用户名: 密码: 验证码:
伏牛山自然保护区森林生态系统植物功能群及其动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物功能群(Plant Functional Groups, PFGs)把植物的功能特性与环境变化明晰地联系在一起。目前,陆地生态系统植物功能群研究主要以草原生态系统为主,对森林生态系统的研究较为薄弱。植物功能群的提出和研究,为研究复杂的植物生态系统提供了一个良好的方法和途径。现在对植物功能群研究的广度和宽度已经远远超过了这个概念本身。植物功能群整合了功能及对环境响应相似的一类植物,但植物功能特征不是绝对的、单一的,所以对植物功能群就会有不同的理解,会有不同的定义及划分方法。许多研究者从不同的角度、尺度来对植物功能群进行研究,这些研究结果有不同的针对方向和目的,使我们可以从不同的角度更全面的理解复杂的陆地生态系统。学者们在研究生态系统时,或多或少地总要与植物功能群相联系,这大大拓宽了植物功能群的应用范围。所有前人的研究使植物功能群的概念、划分、方向和应用等诸方面越来越清晰。一个规范、统一和明确的植物功能群研究方案,能对植物功能群的研究更加深入,也能整合全球所有植物功能群的相关研究。
     森林生态系统结构复杂,植物种类丰富。对森林生态系统复杂多样的植被进行功能群划分可以深入了解森林生态系统的结构和功能。优势种左右着森林生态系统的结构与功能,以优势种为主体划分森林生态系统功能群,可以对森林生态系统的功能、框架结构及类群分布有一个明晰的认识。伏牛山国家级自然保护区是中国东部森林样带中的北亚热带和暖温带的结合点,具有南北气候过渡带的典型特征,在自然和人为双重因素的作用下,群落的优势种突出。随着环境梯度(海拔)的变化,优势种变化明显,能较好的反映出植被与环境的动态关系。采用群落生态学的调查方法,对伏牛山南北坡植被进行调查。根据调查结果,通过计算重要值等方法选择优势种,进而进行植物功能群划分。(1)确定37个乔木树种为研究对象,以X2(卡方)检验为基础,结合联结系数AC和共同出现百分率PC来测定乔木优势种间的联结性。根据优势种间的联结性及其在海拔梯度上的变化异同来划分植物功能群,结果表明,栓皮栎(Quercus variabilis)、短柄枹(Q. glandulifera)、锐齿栎(Q. acutidentata)、华山松(Pinus armandi)依海拔升高分别具有最大的优势性。以这四个优势种为主体将伏牛山自然保护区乔木层划分为四个植物功能群,第一组功能群为:栓皮栎,槲栎(Q. aliena),山槐(Aldizzia kalkora),茅栗(Castaneaseguinii()1100m以下);第二组功能群为:短柄枹,化香(Platycarya strobilacea),黄连木(Pistacia chinensis)(1100~1400m);第三组功能群为:锐齿栎,千金榆(Carpinus cordata),漆树(Toxicodendron vernicifluum)(1400~1800m);第四组功能群为:华山松,油松(P. tabulaeformis),六道木(Abelia biflora),白桦(Betula platyphylla),红桦(B. albo-sinensis)(1800m以上)。分析各功能群沿水热梯度的动态变化及其内在联系。可以十分清楚的发现在这四个植物功能群内有一些重要的形态特征是有相似之处的,功能群间的形态特征也有明显的区别,如叶片的大小、树干的栓皮等。它们在进化的过程中也有着某些关联与差异。(2)草本植物对环境的反应较为敏感,能较好的反映出植被与环境的动态关系。以同样的方法研究了林下草本植物,共划分七组草本植物功能群:Ⅰ“伴人型”,Ⅱ“高山型”,III“阴湿型”,Ⅳ“耐旱型”,Ⅴ“林隙型”,Ⅵ“基础型”,Ⅶ“原始型”。这七种草本植物功能群基本上反映了不同环境条件下不同结构与功能的草本植被的分布情况。
     优势种种群的分布格局在不同功能群中多呈集群分布,且空间分布指数沿海拔梯度呈规律性变化。重要值大生态位宽的种群与其它种群的生态位重叠程度较大,相反,重要值小生态位窄的种群与其它种群生态位重叠程度较小。少数种群间出现重要值大,生态位重叠小;重要值小生态位重叠大的特征。
     用Li-6400便携式光合作用测定系统在典型样地测定优势种的光合作用日变化及光响应特性,分析不同植物功能群优势种的光合特性,结果表明:在森林生态系统中,乔木和草本植物由于适应机制不一样,光合特性主要是受光合有效辐射的影响;同样的光强下,在短时间内草本与乔木物种光合速率相差不大;植物对光强的适应范围比人们想象的要大;受森林生态系统各种外界条件的影响,植物“光合午休”现象并不明显。
     森林土壤的pH值、有机质含量、有效氮含量、速效钾含量及有效磷含量基本代表了土壤的养分状况,这些因素与植物功能群关系也较密切。不同植物功能群(乔木、灌木、草本)的分布与数量与森林土壤有着一定相互关系:南坡的pH值、有机质含量、有效氮含量、速效钾含量及有效磷含量总体上高于北坡;pH值沿海拔梯度变化不大;有机质含量、有效氮含量、速效钾含量随海拔上升而上升;有效磷含量在中低海拔含量较高;土层越深,有机质含量、有效氮含量、速效钾含量及有效磷含量越低,pH值变化不明显。森林土壤特性变化的明显程度依次为:有机质>速效钾>有效氮。乔木和草本植物的种类、组成和多少对森林土壤养分含量具有决定作用,这是由于植被的归还作用引起的。
