耕地问题及可持续利用对策[J].河北省科学院学报,1999,16(30):57-60.
    68.李元科,全志杰,张美亮,等.基于人工神经网络在遥感图像处理中的应用探讨[J].陕西林业科技.1998,04:53-59
    69.李元科,全志杰.在G1S支持下的淳化县土壤侵蚀动态遥感研究[J].干旱地区农业研究,1998,16(4):110-114.
    70.李云梅,黄家,陆皖宁,等.基于分析模型的太湖悬浮物浓度遥感监测[J].海洋与湖沼, 2006, 37(2)::171-177.
    71.李志伟,许嗥,崔邢涛,等.河北省耕地可持续利用对策[J].资源调查与评价,2005,3:43-47.
    72.连米钧.水土流失概念及水土流失强度分级标准探[J].山西水土保持科技,2001,1:31-34.
    73.林心雄.中国土壤有机质状况及管理.土壤科学与农业持续发展[J].北京:中国科学技术出版社,1994.
    74.林艳玲,崔文华.呼伦贝尔市大兴安岭东岭东黑土区农业生态环境与土地生产力的演化[J].内蒙古农业科技,2007,2:26-29.
    75.刘更另.红壤丘陵自然植被恢复及其对某些土壤条件的影响[J].中国农业科学,1990,23(3):60-69.
    76.刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社,1996.
    77.刘纪远,等.中国资源环境遥感宏观调查与动态研究[M].中国科学技术出版社,1996.
    78.刘纪远,等.二十世纪九十年代中国土地利用变化的遥感时空信息研究[J].科学出版社, 2005.
    79.刘世平,沈新平.长期少免耕土壤供肥特征与水稻吸肥规律的研究[J].江苏农学院学报,1995, 16(2):77-80.
    80.刘世全,高丽丽,蒲玉琳,等.西藏土壤有机质和氮素状况及其影响因素分析[J].水土保持学报,2004,118(16): 54-67.
    81.刘友兆,马欣,徐茂,等.耕地质量预警[J].中国土地科学,2003,17 (6):9-12.
    82.刘玉,杨庆媛.我国耕地可持续利用的障碍因素和对策[J].地域研究与开发,2004,23(3):102~105.
    83.卢良恕.农业可持续发展战略研究.21世纪初中国农业发展战略[M].北京:中国农业出版社,2000.
    84.卢纹岱.SPSS for windows统计分析(第二版) [M].电子工业出版社.2003.
    85.鲁奇.中国耕地资源开发、保护与粮食安全保障问题[J].资源科学,1999,21(6):5-8.
    86.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    87.吕新,寇金梅,李宏伟,等.模糊评判方法在土壤肥力综合评价中的应用研究[J].干旱地区农业研究,2004,322(3):56-59.
    88.栾兆擎,宋长春,邓伟,等.三江平原挠力河流域湿地不同开垦年限肥力的变化[J].吉林农业大学学报,2003,25(5):544-547,556.
    89.罗友进,王子芳,高明,等.复合污染下土壤质量评价的生物学指标研究进展[J].安徽农业科学,2007,35(19):5812-5814,5831.
    90.内蒙古自治区土肥站.内蒙古土壤[M].中国农业科学出版社,1994.
    91.内蒙古自治区土肥站.内蒙古土壤资源数据册[M].内蒙古人民出版社,1994.
    92.内蒙古自治区土肥站.内蒙古土种志[M].中国农业出版社,1994.
    93.南秋菊,华珞.国内外土壤侵蚀研究进展[J].首都师范大学学报(自然科学版),2003,24(2):86-95.
    94.彭珂珊.中国土壤侵蚀影响因素及其危害分析[J].水利水电科技进展,2000,20(4):15-18.
    95.全国明,章家恩,严会超,等.免耕对稻田土壤肥力的影响研究进展[J].中国农学通报,2005,21(9):266-269,278.
    96.全国农业技术推广服务中心.东北黑土区耕地质量问题与对策[M].北京:中国农业出版社,2004.
    97.全国农业技术推广中心.土壤改良与监测文集[M].北京:中国农业出版社,1999.
