用户名: 密码: 验证码:
玉米抗大斑病Ht2相关基因的差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米大斑病是玉米生产中最重要的病害之一,近年来大斑病的发生程度逐年加重,导致局部玉米减产,严重威胁玉米的生产。分析其主要原因是抗病品种抗病性丧失,而栽培抗性品种是防治病害发生最经济有效的方法。迄今对大斑病抗性基因的研究多局限于染色体定位和分子标记研究,有关大斑病抗性基因的生物学功能并不清楚,抗性表达过程中的重要事件不了解,因此给深入研究Ht基因的工作带来障碍。本研究旨在利用cDNA-AFLP技术,分析Ht2基因背景下玉米与HT毒素及大斑病菌互作后的差异表达谱,寻找与Ht2相关的基因,为深入研究抗大斑病基因及抗病分子机制提供依据,并最终服务于玉米抗大斑病的分子育种。本研究获得以下结果:
     鉴定了东北春玉米区的48个大斑病菌分离物,共鉴定出15个小种类型,1、0号小种较其它小种出现比例高,N和1N号小种有上升趋势,玉米大斑病病菌的优势小种已不明显,病菌呈现小种变异复杂化和小种类型多样化的群体格局。毒力分析表明,能克服1、2、3和4个抗性基因大斑病菌分别占41.7%、29.1%、10.4%和2.1%。
     利用玉米离体叶片法对48个分离物的毒素粗提液进行了生物测定,其中43个的鉴定结果与生理小种鉴定结果基本一致,筛选出3个了对黄早四和黄早四Ht1严重致病,而对黄早四Ht2完全不致病的HT毒素,J15、J22和H7;2个对黄早四和黄早四Ht2严重致病,而对黄早四Ht1完全不致病的HT毒素,J13和L5。
     建立一套适用于玉米的cDNA-AFLP技术体系,从1024对MseI+3和PstI+2的引物组合中筛选了70对指纹图谱清晰,多态性好,重复性好的引物组合。
     对接种毒素后的黄早四和黄早四Ht2进行cDNA-AFLP分析,发现21个转录表达片段在Ht2背景下特异表达。按同源基因的功能分为3类,其中接种3 h表达的基因主要和基础能量代谢以及抗逆相关基因中的信号物质有关,6 h表达的基因主要是转录因子类基因和部分抗逆基因,接种12–72 h之间只有少数基因表达。利用MaizeGDB Blast对其进行了染色体定位分析,并发现了1个基因簇,位于bin5.03。克隆了H8的全长基因,命名为ZmHP,登录号FJ600319。ZmHP基因的表达量在接毒素后6 h达到高峰,其余时间与未接种对照植株的表达水平基本一致。
     构建了Ht2基因背景下玉米对大斑病菌非亲和性1号小种的基因表达谱,识别了一批与Ht2相关的高表达基因。按同源基因的功能分为8类,在非亲和互作前期主要是一些信号相关基因的表达,接种后12 h表达的基因大多是各种抗病反应初期相关基因,与抗病有关的基因大多数在接种后48–72 h表达,生长发育类基因在非亲和互作的不同阶段均表现作用,后期主要是蛋白质代谢基因的表达。染色体定位分析发现了4个基因簇,并发现5个TDFs位于已报道的Ht2定位区域内bin8.04–8.05/8.06。
     对病原菌处理和毒素处理后在Ht2背景下特异表达的片段进行了比较,发现:1)玉米受到大斑病菌胁迫后的抗性反应速度较受毒素胁迫时的慢,但抗性机制较复杂。2)两种互作模式中的抗病过程基本相同。3)bin 3.04是黄早四Ht2和病原菌非亲和小种互作的差异条带特有的基因簇,同时发现了两种互作模式的差异条带在bin 5.03处都含有基因簇。4)发现3对功能或序列相似的TDFs。
     利用5' RACE技术克隆了ZmQM基因,登录号FJ600320。RT-PCR分析发现,与对照相比, ZmQM在接种病原菌12~24 h和接种毒素6~12 h的黄早四Ht2中表达量均上调。因此,推测ZmQM在Ht2基因介导的抗性反应过程中发挥重要作用。
     构建了ZmQM基因的表达载体,为进一步研究ZmQM基因在抗玉米大斑病中的作用做好了准备。
Northern corn leaf blight (NCLB), caused by Exserohilum turcicum (Pass.) Leonard et Suggs, is a prevalent foliar disease occurred in most maize (Zea mays L.) production regions worldwide. Yield losses of susceptible cultivars due to occurrence of NCLB can be as high as 30% when the disease is severe. The most effective measure for controlling NCLB is application of host genetic resistance. Since 1961, six do minant genesHt1,Ht3 , HtN,HtM andHtP have been reported. Understanding of resistance to NCLB conferred byHt genes is important for improving maize against the disease.However, the information of the molecular characters ofHt genes orHt-relative genes is not available. This study was carried out to identify theHt2-related genes in RNA level and to provide the basis on studying geneHt2 and understanding the molecular mechanism of resistance to north corn leaf blight. The main results were as follow:
     1. Using single spore isolating technique, 48 E.turcicum strains were purified from northeast provinces of China and the physiological races were analyzed by using differential host. Fifteen physiological races including 0、1、2、3、N、12、13、1N、23、2N、3N、12N、123N、123、23N were found. Race 0 and 1 were identified more frequently than others and the ratio of N and 1N are increasing, but there are no obvious do minant races in northeast provinces of China. About 41.7 percent E.turcicum can infect corn with one geneHt and 29.1percent, 10.4 percent and 2.1percent can infect corn with two, three and four geneHt respectively.
     2. Based on the biological assay in vitro, the virulence of 48HT-toxins were identified. The result of virulence analysis fundamentally agreed with that of physiological races identification. At the same time J15, J22 andH7HT-toxins which induced necrotic spot on leaves ofHZS andHZSHt1, but no spot was present onHZSHt2 were selected. J13 and L5HT-toxins induced necrotic spot on leaves ofHZS andHZSHt2, but no spot was present onHZSHt1 were also selected.