Plant functional groups (PFGs) link plant functional traits and environmental variations with great clarity. Most of the studies on PFGs of terrestrial ecosystems to date have concentrated on grasslands and forests. The PFGs concept has facilitated studies on complex plant communities. It allows us to describe an entire terrestrial ecosystem in a very finite number of distinct plant functional types instead of thousands of plant species, thus vastly simplifying studies on highly complex plant communities by reducing variables that require investigation phenomenally. Currently, the extent and width of researches on PFGs have far exceeded the PFGs concept itself. Indeed, researches on PFGs have evolved and coalesced into a self-sustaining academic discipline. The PFGs concept groups plant species into distinct clusters according to similarities in their functions and responses to environmental conditions. Plants respond to environmental conditions in various ways that are subject to specific circumstances, however, and their functional characteristics are far from absolute and simple, therefore different definitions and classification methods of PFGs exist. Many researchers have studied Plant Functional Types from different perspectives and on varying scales. Focused on differing topics, these studies are designed to answer a wide range of scientific questions in relation with PFGs. The processes and results of these studies can provide much insight into plant functional groups, thus significantly facilitating our comprehension of complex terrestrial ecosystems. The PFGs concept has by now permeated the entire field of ecosystem ecology so thoroughly that researchers almost always use this concept while studying terrestrial ecosystems, either explicitly or implicitly. Consequently the application of the PFGs concept has been much broadened. Having conducted numerous studies on PFGs and thus accumulated large amounts of relevant data, researchers working on plant functional groups and related topics all over the world now need a universal, standardized, and unequivocal research protocol. Such a protocol will allow a comprehensive integration of research projects on PFGs globally, which in turn can provide a significant boost to future researches on PFGs and deepen our understanding of plant functional groups.