    98.全国农业区划委员会.中国农业资源与区划要览[M].北京:测绘出版社,1987.
    99.全国土肥总站.土壤分析技术规范[M].北京:中国农业出版社,1993.
    100.全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998.
    101.邵晓梅、杨勤业、张洪业,等.山东省耕地变化趋势与驱动力研究[J].地理研究,2001(3): 298-305.
    102.沈慧,姜凤岐,杜晓军,等.水土保持林土壤肥力及其评价指标[J].水土保持学报,2000,
    14(2):60-65
    103.石淑芹,陈佑启,姚艳敏,等.中国区域性耕地变化与粮食生产的关系研究[J].自然资源学报,2008,23(2):361-368.
    104.史德明,韦启潘,梁音,等.关于侵蚀土壤退化及其机理[J].土壤,1996,3:140-144.
    105.史德明,韦启潘,梁音,等.中国南方侵蚀土壤退化指标体系研究[J].水土保持学报,2000,14(3):1-9.
    106.史德明.土壤侵蚀对生态环境的影响及防治对策[J].水土保持学报,1991,5(3):1-8
    107.史衍玺,唐克丽.林地开垦加速侵蚀下土壤养分退化的研究[J].土壤侵蚀与水土保持学报,1996,2(4):26-33.
    108.史衍玺.人为开垦加速侵蚀下土壤质量演变及其机理研究[D].博士学位论文,中科院水保所,1998.
    109.宋春,韩晓增.不同土地利用下黑土磷素肥力特征的研究[J].土壤通报,2007,38(5): 921-933.
    110.宋雪英,宋玉芳,孙铁珩,等.矿物油污染土壤中芳烃组分的生物降解与微生物生长动态[J].环境科学,2004,25(3):115-119.
    111.苏璧耀.土地资源学[M].南京:江苏教育出版社,1994.
    112.苏永中,赵哈林.农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究[J].中国农业科学,2003,36(8):928-934.
    113.隋跃宇,焦晓光,张兴义,等.农田黑土肥力综合评价研究[J].土壤肥料,2005 (5):46-51.
    114.孙波,赵其国,张桃林,等.土壤质量与持续环境I-土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    115.孙波,赵其国.红壤退化中的土壤质量评价指标及其评价方法[J].地理科学进展, 1999,(2):118-128.
    116.孙福来,张延霞,庞祥锋,等.长期定位施肥对壤有机质和碱解氮及冬小麦产量的影响[J].土壤通报,2007,38(5):1016-1018.
    117.孙建军,吕锦萍,李俊杰,等.博州耕地土壤养分现状及施肥对策[J].中国土壤与肥料,2007(5):70-72.
    118.汤国安,陈正江,赵牡丹,等.Arcview地理信息系统空间分析方法[M].北京:科学出版社.2002.
    119.汤莉莉,唐翔宇,朱永官,等.北京地区土壤中多环芳烃的分布特征[J].解放军理工大学学报(自然科学版),2004,5(2):95-99.
    120.唐克丽.土壤侵蚀环境演变与全球变化及防灾减灾的机制[J].土壤与环境,1999,8(2):81-86
    121.唐晓平.四川紫色土肥力的综合评判[J].土壤通报,1997,28(3):107-109.
    122.滕应,黄昌勇,骆永明,等.铅锌银尾矿下土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119.
    123.田静毅,李月芬,王立新,等.基于RS和GIS的土壤侵蚀量预测应用研究[J].吉林农业大学学报,2007,29(1):78-82.
    124.汪景宽,王铁宇,张旭东,等.黑土土壤质量演变初探Ⅰ-不同开垦年限黑土主要质量指标演变规律[J].沈阳农业大学学报,2002,33(1):43-47.
    125.汪权方,查书平.安徽省自然资源的持续利用问题与对策[J].安徽师范大学学报,2000,23(4):405-408.
    126.王宏庭,金继运,王斌,等.土壤速效养分空间变异研究[J].植物营养与肥料学报. 2004,10(4):349-354.
    127.王建革,陆建飞.华北平原土壤肥力的变化与影响因素分析[J].农村生态环境,1998,14(3):12-16.