     3. cDNA-AFLP reaction system of corn was established. Seventy out of 1024 prime combinations with clear polymorphic AFLP fingerprints were screened
     4. cDNA-AFLP was conducted to analyze differential expression ofHt2-related genes between near-isogenic lines (NILs) Huangzaosi (HZS) andHuangzaosiHt2 (HZSHt2) under crudeHT-toxin treatment. Twenty-one transcript-derived fragments (TDFs), designatedH1 toH21, were specifically expressed inHZSHt2. BLAST analysis through the GenBank database indicated that the 21 TDFs identified can be separated into 4 groups. Basal energy metabolism gene and Signal transduction gene expressed at 3 h after inoculation. Transcription factor related gene and part of defiance gene expressed at 3 h after inoculation. Few genes expressed between 12 to 72 h. A gene cluster was found on bin 5.03 by MaizeGDB Blast analysis. The full length cDNA ofH8 (H8 cDNA, GenBank accession number FJ600319) was cloned and sequenced. RT-PCR analysis demonstrated thatH8 was up-regulated inHZSHt2 only at 6 h after inoculation withHT-toxin. The deduced protein encoded byH8 cDNA is 77% similar to Plus-3 domain containing protein which is found in yeast Rtf1.the the mechanism of geneHt2 regulate the resistance toHT-toxin is may similar to translation elongation factor.
     5.eventy-six TDFs, designated Ex01 to Ex76, were specifically expressed inHZSHt2 by cDNA-AFLP analysis between near-isogenic lines (NILs)Huangzaosi (HZS) andHuangzaosiHt2 (HZSHt2) after inoculation with race 1 of Exserohilum turcicum. BLAST analysis showed that 52 of them were homologous to the genes in the GenBank database. The TDFs with significant protein homology were classified into eight functional categories: basal energy metabolism, transmembrane transport protein, defense/resistance protein, protein metabolism, protein of chromosome and proteins of DNA replication and transcription, signal transduction, growing development mediator and ranscription factor. Most of these genes were associated with basal energy metabolism and defence/resistance gene.Analyzed the space-time trait of 52 TDFs showed that those ranges from chromosome 1 to 9. Signal transduction genes expressed at 6 h after inoculation and defense/resistance genes star to express at 48~72 h.Ht2-related gene expression profiling in response to inoculation of E. turcicum were analyzed by means of cDNA-AFLP. The identification ofHt2-related genes in the present study are important to further study ofHt2 gene and the mechanism of resistance to E. turcicum in maize.
     6. A full-length QM-like cDNA (designated ZmQM) was cloned from maize (Zea mays L.) leaf tissues using cDNA amplified fragment length polymorphism (cDNA-AFLP) and rapid amplification of cDNA ends (RACE) techniques. The expression of ZmQM was exa mined in leaves of theHt2 isogenic linesHuangzaosi andHuangzaosiHt2 carrying geneHt2 for resistance to northern corn leaf blight after inoculation with race 1 of Exserohilum turcicum. The nucleotide sequence of ZmQM shared 66–92% identity to QM genes isolated from other species. RT-PCR analysis showed that the expression of gene ZmQM was up-regulated inHuangzaosiHt2 at 12 h after inoculation with race 1 of E. turcicum and at 6 h after inoculation withHT-toxin compared withHuangzaosi. the mechanism of geneHt2 regulate the resistance toHT-toxin or E. turcicum by up-regulated QM-like protein (ZmQM) and then active the pathway of QM-like such as NIK-mediated antiviral signaling pathway.
     7. For further function analysis on the ZmQM, the expression vector containing ZmQM were constructed.
引文
1.安鑫龙.玉米大斑病菌生理小种的鉴定和有性态的诱导[硕士学位论文].保定:河北农业大学硕士论文. 2001.
    2.白金铠.杂粮作物病害.北京:中国农业出版社. 1997.
    3.程品冰.玉米抗大斑病种质的抗性基因分析[硕士学位论文].北京:中国农业科学院研究生院, 2007.
    4.邓福友,董金皋.玉米大斑病菌Ht–毒素在玉米品种抗病性鉴定中的应用.河北农业大学学报, 1995, 18, 12–15.
    5.董金皋.玉米大斑病菌致病毒素粗提纯过程中的毒性变化.生物学杂志, 1992, 2, 22–24.
    6.董金皋,韩建民,李竹.玉米大斑病菌HT–毒素对玉米细胞膜透性和Vc氧化酶、PPO活性的影响.玉米科学, 1997, 5(2), 77–80.
    7.董金皋,李正平.玉米大斑病菌HT–毒素组分II的化学结构.植物病理学报, 2000, 30, 186–187.
    8.董金皋.玉米大斑病菌HT–毒素I的提纯、结构鉴定及致病活性研究[博士学位论文].北京:中国农业大学. 1999.
    9.董金皋主编.农业植物病理学(北方本).北京,中国农业出版社,2001。
    10.古瑜,赵前程,刘松,王春国,孙德岭,宋文芹.花椰菜(Brassica oleracea var. botrytis)黑腐病抗性基因同源序列分离及克隆的研究.南开大学学报(自然科学版) 2007, 2.
    11.谷守芹,范永山,韩建民,董金皋.利用mRNA差异显示技术分离和克隆玉米抗大斑病相关基因片段.植物病理学报, 2005, 35 (5), 463–465.
    12.郭军,屈冬玉,王晓武,金黎平,谢开云, Y. Jiang RH.马铃薯晚疫病菌小种特异无毒基因候选表达序列的cDNA–AFLP鉴定.园艺学报, 2005, 32 (1), 44–48.
    13.郝敏,谷守芹,张莹,董金皋,韩建民.玉米抗大斑病相关基因片段的表达研究.华北农学报, 2008, 23 (4), 85–88.
    14.黄烈健,向道权.玉米Ht近等基因系的RAPD, SSR分子标记比较研究.玉米科学, 2003, 11, 31–33.
    15.姜晶春,藩顺法.玉米大斑病菌生理小种鉴定续报.吉林农业科学1991, 1, 46–48.