     Forest ecosystems are characterized by extraordinary structural complexity and phenomenal plant species richness. While making forest ecosystems fascinating, these characteristics complicate the task of understanding the interconnections and functions of forest plant species. Dividing the species rich and functionally complex vegetation of a forest ecosystem into plant functional groups can significantly facilitate studies on the structure and functioning of such an ecosystem by vastly reducing variables that require investigation. Dominant species control the structure and functioning of a forest ecosystem. Delimiting plant functional groups of a forest ecosystem according to dominant species, therefore, is a viable approach to gaining a clear understanding of the functions, structural framework, and species distributions of such an ecosystem. Straddling the subtropical and warm-temperate zones of East China, the FuNiu Mountain National Natural Reserve is representative of north-south climatic transition zones. Its ecosystem is composed mainly of a few dominant species whose abundances clearly vary along altitudinal gradients. Using community ecology techniques, we investigated plant assemblages on both the north and south slopes of the FuNiu Mountain. Results of this investigation were used to calculate species importance values, which in turn were used to identify dominant species. In all, thirty-seven tree species were studied. X2 test, together with association coefficient (AC) and percentage co-occurrence (PC), were used to measure interspecific associations of the dominant tree species. PFGs were defined according to interspecific associations and altitudinal distributions of the dominant species. Four dominant tree species are identified (Quercus variabilis, Q. glandulifera, Q. acutidentata, Pinus armandi), forming the basis of four PFGs. PFG1: Q. variabilis, Q. aliena, Aldizzia kalkora, Castanea seguinii (under 1000m); PFG2: Q. glandulifera, Platycarya strobilacea, Pistacia chinensis (1100m-1400m); PFG3: Q. acutidentata, Carpinus cordata, Toxicodendron vernicifluum (1400-1800m); PFG4: P. armandi, P. tabulaeformis, Abelia biflora, Betula platyphylla, B. albo-sinensis (above 1800m). By analyzing dynamics of these plant functional groups along the moisture and temperature gradients, we have discovered that while these PFGs have similarities in several important morphological characteristics, they differ in many other vital morphological traits such as leaf size and cork thickness. Some evolutionary connections and differentiations also appear to exist among these PFGs. Highly responsive to changes in environmental conditions, herbaceous plants are very useful to the study of vegetation-environment dynamics. Following the investigation protocol applied to the tree species, seven PFGs of herbaceous plants were identified: I. anthropophilic, II. montane, III. sciophilic, IV. drought-tolerant, V. forest gap,Ⅵ. foundational, and VII. primordial.
     The dominant species showed clumped distribution patterns. Species that scored high on importance value and niche width had relatively high levels of niche overlap with other species. Species that scored low on importance value and niche width had relatively low levels of niche overlap with other species. There were however a few exceptions to these general observations.
     Daily photosynthetic changes and light responses of the dominant species were measured using the Li-6400 system. Photosynthetic efficiency characteristics of these species were analyzed. The results showed that the photosynthetic characteristics were mainly influenced by PAR, the plant species were adapted to light intensity ranges that were greater than expected, and there was no obvious midday depression of photosynthesis.
     Soil fertility is determined primarily by pH value and fractions of organic matter, available nitrogen, phosphorus and potassium. In this study, the distribution of plant functional groups appeared to be closely correlated with attributes of the forest soil. Organic matter content, available nitrogen content and available potassium content all increased with elevation, while available phosphor content peaked at medium and low altitudes. Apparently nutrient content was determined by vegetation attributes, perhaps due to nutrient recycling by plants.
引文
Aguiar M.R., Paruelor J.M ,.Sala O.E.et al. Ecosystem response to changes in plant functional types composition: an example from the Patagonian steppe. Journal of Vegetation Science, 1996,7:38.
    Alan K K, Melinda D. Variation among biomes in temporal dynamics of aboveground primary production. Science, 2001,291:481~484.
    Alan K Knapp, Philip A, John M, et al. Rainfall variability, carbon cycling, and plant species diversity in a Mesic grassland. Science, 2002,298:2202~2205.
    Aplet G H, Vitosek P M. An age-altitude matrix analysis of Hawaiian Rain-forest succession. Journal of Ecology, 1994,82 (1):137~147.
    Bai Y.F.,Han X.G.,Wu J.G.,et.al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004,431:181~184.
    Baisen Zhang, Ian Valentine. A decision tree approach modeling functional group abundance in a pasture ecosystem. Agriculture, Ecosystems and Environment, 2005,110:279~288.
    Bao Y.J,Li Z.H & Zhong Y.K. Compositional Dynamics of Plant Functional Groups and Their Effects on stability of Community ANPP17yr of Mowing Succession on Leymus chine-Nsis Steppe of Inner Mongolia,China, Acta Botanica Sinica , 2004, 46:1152~1162.