    128.王建勋.WEPP模型(坡面版)在黄土高原丘陵沟壑区的适用性评价[D] .西北农林科技大学,2007.
    129.王玲玲,姚文艺.我国流域土壤侵蚀预报模型研究动态评述[J].人民黄河, 2003,9:12-16.
    130.王清奎,汪思龙,高洪,等.土地利用方式对土壤有机质的影响[J].生态学杂志,2005,24 (4):360-363.
    131.王蓉芳,高祥照,彭世琪,等.中国耕地的基础地力与土壤改良[M].北京:中国农业出版社,1996.
    132.王茹,张凤荣,王军艳,等.潮土区不同质地的土壤的养分动态变化研究[J].土壤通报,2001,32(6):255-257.
    133.王文中,李锐.区域土壤侵蚀遥感调查与制图研究:以新疆地区为例[J].水土保持通报,1998,18(5):28-31.
    134.王秀兰,苏忠.基于GIS的内蒙古耕地时空变化研究[J].干旱区地理,1999,22(2):71-76.
    135.王秀英,曹文洪,陈东,等.土壤侵蚀与地表坡度关系研究[J].泥沙研究,1998,2:36-41.
    136.王再祥.山区土壤侵蚀的危害及防治措施[J].山西水土保持科技, 2006,(2):23-24.
    137.王作雷,蔡国梁,李玉秀,等.土壤重金属污染的非线性可拓综合评价[J].农业环境科学学报, 2004(2):151-156.
    138.魏义长,康玲玲,王云璋,等.水土保持措施对土壤物理性状的影响—以黄土高原水土保持世界银行贷款项目区为例[J].水上保持学报,2003,17(5):114-116.
    139.吴普特,周佩华.地表坡度与薄层水流侵蚀关系的研究[J] .水土保持通报,1993,03:
    140.吴新民,潘根兴,李恋卿,等.长江三角洲土壤质量演变趋势分析[J].地理与地理信息科学,2006,22(3):88-91.
    141.吴志峰,文雅,张坚,等.广州市长虹苗圃的土壤质量评价[J].农业环境科学学报,2001(5):69-70.
    142.夏淑芳,许红卫,王珂,等.浙江省耕地数量演变及其驱动力研究[J].科技通报,2006,22(3):345-351
    143.夏早发,雷春.关于如何界定耕地概念的研究[J].中国土地科学,1999,13(3):13-14.
    144.辛刚,颜丽,汪景宽,等.不同开垦年限黑土有机质变化的研究[J].土壤通报, 2002,33(5):332-335.
    145.辛景树,徐明岗,田有国,等.耕地质量演变趋势研究[J].中国农业科学技术出版社,2008.
    146.邢世和,徐志平,韦红,等.福建省耕地可持续利用分区评价及其对策[J].福建农业学报,2003,18(3)129-133.
    147.熊汉锋,王运华.梁子湖湿地土壤养分的空间异质性[J].植物营养与肥料学报,2005,11(5):584-589.
    148.徐俊祥,董文瑞.永久性及长期渍水的水稻土中铜的供给情况和施铜效果的关系[J].土壤学报,1989,26(2):149-158.
    149.徐明岗.中国土壤肥力演变[M].北京:中国农业科学技术出版社.2006.
    150.徐艳,张凤荣,汪景宽,等.我国潮土区与黑土区土壤有机质变化的对比研究[J].土壤通报, 2004,35(2): 102-105.
    151.许五弟,袁勘省,杨瑾,等.土壤水力侵蚀能量力学机理的理论分析[J] .西北大学学报(自然科学版), 2001,2:32-36.
    152.阎百兴,杨育红.东北黑土区土壤侵蚀现状与演变趋势[J].中国水土保持,2008,12:26-30.
    153.杨国栋,王肖娟.基于人工神经网络的土壤养分肥力等级评价方法[J].土壤通报,2005,36(1):30-33.
    154.杨世琦,杨正礼,高旺盛,等.不同尺度下区域农业系统协调度的评价[J].西北农林科技大学学报(自然科学版),2008,36(5):64-72.