    16.康绍兰,张浩,黄梧芳.诱发玉米抗小斑病突变体的研究Ⅲ,影响玉米小斑病菌致病毒素作用的因素与生物测定.河北农业大学学报, 1986, 9 (3), 7–16.
    17.李春霞,苏俊,龚士琛,宋锡章,阎淑琴,李国良.黑龙江省中南部地区玉米大斑病菌生理小种变异的研究.玉米科学2003, 11 (4), 80–81.
    18.李春霞,苏俊,龚士琛等.黑龙江省玉米大斑病菌生理小种的研究.玉米科学. 2000, 8(2), 89–91.
    19.李大志,陈霄,邓子牛,杨宇红,熊兴耀,谢丙炎.应用cDNA-AFLP技术分离应答BABA诱导的番茄抗病相关基因.湖南农业大学学报,自然科学版, 2007, 33 (1), 32–36.
    20.李立家.两个与玉米大斑病抗性基因Htn1连锁的RFLP标记的原位杂交定位.植物病理学报,1998, 28, 117–121.
    21.李星,李亚宁,刘大群,杨文香.小麦抗叶锈病近等基因系TcLr41基因的差异表达.华北农学报, 2008, 23 (5), 122–126.
    22.李志勇,郝志敏,司贺龙,董金皋.玉米大斑病菌caM基因的克隆及三氟拉嗪的抑菌作用.植物病理学报, 2008, 38(3), 277–282.
    23.刘霞,李骞,王永宏,许贤,张兴.嗜线虫致病杆菌YL001菌株代谢产物的抑菌活性.植物保护学报, 2006, 33(3), 277–281.
    24.刘春燕,王伟权,陈庆山,杨翠平,李文滨,辛大伟.大豆花叶病毒胁迫诱导的消减文库构建及初步分析.生物工程学报, 2005, 21 (2), 320–322.
    25.刘纪麟.玉米育种学.北京:中国农业出版社, 2001.
    26.刘曙东,刘纪麟对大斑病不同抗性类型玉米自交系的组织病理学研究初报.中国农业科学杂志, 1986, 19 (4), 40–45.
    27.刘萧痕.玉米大斑病Exserohilum turcium的发生与防治.牡丹江师范学院学报,自然科学版, 2004, 14–15.
    28.骆蒙,孔秀英.基于抑制消减杂交方法的小麦抗白粉病相关基因表达谱.科学通报, 2002, 47 (16), 1237–1241.
    29.孟成生,李爱丽,张俊红,马峙英,贾继增.小麦抗/感白粉病近等基因系基因表达差异的研究.华北农学报, 2008, 23 (1), 1–6.
    30.欧阳丰,谢丙炎.辣椒炭疽病菌毒素.真菌学报, 1993, 12 (4), 289–96.
    31.钱勇,杨春平,姬志勤,李君浩,龙建友,吴文君.苦皮藤内生真菌A10代谢产物的杀菌活性.中国生物防治, 2006, 22 (2), 150–154.
    32.全国农业技术推广服务中心.中国玉米新品种动态:2001–2006年国家级玉米品种区试报告.中国农业科学技术出版社. 2002.北京.
    33.孙淑琴,温雷蕾,董金皋.玉米大斑病菌的生理小种及交配型测定.玉米科学, 2005, 13 (4): 112–113.
    34.田小卫,张陈云,吴文君.一株放线菌次生代谢产物抗菌活性的初步研究.天津农学院学报, 2005, 12 (3), 44–48.
    35.王冬梅,朱玮,陈改侠,赵涛柱.卷叶黄精根提取物的抗菌活性初步研究.西北林学院学报2006, 21 (1), 126–28.
    36.王锋. cDNA–AFLP技术原理及其在研究植物基因差异表达中的应用.生物学通报2005, 40 (7), 59–60.
    37.王静晖.玉米大斑病抗性基因ht2的原位杂交物理定位.武汉大学学报:自然科学版, 1998, 44, 465–468
    38.王晓鸣,晋奇鸣,石洁.玉米病害发生下现状与推广品种抗性对未来病害发展的影响.植物病理学报, 2006, 36(1), 1–11
    39.王孝杰.转育玉米大斑病抗病单基因Ht的实用性初探.玉米科学, 1994, 2(1), 25–26.
    40.徐雅梅,呼天明,张存莉.菊苣根提取物的抑菌活性研究.西北植物学报, 2006, 26(3), 615–619.
    41.尹小燕,杨继良.玉米大斑病抗性基因Ht2的精细定位.科学通报, 2002, 47 (23), 1811–1814.
    42.余鑫平,冯俊涛,刘晓明,庄世宏,张兴.小花假泽兰茎叶中杀菌活性成分的研究.西北植物学报, 2006, 26 (5), 1001–1006.
    43.张德水,陈受宜.植物抗病性的分子生物学研究进展.植物病理学报, 1997 , 27(2), 97–103.
    44.张建成,范永山,董金皋.玉米大斑病菌毒素对玉米叶肉细胞脂氧合酶活性的影响.植物病理学报, 2003, 33(5), 421–424.
    45.张文河,赵倩,于静娟,朱登云,敖光明.转兔防御素基因(NP-1)玉米植株的获得及其抗病性分析.农业生物技术学报, 2003, 11 (4), 342–346.
    46.赵辉,高增贵,张小飞,庄敬华,隋鹤.我国玉米大斑病菌生理小种种群动态分析.沈阳农业大学学报, 2008, 39 (5), 551–555.
    47.郑晓莲,董金皋.灰葡萄孢毒素的组分分析和生物测定.植物病理学报, 1998, 28 (3), 269–274.
    48.郑祖平,刘小红,黄玉碧,李钟,何川,谭振波.玉米大斑病抗性基因的QTL定位.西南农业学报, 2007, 20(4), 634–637.
    49.周建明,朱群.稻瘟病菌侵染诱导的水稻早期反应基因的cDNA片段克隆与序列分析.植物生理学报, 1999, 25 (2), 115–120.
    50.朱友林,刘纪麟.3个单基因对玉米大斑病抗性的比较研究.华中农业大学学报,1995,14(2), 111–114.