    Bengtsson J. Competition and coexistence in plant communities. Trends in Ecology and Evoltion, 1994.9: 246~250.
    Bengtsson. Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Applied Soil Ecology, 1998,10: 191~199.
    Bi XL,Hong W,Wu CZ,Yan SJ. Life table analysis of Castanopsis carlesii population in Wuyishan. Journal of Tropical and Subtropical Botany, 2001,9:243~247.
    Bilger W,Bjorkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes,fluorescence and photosynthesis in leaves of Hedera canariensis.Photosynthesis Research,1990,25:173~185.
    Bjorkman O. Response to different quantum flux densities. In: Lange O L , Nobel P S, Osmands C B, et al. eds. Physiological Plant ecology. Vo l. 1. Encyclopedia of Plant Physiology, 12A. Berlin: Springer Verlag, 1981. 57~107.
    Box E O. Plant functional types and climate at the global scale. Journal of Vegetation Science, 1996, 7: 309~320.
    Box EO. Factors determining distributions of tree species and plant functional types. 1995,121: 101~116.
    Brown,J. H., 2001. Mammals on mountain sides:elevational patterns of diversity. Global Ecology and Biogeography,10,101~109.
    Buchmann N, Gebauer G, Schulze E-D. Partitioning of 15N labeled ammonium and nitrate among soil, litter, below- and above-ground biomass of trees and understory in a 15-year-old Picea abies plantation. Biogeochemistry, 1996, 33:1~23.
    Cao K F. 2000. Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest .Canadian journal of botany ,78 :1245~1253.
    Cavell,et ai.Environmental Factor’s Influence on Juvenile Abundance in a Mature Oak Forest.Forest Science,1961,7(2):98~105.
    Chapin F.S., Walker B.H., Hobbs R.J.& Hooper D.U. Biotic control over the functioning of ecosystems. Science, 1997,277:500~503.
    Chapin,F.Stuart,et al. Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science, 1996,7:347~358.
    Chapman JL, Reiss MJ. Ecology Principles and Applications.2nd.Beijing:Qinghua University Press.2001,23~48.
    Cheng W,Wu N,Luo P. Survival analysis of Abies faxoniana populations near timerline on the upper Minjiang River. Acta Phytoecologica Sinica.2005,29:349~353.
    Cody M L. Morphological variation in mulga(Ⅱ)-Covariation among morphology, and spatial patterns in Acacia-dominated vegetation. Israel Journal of Botany, 1991,40:41~59.
    Dale MRT. Spatial Pattern Analysis in Plant Ecology.Cambridge University Press,New York, 1999,147~167.
    Davies P W. The oxygen cathode. In: Nastuk W L (eds.). Physical techniques in biological research Vol 4: Special Methods. New York: Academic Press, 1962, 173~179.
    Dennis, Liukang Xu, Nandy King. How plant functional type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and annual grassland. Agriculture and Forest Meteorology,2004,123: 13~39.
    Diaz Barradas MC, et al.. Plant functional types and ecosystem function in a Mediterranean shrubland [J]. Journal of Vegetation Science, 1999, 10: 709~716.
    Diaz S, Cabido M. Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 1997,8:463~474.
    Diaz S, Cabido M. Vivela difference: plant functional diversity matters to ecosystem processes . Trendsidn Ecology & Evolution, 2001, 16, 646~655.
    Doak, Bigger, Harding, et al. The statistical inevitability of stability diversity relationships in community ecology. American Naturalist, 1998,151: 264~276.
    Ehleringer JR, Cooper TA. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia, 1988, 76:562~566.
    Ehleringer JR. Variation in gas exchange characteristics among desert plants. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis (Ecological Studies 100). Springer, Berlin Heidelberg New York, 1994,361~392.
    Field C B, Ball J T, Berry J A. Photosynthesis: pringciples and field techniques [A]. In: Pearcy R W, Ehleringer J, etc. (eds.). Plant physiological ecology. London: Chapman and Hall, 1989, 209~253.