    155.杨述河,闫海利,郭丽英,等.北方农牧交错带土地利用变化及其生态环境效应—以陕北榆林市为例[J] .地理科学进展,2004,23(6):49-55.
    156.叶嗣宗.土壤环境质量分级评价[J].上海环境科学,1992,1(6):39-40.
    157.余红兵,肖润林,王仁才,等.桂西北环境移民示范区柑桔园土壤中量微量元素含量研究[J].农业现代化研究,2007,28(4):504-506.
    158.余振国,胡小平.我国粮食安全与耕地的数量和质量关系研究[J].地理与地理信息科学,2003,19 (3):45-49.
    159.俞海,黄季,Scott Rozelle,等.中国东部地区耕地土壤肥力变化趋势研究[J].地理研究,2003,22(3):380-388.
    160.袁力,黄基秉,董庆佳,等.成都地区新型特色农业产业化经营模式初探[J].成都大学学报(社科版),2006,(5):16-20.
    161.翟瑞常,张之一.耕作对土壤生物碳动态变化的影响[J].土壤学报,1996,33(2):201-210.
    162.张凤荣,齐伟,薛永森,等.盐渍土区耕地质量指标及其在持续土地利用管理评价中的应用[J]..中国农业大学学报,2001,6( 5):42-48.
    163.张凤荣等.中国耕地资源数量与质量变化分析[J].资源科学,1998,20(5):32-39.
    164.张国印,王丽英,孙世友,等.土地利用方式对土壤质量性状的影响[J].河北农业科学,2004,8(1):1-5.
    165.张洪,傅瓦利,袁红,等.三峡库区土地利用与土壤质量演化的关系研究-以重庆万州为例[J].西南农业大学学报(自然科学版),2006,28(2):240-244.
    166.张坤民.关于中国可持续发展的政策与行动[M] .中国环境科学出版社,2004.
    167.张妙龄.用回归分析方法确定土地质量因子的评价指数[J].江苏农业科学,1984(2):38-41.
    168.张全发.植物群落演替与土壤发育之间的关系[J].武汉植物学研究,1990,8(4):325-334.
    169.张淑英,黄治江,代亚利,等.坡耕地土壤侵蚀对土壤化学性质的影响[J].西北林学院学报,2008,23(2):139-142.
    170.张桃林,潘剑君.土壤质量研究进展与方向[J].土壤,1999(31),01:37-43.
    171.张桃林,王兴祥.土壤退化研究进展[J].自然资源学报,2000,15(3):280-284.
    172.张维理.我国北方农用氮肥造成的地下水硝酸盐污染调查[J].植物营养与肥料学报,1995, ( 2):57-68.
    173.张兴义,隋跃宇,于莉,等.薄层农田黑土速效氮磷钾含量的空间异质性[J].水土保持学报,2004,18(4):85-88.
    174.张养安,喻权刚.基于遥感技术的红旗沟小流域土地利用演变及退耕地利用研究[J].水土保持学报, 2005,5:25-29.
    175.张永娥,王瑞良,靳绍菊,等.土壤微量元素含量及其影响因素的研究[J].土壤肥料,2005(5):35-37.
    176.赵秉强,张夫道.我国的长期肥料定位试验研究[J].植物营养与肥料学报,2002.8,(增刊):3-8.
    177.赵其国,孙波,张桃林,等.土壤质量与持续环境:I.土壤质量的定义及评价方法[J].农业环境科学学报,1997(3):113-120.
    178.赵伟峰,沈太基.安徽凤阳赵庄模式与苏南模式的比较研究及启示[J].农业经济问题,2007,5:106-109.
    179.赵晓丽,张增祥.基于RS和GIS的西藏中部地区土壤侵蚀动态监测[J].土壤侵蚀与水土保持学报,1999,5(2):44-50.
    180.赵晓英.西北地区生物资源开发利用现状及有关问题研究[J].地球科学进展,1996,(增刊2):69-77.
    181.郑海春.阿荣旗耕地[M].中国农业出版社,2003.
    182.郑海春.大兴安岭东南麓黑土退化的研究[M].内蒙古人民出版社,2005.
    183.郑海春.扎兰屯耕地[M].中国农业出版社,2005.