    51.朱玉贤,张翼凤.用cDNA差示分析法克隆GA抑制的豌豆基因.中国科学, 1997, 27(3), 253–257.
    52.朱振东,霍云龙,王晓鸣,黄俊斌,武小菲.一个抗大豆疫霉根腐病新基因的分子鉴定.作物学报, 2007, 33 (1), 154–157.
    53.桂秀梅,董金皋,侯晓强.中国2001年玉米大斑病菌生理小种鉴定.河北农业大学学报2003,26 (4), 11–13.
    54. Ahn I P, Suh S C. Calcium/calmodulin–dependent signaling for prepenetration development in Cochliobolus miyabeanus infecting rice. Gen. Plant Pathol, 2007, 73(2), 113–120.
    55. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller ., Lipman D J. Gapped BLAST and PSI–BLAST, A new generation of protein database search programs. Nucleic Acids Research, 1997, 25, 3389–3402.
    56. Atkinson M M, Keppler L D, Orlandi E W, Baker C J, Mischke C F. Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobaccol. Plant Physiol., 1990, 92(1), 215–221.
    57. Bachem C W B, Van Der Hoeven R S, de Bruijn S M, Vreugdenhil D, Zabeau M, Visser R G F. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP, Analysis of gene expression during potato tuber development. Plant J., 1996, 9(5), 745–753.
    58. Bachem CW B,OomenR J F J,VisserRG F.Transcript imaging with cDNA-AFLP:a step-by-step protoco1. Plant Molecular Biology Reporter,1998, 16, 157–173.
    59. Bao J Y, Lee S, Chen C, Zhang X Q, Zhang Y, Liu X Q, Clark T, Wang J, Cao M L, Yang H M, Wang S M, Yu J. Sage analysis of gene expression study of a hybrid rice strain (LYP9) and itsparental cultivars. Plant Physiology, 2005, 138, 1216–1231
    60. Bashan B, Levy R S, Cojocaru M, Levy Y. Purification and structural deter mination of a phytotoxic substance from Exserohilum turcicum. Physiological and Molecular Plant Pathology, 1995, 47, 225–235.
    61. Bashan B, Levy Y. Differential response of sweet corn cultivars to phytotoxic water-soluble compounds from culture filtrates of Exserohilum turcicum. Plant Disease, 1992, 76, 451–454.
    62. Bennetzen J L, Freeling M. Grasses as a single genetic system, genome composition, collinearity and compatibility [J]. Trends Genet, 1993, 9(8), 259–261.
    63. Bentolila S, Guitton C, Bouvet N, Sailland A, Nykaza S, Freyssinet G. Identification of an RFLP marker tightly linked to the Ht1 gene in maize. Theoretical and Applied Genetics, 1991,82, 393–398.
    64. Berberich T, Sugawara K, Harada M, Kusano T. Molecular cloning, characterization and expression of an elongation factor 1αgene in maize. Plant Molecular Biology, 1995, 29, 611–615.
    65. Berquist R R, Masias O R. Physiologic specialization in Thrichomes–tasphaeria turcica f. sp. zeae and T. turcica f. sp. sorghi in Hawaii. Phytopathology, 1974, 64, 645–649.
    66. Besenhofer G. Epidemic outbreak of turcicum leaf spot in the alpine lowlands. Pflanzenschutz (Wien), 2002. 18(1), 1–3.
    67. Bigirwa G, Julian A M, Adipala E. Characterization of Ugandan Isolates of Exserohilum turcicum from Maize. African Crop Science Journal, 1993, 1(1), 69–72.
    68. Biochem C P. Novel function of QM protein of shrimp (Penaeus Japonicus) in regulation of phenol oxidase activity by interaction with hemocyanin. Cellular P hysiology and Bioc hemistry, 2008, 21, 473–480.
    69. Brewbaker J. Diseases of maize in the wet lowland tropics and the collapse of the Classic Maya civilization. Economic Botany, 1979, 33, 101–118.
    70. Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S. Quantitative cDNA-AFLP analysis for genome-wide expression studies. Molecular Genetics and Genomics, 2003, 269 (2), 173–179.
    71. Brown A F, Juvik J A, Pataky J K. Quantitative trait loci in sweet corn associated with partial resistance to Stewart's wilt, northern corn leaf blight, and common rust. Phytopathology 2001, 91 (3), 293–300.
    72. Bruggmann R, Abderhalden O, Reymond P.Analysis of opider-mis-and mesophyll-specific transcript accumulation in powdery milder-inoculated wheat leaves. Plant Mol Biol, 2005,58(2), 247—267.
    73. CAB International. 1974. Distribution Map of Setosphaeria turcica. Distribution Maps of Plant Diseases, Edition 4, Map 257. Wallingford, UK, CAB International.
    74. Carson M L, van Dyke C G. Effect of light and temperature on expression of partial resistance of maize to Exserohilum turcicum. Plant Disease, 1994, 78, 519–522.
    75. Carson M L. A new gene in maize conferring the“chlortic halo”reaction to infection byExserohilum turcicum. Plant Dis, 1995, 79(7), 717–720.
    76. Carson M L. Response of a maize synthetic to selection for components of partial resistance to Exserohilum turcicum. Plant disease. 2006, 90(7), 910–914.
    77. Chan Y L, Diaz J J, Denoroy L. The primary structure of rat ribosomal protein L10, relationship to a Jun–binding protein and to a putative Wilms’tumor Suppressor. Biochem Biophys Res Commun, 1996, 225(3), 952–956.
    78. Chauhan R S, Singh B M, Develash R K. Effect of toxic compounds of Exserohilum turcicum on chlorophyll content, callus growth and cell viability of susceptible and resistant inbred lines of maize. Journal of Phytopathology, 1997, 145(10), 435–440.
    79. Chen C, Wanduragala S, Becker D F, Dickman M B. Tomato QM–like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl Environ Microbiol, 2006, 72(6), 4001–4006.
    80. Chen X, Wang B, Wu R. A gibberellin-stimulated ubiquitin-conjugating enzyme gene is involved inα–amylase gene expression in rice aleurone. Plant Molecular Biology. 1995, 29(4), 787–795.