    Friedel, M H, Bastin, Griffin. Range assessment and monitoring of arid lands: the derivation of functional groups to simplify vegetation data. Journal of Environmental Management, 1988, 27: 85~97.
    Frost I ,Rydn H. Spatial pattern and size distribution of the animal dispersed Quercus rubur in two spruce dominated forest. Ecology science,2002, 7:38~44.
    Gao XM,Wang W,Du X J , et al . Size structure ,ecological significance and population origin of Quercus wutaishananica forest in Beijing mountainousarea. Acta Phytoecologica Sinica , 2001, 25(6): 673~678.
    Gaston,K. J., 2000. Glabal patterns in biodiversity. Nature,405, 220~226.
    Gitay, Noble. What are functional types and how should we seek them? In: Smith, T. M., H. H. Shugart,Woodward Eds. Plant functional types. Cambridge: Cambridge University Press. 1997,3~19.
    Gittins R. Canonnical Analysis, Areview with Applications in Ecology. Sprinter Verlag, Berlin, 1985, 75:135~142.
    Givnish T J. Adaptation to sun and shade a whole plant perspective. Australian Journal Plant Physiology , 1988, 15: 63~92.
    Golluscio R A , Sala O E. Plant functional types and ecological strategies in Patagonian forbs. Journal of Vegetation Science, 1993, 4: 839~846.
    Greig Smith P. Quantitative Plant Ecology 3rd edn.Black-well Scientific Publications, Oxford, 1983,105~128.
    Grime , J . P. , J . G. Hodgson & R. Hunt. 1988. Comparative plant ecology : a functional approach to British species. London :Unwin Hyman.
    Grime J P, Hodgson J G, Hunt R , et al . Functional types : testing the concept in Northern England. In : Smith T M , Shugart H H ,Woodward F I. Plant functional types : their relevance to ecosystem properties and global change. Cambridge : Cambridge University.
    Grime J P. Benefits of plant diversity to ecosystem s: immediate, filter and founder effects. Ecology, 1998,86:902~910.
    Grime J P. Plant Strategies and Vegetation Processes, Chichester: John Willey & Sons. 1979 . Grime J P. Plant Strategies, Vegetation Processes, and Ecosystem Properties. Chichester: John Willey& Sons, 2001.
    Grime J P. Vegetation classification by reference to strategies. Nature, 1974, 250:26~31.
    Grinnell J. The niche-relationship of the California Tnrasher. Auk, 1917,34:427~433.
    Hader, Liat, NoyMeir. The effect of shrub clearing and grazing on the composition of a Mediterranean plant community: functional groups versus species. Acta Ecologica Sinica 1999, 10: 673~682.
    He J S, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grass and biomes of China. Oecologia, 2006, 149: 115~122.
    Hector, A. , B. Schmid & C. Beierkuhnlein, et al. Plant diversity and productivity expe-riments in European grasslands. Science, 1999, 286: 1123~1127.
    Hector and Hooper R. Darwin and the first ecological experiment. Science, 2002, 295, 639~640
    Hodgson J G. Allocating CSR plant functional types : A soft approach to a hard problems. Oikos, 1999, 85: 282~294.
    Hooper D U, Vitousek P M. The effects of plant composition and diversity on ecosystem p rocesses. Science, 1997, 277: 1302~1305.
    Hooper. The role of complementary and competition in ecosystem responses to variation in plant diversity. Ecology, 1998, 79: 704~719.
    HooperD.U.& J.S.Dukes. Overyielding among plant functional groups in a long-term experiment. Ecology Letters, 2004, 7: 95~105.
    Hurbert SH. A coefficient of interspecific association. Ecology, 1971, 50 :1~9.
    Hurlbert S H. The measurement of niche overlap and some relatives. Ecology, 1978, 59(1):67~77.
    Jacques Blondel. Guilds or functional groups: does it matter? Oikos,2003,100: 223~231.
    Jiang H.The Population Ecology of Picea asperata. Beijing: China Forestry Press. 1992, 8~48.