    184.中华人民共和国农业部.NY/T1121.1-18土壤检测[M].北京:中国农业出版社,2006.
    185.中华人民共和国水利部标准.土壤侵蚀分类分级标准(SL190-96)[M] .中国水利水电出版社,1997.
    186.周成虎等.遥感影像地学理解与分析[M].科学出版社,1999.
    187.周凌云.农田秸秆覆盖节水效应研究[J].生态农业研究,1996,4(3):49-52.
    188.周卫.有针对性地补施中量元素肥[J].中国农资,2008,2:60.
    189.朱德举.土地评价[M].北京:中国农业大学出版社,1996.
    190.朱荫湄,周启星.土壤污染与我国农业环境保护的现状、理论和展望[J].土壤通报,1999, 30(3):132-135.
    191. Liu J.Y. ,et al.Integrated Ecosystem Assessment of Western China[M].China Meteorological Press, 2005.
    192. Aref S., Wander M. M..Long-term trends of corn yield and soil organic mater in different crop sequences and fertility treatments [J]. Adv. Agron,1997,62:153-197.
    193. Carrington D. P.,Gallimore R.G.,Kutzbach J. E. .Climate sensitivity to wetlands and wetland vegetation ire mid-Holocene North Africa.Climate Dynamics C1im: Dyn, 2001.17(2/3): 151-157.
    194. Cormack J. E. M, Hogg J..Virtual-Memory Tiling for Spatial Data Handling in GIS[J]. Computer & Geoscience, 1997,23(4):659-669.
    195. Crist P. J..Assessing land use impacts on biodiversity using an expert system tool[J]. Landscape Ecology. 2000, 15:47-62.
    196. Dalal R. C, Mayer R. J. .Long term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Qeensland II. toalorganic carbon and its rate of loss from the soilprofile[J]. Aust. J. Soil Res, 1986, 24:281-292.
    197. Daniel T,Heggem..A Landscape Ecology Assessment of the Tensax River Basin[J]. Environmental Monitoring and Assessment. 2000,64:41-54.
    198. Doran J. W., Parkin T. B. .Defining and assessing soil quality. In Doran J.W.et al.(ed). Defining soil quality for a sustainable environment. SSSA Special Publication Number 35, Madison, Wisconsin, USA,1994,P3-21.
    199. Filip Z..International approach to assessing soil quality by ecologically–related biological parameters.Agriculture, Ecosystems&Environment, Special Issue, 2002,88(2):169-174.
    200. Fitzpaterick R. W. .Morphological indicators of soil health. In "Indicators of catchment health–a technical perspective". J. W. Walker and D. J. Reuter(eds.), CSIRO Publishing,Melbourne, 1996, pp 75-88.
    201. Fu B. J.,Chen L. D..The relationship between land use and soilconditions in the hilly areaofLoess Plateau in northern Shaanxi, China [J]. Catena, 2000, 39:69-78.
    202. Fu B. J.,Gulinck H., Masum M. Z..Loess erosion in relation to land - changes in Ganspoel catchment, central Belgium[J].Land Degradation &Rehabitation,1994,5 (4):261-270.
    203. Gornitz V. . A survey of anthropogenic vegetation changes in west Africa during the last century climatic implications [J]. Climatic Change, 1985, 7:285-325.
    204. Hajabbasi M. A., Ahmad J, Hamid R. K. .Deforestation effects on soil physical and chemical properties, Lordegan, Iran[J]. Plant and Soil, 1997, 190: 301-308.
    205. Halvorson A. D., Reule C. A., Anderson R. L. .Evaluation of management practices for converting grassland back to cropland [J]. J. Soil Water Conserv., 2000, 55:57-62.
    206. Han F. X.,Amos B..Solid-phase mangnese fractiona-tion changes in saturated arid-zone soils: pathways and kinetics [J].Soil Sci Soc Am J,1996,60:1072-1080.
    207. Henderson Sellers A., Wilson M. F. .Surface albe do data for climatic modeling [J]. Review of Geophysics and Space Physics, 1983, 21:1743-1778.