    81. Chung K R. Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by cercosporanicotianae. Appl Environ Microb, 2003, 69(2), 1187–1196.
    82. Cooper B. Collateral gene expression changes induced by distinct plant viruses during the hypersensitive resistance reaction in Chenopodium amaranticolor. The Plant Journal, 2001, 26, 339–349.
    83. Costa P J, Arndt K M. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics, 2000, 156, 535–547.
    84. Cuq F, Herrmann–Gorline S, Klaebe A, Rossignol M, Petitprez M. Monocerin in Exserohilum turcicum isolates from maize and a study of its phytotoxicity. Phytochemistry. 1993, 34(5), 1265–1270.
    85. Dangl J L, Jones J D G. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411 (6839), 826–833.
    86. Degefu Y, Lohtander K L., and Paulin L. Expression patterns and phylogenetic analysis of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize. Biochimie 2004, 86, 83–90.
    87. Degefu Y, Paulin L, Lubeck P S. Cloning sequencing and expression of a xylanase gene from the maize pathogen Helminthosporium turcicum. European Journal of Plant Pathology 1997, 107, 457–465.
    88. Degefu Y, Fagerstr?m R, Kalkkine N N. Purification and partial characterization of xylanase from the fungal maize pathogen Helminthosporium turcicum (Pass). European Journal of Plant Pathology. 1995, 101(3), 291–299.
    89. Dick F A, Karamanou S, Trumpower B L. QSR1, an Essential Yeast Gene with a Genetic Relationship to a Subunit of the Mitochondrial Cytochrome bc 1 Complex, Codes for a 60 S Ribosomal Subunit Protein. Journal of Biological Chemistry. 1997, 272(20), 13372–13379.
    90. Dingerdissen A L, Geiger H H, Lee M, Schechert A, Welz H G. Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight, in a tropical environment. Molecular Breeding, 1996, 2, 143–156.
    91. Dong J, Li Z. Analysis of toxicity composition of Ht–toxin produced by Helminthosporium turcicum. Acta Phytopathologica Sinica, 1996, 26, 139–144.
    92. Dowdy S F, Lai K M, Weissman B E. The isolation and characterization of a novel cDNA demonstrating an altered mRNA level in nontumorigenic Wilms' microcell hybrid cells. Nucleic Acids Res. 1991, 19(20), 5763–5769.
    93. Dunn G M, Namm T. Gene dosage effects on monogenic resistance to Northern Corn Leaf Blight. Crop Science, 1970, 10, 352.
    94. Durrant W E,Rowland O,Piedras P. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles.The Plant cell, 2000, 12(6), 963–977.
    95. Eckey C,Korell M,Leib K,et a1.Identification of powdery mildew–induced barley genes by cDNA–AFLP:Functional assessment of an early expressed MAP kinase. Plant Molecular Biology, 2004, 55, l–l5.
    96. Eisinger D P, Dick F A, Trumpower B L. Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Molecular and Cellular Biology. 1997, 17(9), 5136–5145.
    97. Eisinger D P, Jiang H P, Serrero G. A novel mouse gene highly conserved throughout evolution, regulation in adipocyte differentiation and in tumorigenic cell lines. Biochem Biophys Res Commun. 1993, 196(3), 1227–1232.
    98. Farmer A A, Loftus T M, Mills A A, Sato K Y, Neill J D, Tron T, Yang M, Trumpower B L, Stanbridge E J. Extreme evolutionary conservation of QM, a novel c–Jun associated transcription factor. Human Molecular Genetics, 1994, 3, 723–728.
    99. Ferguson L M, Carson M L. Spatial Diversity of Setosphaeria turcica Sampled from the Eastern United States. Phytopathology, 2004a, 94, 892–900.
    100. Flor H H. Current status of the gene-for-gene concept. Annual Review of Phytopathology 1971; 9 (1), 275-296.
    101. Franich R A. Physiol Plant Path. Phytochemistry, 1983, 23,183.
    102. Freymark P J, Lee M, Woodman W L, Martinson C A. Quantitative and qualitative trait loci affecting host–plant response to Exserohilum turcicum in maize (Zea mays L.). TAG, 1993, 87, 537–544.
    103. Muehlbauer G J, Specht J E, Thomas-Compton M A, Staswick P E, Bernard R L. Near-Isogenic Lines A Potential Resource in the Integration of Conventional and Molecular Marker Linkage Maps. Crop Science 1988: 28 (5): 729–735.
    104. Gabriel D W, Rolfe B G. Working models of specific recognition in plant-microbe interactions. Annual Review of Phytopathology, 1990, 28 (1), 365–391.
    105. Gao Z, Xue Y, Dai J. cDNA-AFLP analysis reveals that maize resistance to Bipolaris maydis is associated with the induction of multiple defense–related genes. Chin Sci Bull, 2001, 46(17),1454–1458.
    106. Gelie B, Petitprez M, Albertini L, Barrault G. Biological activities of the phytotoxins of Exserohilum turcicum. Cytological study [maize]. Agronomie (France) 1984, 4, 689.
    107. Gevers O H A. A new major gene for resistance to Helminthosporium turcicum leaf blight of maize. Plant Dis, 1975, 59, 296–299.
    108. Gianasi L, Castro H A, and Silva H P. Races fisiológicas de Exserohilum turcicum identificadas em regi?es produtoras de milho no Brasil, Safra 93/94. Summa Phytopathol, 1996, 22, 214–217.
    109. Gong M, Wang J D, Zhang J, Yang H, Lu X F, Pei Y. Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (iturin A). Acta Biochimica et Biophysica Sinica 2006, 38 (4), 233–240.
    110. Hakiza J J, Lipps P E, St. Martin S, Pratt R C. Heritability and number of genes controlling partial resistance to Exserohilum turcicum in maize inbred H99. Maydica. 2004, 49(3), 173–182.
    111. Hilu H M, Hooker A L. Monogenic chlorotic lesion resistance to Helminthosporium turcicum in corn seedlings. Phytopathology, 1963, 53, 909–912.