    Jobbagy E.G., Paruelo J.M., Leon R.J.C. Vegetation heterogeneity and diversity in flat and mountain landscapes of Patagonia. Journal of Vegetation Science, 1996,7:599~608.
    Johnson,K.H.,K.A.Vogt,H.J.Clark,O.J.Schmitz & D.J.Vogt. Biodiversity and the productivity andstability of ecosystems. Trends in Ecology and Evolution, 1996, 11: 372~377.
    Kaiser J. Rift over biodiversity divides ecologists. Science, 2000, 289: 1282~1283.
    Kelly C K. Identifying plant functional types using floristic data bases :ecological correlates of plant range size. Journal of Vegetation Science ,1996 , 7 :417~424.
    King DA. 2003. Allocation of above ground growth is related to light in temperate deciduous saplings. Functional Ecology, 17( 4) : 482~488.
    Kiona, Reynolds. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Ecologiy, 2004, 141: 282~294.
    Kitajima K. Relative importance of photo synthetic traits and allocation pattern as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 1994, 98: 419~428.
    Kitao M ,Lei TT ,Koike T , et al . Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant Cell Environment. 2000, 23: 81~89.
    Kleyer M. Distrbution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landsacape. Journal of Vegetation Sciencei, 1999, 10: 697~708.
    Kozlowski, Pallardy. Physiology woody plants. San Diego: Academic Press, 1997. 89~120.
    Larcher W. Physiological plant ecology (4th edn) [M]. Berlin: Springer~Verlag. 2003.
    Lavorel S, Mcityre S, Grigulis K. Plant response to disturbance in a mediterranean annual grassland:
    how many functional groups ?. Journal of Vegetation Science, 1999, 10: 661~672.
    Legendre,Fortin. Spatial pattern and ecological analysis.Vegetation, 1989, 180: 107~138.
    Lei MD. Shanxi Flora. Beijing: Science Press. 1999,163~164.
    Leibold, MA.The niche concept revisited mechanistic models and community context. Ecology, 1995,76 (5): 1371~1382.
    Li JG, PanCD, Peng SK, Zhou LS. Demography and survival analysis of Picea schrenkiana. Journal of Beijing Forestry University, 2001, 23(1): 84~86.
    Li J W. Forestry Ecology. Second Edition. Beijing: Forest Publishing Company of China, 1994.211~241.
    Li X R. Interspecific association and correlation of shrub layer in the coniferous-broad leaved mixed geobotanical zone of Russia plain. Acta Ecologica Sinica, 1999, 19(1): 55~60.
    Lieberman,D.,Lieberman,M.,Peralta,R. et al. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of ecology, 1996,84,137~152.
    Lin S Z, Huang S G, Hong W. The characteristics of multi2dimension niche of dominant populations in Chinese fir and broad leaved mixed forest. Acta Ecologica Sinica, 2002, 22(6): 962~968.
    Liu X Q, Wang R Z. Photosynthetic pathway and morphological functional types in the vegetation from North Beijing agropastoral ecotone, China. Photosynthetica, 2006, 44 (3): 365~386.
    Lomolino,M. V. Elevational gradients of species-density:historical and prospective views. Global Ecology & Biogeography, 2001. 10,3~13.
    Long S P, Hallgren J E. Measurement of co2 assimilation by plant in the field and laboratory. In: Hall D O, Svurlock J M, etc. (eds). Photosynthesis and productin in a Changing environment: A field and laboratory manual. 1993, 129~167.
    Loreau M. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 2000,91: 3~17.
    Magurran A E, Ecological diversity and its measurement. New Jesey: Princeton University Press, 1988.
    Maina Kariuki. Diameter growth performance varies with species functional group and habitat
    characteristics in subtropical rainforests. Forest Ecology and Management. 2006,225:1~14.
    Manuel CM. Ecology: Concepts and Application. Beijing: Science Press. 2000,162~226.