    208. Hoosbeek M R, Bryant R.B. . Towards the Quantitive Modeling of Pedogenesis A Review[J] .Geoderma, 1992,55:183 -210.
    209. Jeffrey E. ,Herrick .Soil quality: an indicator of sustainable land management[J].Applied Soil Ecology,2000,15(1):75-83.
    210. Kannedy A. C. , Papendick R. L. .Microbial characteristics of soil quality[J].Journal of Soil and Water Conservation ,1995 , 50 : 243-248.
    211. Kennedy A. C., Papendick R. I..Microbial characteristics of soil quality[J]. J. Soil Water Conserv. 1995, 50: 243-247.
    212. Kirkby M.Modeling the interactions between soil properties and water erosion.In:Proceedings CD–ROM of 16th World Soil Congress.Montpellier,France:ISSS,1998.15-17.
    213. Kim K, Bradford L., Barham, Coxhead I.Measuring soil quality dynamics A role for il quality and soil erosion, Washtington D C:CRC Press, 1999, 237-258.
    214. Larson W. E., Pierce F. J..Conservation and enhancement of soil quality. In Proc.Of the Int.Workshop on Evaluation for Sustainable land Management in the Developing World.Vol.2. IBSRAM Proc.12(2). Int, Board for Soil Res.and Management[J].Rangkok,Thailand.1991.
    215. Loch R. J..Effects of vegetation cover on runoff and erosion under sumulated rain and overland flow on a rehabilitated site on the Meandu Mine[J].Tarong,Queensland.Aust.J..Soil Res, 2000, 38:299-312.
    216. MATHUR S. P. .The influence of variations in soil copper on the yield and nutrition ofspinach grown in microplots on the organic soils[J].Commun in Soil Sci Plant Anal,1984,15(6):695-706.
    217. Needelman B. A..Interaction of tillage and soil texture: Biologically active soil organic matter in Illinois [J]. Soil Sci. Soc. Am. J. 1999, 63:126-134.
    218. Norfleetl M. L, Ditzler C. A., Puckett W. E., et al..Soil Quality And Its Relationship To Pedology. Soil Science, 2003,168(3):149-155.
    219. Parr J. F., Papendick R. I., Homick S. B. .Soil quality: Attributes and relationship to alternative and sustainable agriculture [J]. Am.J.Altern.Agric.1992, (7):5-11.
    220. Power J. F., Myers R. J. K..The maintenance or improvement of farming systems in Morth America and Australia.In J.W.B.Stewart(ed.).Soil quality in semi–arid agriculture.Proc.of an Int.Cong.Sponsored by the Canadian Int. Development Agency, Saskatoon, Saskatchewan, Canada, 1989,7:11-16.
    221. Smith J. L., Doran J. W. .Measurement and use of pH and electrical conductivity for soil quality analysis [M] . Washington , DC: Soil ScienceSociety of America , 1996:775-826.
    222. Solomon D., Lehmann J., Zech W. .Land use effects on soil organic matter properties of chromicluvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates [J]. A griculture, Ecosystem s and Environm ent, 2000, 78: 203-213.
    223. Sparling G A E.etting soil quality standards for C contents of New Zealand soils. New Zealand Soil Science Society Conference, Gisborne, 1998. 11:16-19.
    224. Turner B. L., Meyer W. B. .GlobalLand use and land cover change: an overview [A]. In: Williamb M, and B L. Turner editors. Changes in Land use and Land Cover: A Global Perspective[C]. Cambridge. 1994.
    225. Turner B. L., Meyer W. B. .Land use and land cover in global environmental change: considerations for study [J].International Social Science J. 1991, 130: 69-79.
    226. Turner M. G..Landscape ecology: the effect of pattern on press[J]. 1989, 20:171-197.
    227. USDA Guidelines for Soil Quality Assessment in Conservation Planning. United States Department of Agriculture, Natural Resources Conservation Service, Soil Quality Institute(Eds), January 2001.
    228. Warkentin B. P..The changing concept of soil quality[J]. Soil Water Cons. 1995, 50: 226-228.
    229. Wilson F. O..( ed.) Biodiversity [R].Washington D C:National Academy Press, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700