    112. Hilu H M, Hooker A L. Localized infection by Helminthosporium turcicum on corn leaves. Phytopathology, 1965, 55, 189–192.
    113. Hooker A L. A new type of resistance in corn to Helminthosporium turcicum in seedling corn. Plant Dis Rep, 1961, 45, 780–781.
    114. Hooker A L. A second major gene locus in corn for chlorotic–lesion resistance to Helminthosporium turcicum 1. Crop Sci, 1977, 17(1), 132–135.
    115. Hooker A L. Resistance to Helminthosporium turcicum from Tripsacum floridanum incorporated into corn . Maize Genet Cooperation Newslett, 1981, 55, 87–88.
    116. Hooker A L, Tsung Y K. Relationship of do minant genes in corn for chlorotic lesion resistance to Helminthosporium turcicum. Plant Disease, 1980, 64, 387–388.
    117. Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA .Nucleic Acids Res, 1994, 22(25) ,5640–5648 .
    118. Hughes G R, Hooker A L. Gene Action Conditioning Resistance to Northern Leaf Blight in Maize. Crop Science, 1971, 11, 180–184.
    119. Jackson A O, Talor C B. Plant-microbe interactions, life and death at the interface. The Plant Cell, 1996, 8, 1651–1668.
    120. Jenkins M T, Robert A L. Inheritance of resistance to the leaf blight of corn caused by Helminthosporium turcicum. Agronomy Journal, 1952, 44, 136–140.
    121. Jin K, Wanhong C, Jinsong Z, Shou Y C. Transgenic analysis of a salt–inhibited OsZFP1 gene from rice. Acta Botanica Sinica, 2004, 46 (5), 573–77.
    122. Jones J D G. A kinase with keen eyes. Nature, 1997, 385, 397–398.
    123. Juliana B O, Marco A G, Isaias O G, Luis E. New resistance gene in the Zea mays Exserohilum turcicum pathosystem. Genetics and Molecular Biology, 2005, 28, 435–439.
    124. Keen N T. Gene-for-gene complementarity in plant-pathogen interactions. Annual Review ofGenetics 1990, 24 (1), 447–463.
    125. Kobayashi K, Nishino C, Tomita H, Fukushima M. Antifungal activity of pisiferic acid derivatives against the rice blast fungus. Phytochemistry 1987, 26 (12), 3175–3179.
    126. Kobe B, Deisenhofer J. The leucine–rich repeat, a versatile binding motif. TIBS 19, 425–430. 1994. Links.
    127. Lamb C J, Lawton MA, Dron M. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell, 2000, 56,215–224.
    128. Leath S, and Pedersen W L. Affects of the H1t, Ht2, and/or Ht3 genes in three maize inbreds on quantitative resistance to Exserohilum turcicum race 2. Plant Disease, 1986, 70, 529–531.
    129. Leonard K J, Levy Y, Smith D R. Proposed nomenclature for pathogenic races of Exserohilum turcicum on corn. Plant Dis, 1989, 73(9), 776–777.
    130. Levy Y, Tal K. The effect of water deficiency in corn plants on the development of three corn diseases. Phytoparasitica, 1985, 13, 141–144.
    131. Li C W, Bai Y L,Jacobsen E.Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic–and polygenic resistance responses are mainly in ti ming Plant Mol Biol, 2006, 62: 127–140.
    132. Li Z Y, Chen S Y. Inducible expression of translation elongation factor 1A gene in rice seedlings in response to environmental stresses. Acta Botanica Sinica, 1999, 41, 800–806.
    133. Li Z Y, Chen SY. Isolation, characterization and chromosomal location of a novel zinc-finger protein gene that is down–regulated by salt stress. TAG, 2001, 102 (2), 363–68.
    134. Li L J, Song Y C, Yan H M, Wang L, Liu L H. The Physical Location of the Gene Ht1 (Helminthosporium Turcium Resistance1) in Maize (Zea Mays L.). Hereditas, 1998, 129, 101–106.
    135. Liang P, Averboukh Lidia, Parde A B. Distribution and Clonging of eukaryotic mRNAs by means of differential display, refinements and optimization .Nucleic Acids Res, 1993, 21(14) ,3269–3275 .
    136. Lim S M, Kinsey J G, Hooker A L. Inheritance of virulence in Helminthosporium turcicum to monogenic resistant corn. Phytopathology, 1974, 64, 1150–1151.
    137. Lippuner V, Cyert M S, Gasser C S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild–type yeast. Journal of Biological Chemistry 1996, 271 (22), 12859–12866.
    138. Lisitsyn N, Lisitsyn Na, Wigler M. Cloning the differences between two complex genomes. Science, 1993, 259, 946–951.
    139. Liu Z M, Kolattukudy P E. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self–inhibitors and requires surface attachment J. Bacteriol, 1999, 181(11), 3571–3577.
    140. Loftus T M, Nguyen Y H, Stanbridge E J. The QM protein associates with ribosomes in the rough endoplasmic reticulum. Biochemistry, 1997, 36(27), 8224–8230.
    141. Mackey D, Belkhadir Y, Alonso J M, Ecker J R, Dangl J L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 2003, 112 (3),379–389.
    142. Mackey D, Holt B F, Wiig A. RIN 4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM12 mediated resistance in Arabidopsis. Cell, 2002, 108 (6), 743–754.
    143. Masson J Y, Vadnais J, Ramotar D. The Schizosaccharomyces pombe spqM gene is a new member of the Qm transcription factor family. Gene. 1996, 170(1), 153–154.
    144. Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai–Yamada M, Uchimiya H and Terauchi R. Overexpression of bax inhibitor suppress the fungal elicitor–induced cell death in rice (Oryza sativa L.) cells. The Plant Joural, 2003, 33, 425–434.
    145. Mauch F, Mauch–Mani B, Boller T. Antifungal Hydrolases in Pea Tissue 1 II. Inhibition of Fungal Growth by Combinations of Chitinase andβ–1, 3–Glucanase. Plant Physiology, 1988, 88 (3), 936–942.