    Mao Kai, Pu Chao-Iong,Ren Bai-wen A preliminary report on the dynamic of the herbage communities in a young planted woodland in the hilly area of central. Acta phytoecologica sinica, 1995. 19 (4): 384~388.
    Margaret Davis, Shaw R G. Range Shifts and Adaptive Responses to Quaternary Climate Change. Science, 2001,292:673~679.
    Mc Cann. The diversity-stability debate. Nature, 2000,405: 228~233.
    Mclntyre, Diaz,Lavorel et al. Plant functional types and disturbance dynamics-introduction. Journal of Vegetation Science, 1999,10:603~608.
    Michelle Buonopane. Community response to removals of plant functional groups and species from a Chihuahuan desert shrubland. Oikos, 2005,110: 67~80.
    Minotta G, Pinzauti S. Effects of light and soil fertility on growth ,leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. Forest Ecology and Management , 1996, 86 :61~71.
    Mouillot D, Mason N W, Wilson JB. Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia. 2007, 152(4):729~37.
    Mueller-dombois D, Ellenbeng, H. (Translated by Bao XC et al.(鲍显诚等)) Goal and measures of vegetation ecology(in English). Beijing: sciences press, 1986, 26~87.(in Chinese)
    Murchie E, Horton H. Acclimation of photo synthesis to irradiance and spectral quality in British plant species: Chlorophyll content, photo synthetic capacity and habitat preference. Plant Cell and Environment, 1997, 20: 438~448.
    Naeem S. Species redundancy and ecosystem reliability. Conservation Biology, 1998,12: 39~45.
    Naeem, Li S. Biodiversity enhance ecosystem reliability. Nature, 1997,390:507~509.
    Navarro T. Changes in plant functional types in response to goat and sheep grazing in two semi-arid scrublands of SE Spain. Journal of Arid Environments, 2006,64:298~322.
    Noble , I. R. & H. Gitay. Functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science , 1996, 7 :329~336.
    Noble I R. Attributes of invaders and the invading process: terrestrial and vascular plants, 1989. In: Drake ,H. A.Mooney, Castri,R. H. Groves,F. G. Kruger,M .Rejmanek &M. Williamson eds. Biological invasions : a global perspective. Chichester : Scientifi.
    Noble, H Gitay. Functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science, 1996, 7: 329~336.
    Nortin,Draperal,Legendre.Spatial autocorrelation and sampling design in plant ecology.Vegetation, 1989,83:209~222.
    Pielou E C, An introduction to mathematical ecology. Beijing: Science Press, 1978.
    Pielou E C, Ecological diversity. New York: John Wiley&Sons Inc, 1975
    Pierre Legendre. Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Journal of Plant Ecology, 2007, 35(5): 976~981
    Poorter L. Growth response of 15 rain forest tree species to a light gradient : The relative importance of morphological and physiological traits. Functional Ecology , 1999, 13 :396~410.
    Raunkiaer C. The life forms of plants and statistical plant geography. Oxford :Oxford University Press, 1934.
    Renée Brooks,Lawrence B,Flanagan, et al. Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia, 1997,110: 301~311.
    Root, R B. The niche exploration pattern of a blue grey gnatcatcher. Ecological Monographs, 1967, 37: 317~350.
    Rossire,Mulla,Journel,et al.Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological.Monographs,1991, 62: 277~314.
    Rundel,P. Community structure and stability in the giant Sequoia groves of the Siera Nevada, California. American Midland Naturalist, 1971,85:487~492.
    Rusch G.M, J.G. Pausas and J.Lep. Plant functional types in relation to disturbance and Land use:Introduction. Journal of Vegetation Science, 2003,14:305~310.
    Sack L ,Grubb PJ ,Maranón T. The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecology. 2003, 168 :139~163.
    Sandra L, Blaise T, Jean D L, et al. Identifying functional groups for response to disturbance in an abandoned pasture. Acta Oecologica, 1998,19 (3): 227~240.
    Sara Cousins, Regina Lindborg. Assessing changes in plant distribution patterns-indicator speciesversus plant functional types. Ecological Indicators, 2004,4:17~27.