    146. Meyer A C, Pataky J K. and Juvik J A. Partial resistance to northern leaf blight and Stewart's wilt in sweet corn germplasm. Plant Disease, 1991, 75, 1094–1097.
    147. Mittl P.R., Schneider–Brachert W. Sel 1–like repeat proteins in signal transduction. Cell Signal, 2007, 19, 20–31.
    148. Monteclaro F S, Vogt P K. A Jun–Binding Protein Related to a Putative Tumor Suppressor. Proceedings of the National Academy of Sciences. 1993, 90(14), 6726–6730.
    149. Mwangi S M. Status of northen leaf blight, Phaeosphaeria maydis leaf spot, southern leaf blight, rust, maize streak virus and physiologic specialization of Exserohilum turcicum in Kenya. Doctoral Dissertation, 1998. Virginia Tech
    150. Oh H S, Kwon H, Sun S K, Yang C H. QM, a putative tumor suppressor, regulates proto-oncogene c-yes. Journal of Biological Chemistry, 2002, 277(39), 36489–36498.
    151. Oliari J B, Guimaraes M A, Camargo, L E A. Chromosomal locations of the maize (Zea mays L.) HtP and rt genes that confer resistance to Exserohilum turcicum. Genetics and Molecular Biology. 2007, 30(3), 630–634.
    152. Osborne A E. Preformed antimicrobial compounds and plant defense agains fungal attack. The Plant Cell, 1996, 8, 1821–1831.
    153. Otsuka-Chem. Disease-resistant transformed tobacco plant and its construction by genetic transformation. Derwent Biotechnology Abstract, 1993, 12(4), 2190.
    154. Palaversic B, Rozman L, Milevoj L, Celar F. The investigation of incidence of some maize leaf diseases in Croatia and in Slovenia. In Proceedings of the 5th Slovenian Conference on Plant Protection. Catez ob Savi, Slovenia. 6–8 March, 2001, 458–463.
    155. Passerini. Lanebbia Delgranotur Co. Bol. Comiz. Agriculture. Parmense, 1876, 10, 3.
    156. Perkins J M. Status of northern corn leaf blight in the Midwest, 2005, pp. 199–205. In, Proc. 41st Illinois Corn Breeders' School. Urbana, IL.
    157. Perkins J M, Hooker A L. Reactions of Eighty–Four Sources of Chlorotic Lesion Resistance in Corn to Three Biotypes of Helminthosporium turcicum. Plant Disease, 1981, 65, 502–503.
    158. Perkins J M, Pedersen W L. Disease development and yield losses associated with northern leaf blight on corn. Plant Disease, 1987, 71, 940–943.
    159. Peters D G, Kassam A B, Yonas H, O'Hare E H, Ferrell R E, Brufsky A M. Comprehensive transcript analysis in small quantities of mRNA by SAGE–lite. Nucleic acids research, 1999, 27 (24), e39.
    160. Plakidou–Dymock S, Dymock D, Hooley R. Current Biology, 1998, 8, 315–324.
    161. Poroyko V, Hejlek L G, Spollen W G, Springer G K, Nguyen HT, Sharp R E, Bohnert H J. The maize root transcriptome by serial analysis of gene expression. Plant Physiology, 2005, 138, 1700–1710.
    162. Pratt R, Gordon S, Lipps P, Asea G, Bigirwa G, Pixley K. Use of IPM in the control of multiple diseases in maize, Strategies for selection of host resistance. African Crop Science Journal, 2003, 11(3), 189–198.
    163. Pratt R C, Lipps P E, Ssango F, Hakiza J J, Adipala E. Inheritance of race–nonspecific resistance to Exserohilum turcicum in maize synthetic population OhS10. African Crop Science Journal, 1997, 5(1), 55–64.
    164. Praveen R J, Subramanyam C. Putative calmodulin–binding domains in aflatoxin biosynthesis–regulatory proteins. Curr Microbiol, 2006, 52(6), 473–476.
    165. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease–resistance genes by bulked segregant analysis, a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS, 1991, 88 (21), 9828–9832.
    166. Rai B, Kumar B, Jha, M M, Kumar S. Biochemical changes due to Exserohilum turcicum (Pass.) Leonard and Suggs in maize plant. Annals of Agri Bio Research. 2002b. 7(2), 197–199.
    167. Rai B, Kumar B, Jha M M. Kumar S. Effect of dates of sowing, moisture and host defoliation on the development of Turcicum leaf blight disease of maize. Annals of Agri Bio Research. 2002a. 7(2), 187–195.
    168. Raz V, Fluhr R. Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell Online, 1993, 5(5), 523–530.
    169. Rivera–Madrid R, Marinho P, Chartier Y, Meyer Y. Nucleotide sequence of an Arabidopsis thaliana cDNA clone encoding a homolog to a suppressor of Wilms' tumor. Plant Physiol, 1993, 102(1), 329–330.
    170. Robbins Jr W A, Warren H L. Inheritance of resistance to Exserohilum turcicum in PI 209135“Mayorbela”variety of maize. Maydica, 1993, 38(3), 209–213.
    171. Rocha C S, Santos A A, Machado J P B, Fontes E P B. The ribosomal protein L10/QM–like protein is a component of the NIK–mediated antiviral signaling. Virology, 2008, 380(2), 165–169.
    172. Rodo A P, Brugiere N, Vankova R, Malbeck J, Olson J M, Haines S C, Martin R C, Habben J E, Mok D W S, Mok M C. Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. J. Exp. Bot., 2008, 59(10), 2673–2686.
    173. Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D. Systemicacquired resistance. Plant Cell, 1996, 1809–1819.
    174. Schechert A W, Welz H G, Geiger H H. QTL for Resistance to Setosphaeria turcica in tropical African maize. Crop Sci 1999, 39, 514–523.
    175. Shen B, Zheng Z, Dooner H K. A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin, Characterization of wild-type and mutant alleles. Proceedings of the National Academy of Sciences, USA, 2000, 97, 14807–14812.
    176. Shimoni M, Reuveni R, Bar-Zur A. Relation between peroxidase,β–1,3–glucanase, these gene and partial resistance of maize to Exserohilum turcicum. Can. J. Plant Pathol. 1996, 18, 403–408.
    177. Shivankar S K, Shivankar R S. Losses in grain yield due to turcicum leaf blight disease in maize. Agricultural Science Digest. 2000. 20(3), 201.
    178. Simcox K D, Bennetzen J L. The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology, 1993, 83, 1326–1330.
    179. Simcox K D, Bennetzen J L. Mapping the HtN resistance gene to the long arm of chromosome 8. Maize Genetics Cooperation Newsletter, 1993b, 67, 118.
    180. Singh K, Paul A, Kumar S, Ahuja P S. Cloning and differential expression of QM like protein homologue from tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep, May 4, 2008, (Online) DOI, 10.1007/s11033–008–9264–x
    181. Smith D R., Kinsey J G. Further physiologic specialization in Helminthosporium turcicum. Plant Disease, 1980, 64, 779–781.
    182. Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 1995, 270 (5243), 1804–1806.
    183. Staskawicz B J, Mudgett M B, Dangl J L. Common and contrasting themes of plant and animal. Diseases.Science, 2001,292, 2285–2289.
    184. Thakur R P, Leonard K J, Jones R K. Characterization of a new race of Exsersohilum turcicum virulent on corn with resistance gene HtN. Plant Disease, 1989, 73, 151–155.
    185. Thakur R P, Leonard K J, Leath S. Effects of temperature and light on virulence of Exserohilum turcicum on corn. Phytopathology, 1989, 79, 631–635.
    186. Tian Z D, Liu J, Xie C H. Cloning of a pathogenesis–related protein gene cDNA of potato using RACE methods combined with cDNA library. Acta Genetica Sinica, 2003, 30, 996–1002.
    187. Uhm K H, Ahn I P , Kim S, Lee Y H. Calcium/calmodulin–dependent signaling for prepenetration development in Colletotrichum gloeosporioides. Phytopathology, 2003, 93(1), 82–87.
    188. Van Der Biezen E A, Jones J D G. Plant disease-resistance proteins and the gene-for-gene concept. Trends in Biochemical Sciences, 1998, 23, 454–456.
    189. Van Staden D, Lambert CA, Lehmensiek A. SCAR markers for the Ht1, Ht2, Ht3 and HtN1 resistance genes in maize. Maize Genetics Conference Abstract, 2001, 43, 134.
    190. Velculescu V E, Zhang L, Vogelstein B, et al .Serial analysis of gene expression. Scinece, 1995, 270, 484–487.
    191. Verica J A, Maximova S N, Strem M D, Carlson J E, Bailey B A, Guiltinan M J. Isolation of ESTsfrom cacao (Theobroma cacao L.) leaves treated with inducers of the defense response. Plant cell reports 2004, 23 (6), 404–413.
    192. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J., Kuiper M. AFLP, a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23, 4407–4414.
    193. Wang S M, Rowley J D. A strategy for genome–wide gene analysis, integrated procedure for gene identification. Ed:, National Acad Sciences 1998, 11909–11914.
    194. Welz H G, Geiger H H. Genes for resistance to northern corn leaf blight in diverse maize populations [J]. Plant Breeding, 2000, 119(1), 1–14.
    195. Welz H G,Schechert A W, et al. Dynamic gene action at QTL for resistance to Setosphaeria turcica in maize. Theor Appl Genet, 1999b, 98,1036–1045.
    196. Welz H G., Xia X C., Bassetti P, Melchinger A E, Lübberstedt T. QTLs for resistance to Setosphaeria turcica in an early maturing Dent×Flint maize population. Theoretical and Applied Genetics, 1999a, 99, 649–655.
    197. Welz H G, Wagner R, and Geiger H H . Virulence in Setosphearia turcica populations collected from maize in China, Mexico, Uganda and Zambia. Phytopathology, 1993, 83, 1356.
    198. Windes J M, Pedersen W L. An isolate of Exserohilum turcicum virulent on maize inbreds with resistance gene HtN. Plant Disease, 1991, 75, 430.
    199. Wool I G. Extra ribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996, 21(5), 164–165.
    200. Xu J Y., Wu S J., Zhang X B. Novel function of QM protein of shrimp (Penaeus japonicus) in regulation of phenol oxidase activity by interaction with hemocyanin. Cell Physiology and Biochemistry, 2008, 21, 473–480.
    201. Yamaguchi K, Subramanian A R. Proteomic identification of all plastid–specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit. European Journal of Biochemistry, 2003, 270, 190–205.
    202. Yin X.Y., Wang Q.H., Yang J.L., Jin D.M., Wang F., Wang B., Zhang J.R. Fine mapping of the Ht2 (Helminthosporium turcicum resistance gene in maize. Chinese Science Bulletin, 2003, 48, 165–169.
    203. Yoka P, Albertini, L. Enzymatic and toxic activities of Helminthosporium turcicum Pass., parasite of maize. Bulletin dehi Societe d'Histoire Naturelle de Toulouse, 1975, 111, 255–272.
    204. Zaitlin D, Demars S J, Gupta M. Linkage of a second gene for NCLB resistance to molecular markers in maize. Maize Genet. Coop. Newsl, 1992, 66, 69–70.
    205. Zhang Y, Wang Y H, Hao M, Jia H, Han J M, Dong J G. Effect of salicylic acid on resistance to Exserohilum turcicum. J Agri Biotechnol, 2008, 16(3), 501–507.
    206. Zhao J X, Cheng Y, Wang L A. Ca2+ signaling pathway involved in Bipolaris maydis conidium ger mination and appressorium formation . Microbiology, 2005, 32(4), 1–4.
    207. Zheng H, Ji C, Gu S, Shi B, Wang J, Xie ., Mao Y. Cloning and characterization of a novel RNApolymerase II C-ter minal domain phosphatase. Biochemical and Biophysical Research Communications, 2005, 331, 1401–1407.
    208. Zheng X, Chen X, Zhang X, Lin Z, Shang J, Xu J. Isolation and identification of a gene in response to rice blast disease in rice. Plant Mol Biol, 2004, 54, 99–109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700