    Schreiber U, Bilger W, Neubauer C, Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E D, Caldwell M M (eds.). Ecophysiology of photosynthesis. Berlin Heidelberg: Springer Verlag, 1994.
    Shao Guofan , Shugart H H , Hayden B P. Functional classification of coastal barrier island vegetation. Journal of Vegetation Science, 1996, 7: 391~396.
    Sharkey T D. Analytical gas exchange measurement of photosynthetic co2 assimilation. In: Linskens H F, Jackson J F (eds.). Gases in Plant and microbial cells. Berlin Heidelberg: Springer Verlag, 1989, 209~253.
    Skarpe C. Plant functional types and climate in a southern African savanna. Journal of Vegetation Science ,1996 ,7 : 397~404.
    Smith B,Ragland B S,Epitts GJ.A process for evaluating anticipatory adaptation measures for climate change. Water,Air and Soil Pollution, 1996, 92:229~238.
    Smith TM, Woodward FI, Shugart HH eds. 1996. Plant Function Types. Cambridge: Cambridge University Press.
    Song YC. Vegetation Ecology.East China Normal University Press, Shanghai, 2001,353~417.
    Steffen,Walker B H, Ingram,et al.Global change and terrestrial ecosystems: the operational plan.Stockholm: IGBP and ICSU,1992.
    Stevens,G. C. The elevational gradient in altitudinal range:an extension of Rapoport’s latitudinal rule to altitude. American Naturalist,1992,140, 893~911.
    Swaine, Whitmore. On the definition of ecological species groups in tropical rain forests. Vegetation, 1988, 75: 81~86.
    Szaro, R C. Guild management: an evaluation of avian guilds. Environmental Management, 1986, 10:681~688.
    Tammy E. Fosterand J. Renée Brooks. Functional groups based on leaf physiology: are they spatially and temporally robust? Oecologia, 2005,144:337~352.
    Thomas TL ,Martin JL. Diverse responses of maple saplings to forest light regimes. Annals of Botany , 1998, 82 :9~19.
    Thompson J.N.,O.J.Reichman&P.J.Morin et al. Frontiersof Ecology Bioscience, 2001,51:15~24.
    Tilman D. Causes,consequences and ethics of biodiversity. Nature, 2000,405:208~211.
    Tilman D. Downing & D.A.Wedin. Does diversity beget stability? Nature, 1994,371:113~114.
    Tilman D. The ecological consequences of changes in biodiversity: a research for general principles. Ecology, 1999, 80: 1455~1474.
    Tilman D., J.Knops,& D.Wedin et al. The influence of functional diversity and composition on ecosystem processes. Science, 1997,277:1300~1302.
    Tilman D.,C.L.Lehman & C.E.Bristow. Diversity stability relationships: statistical inevitability or ecological consequence? American Naturalis, 1998,151:277~280.
    Tilman D.,J.Knops, & D.Wedin et al. The influence of functional diversity and composi-tion on ecosystem processes. Science, 1997,277:1300~1302.
    Tilman, Downing. Biodiversity and stability in grasslands. Nature, 1994, 367: 363~365.
    Tilman, Lehman, Bristow. Diversity stability relationships: statistical inevitability or ecological consequence? American Naturalist, 1998, 151: 277~282.
    Tilman, Wedin, Knops. Productivity and sustainability influenced by biodiversity in grassland ecosystem. Nature, 1996, 379: 718~720.
    Valladares F ,Pearcy RW. The geometry of light interception by shoots of Heteromeles arbutifolia :Morphological and physiological consequences for individual leaves. Oecologia. 1999, 121 :171~182.
    Valladares F ,Wright SJ ,Lasso E , et al . Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology. 2000,81:1925~1936.
    Vitousek, Hooper D U. Biological diversity and terrestrial ecosystem biogeochemistry. In: Schulze E D, Mooney H A,eds. Biodiversity and Ecosystem Function, Springer Verlag, Berlin, 1993,3~14.
    Walke D A. Polargraphic measurement of oxyen. In: Hall D O etc. (eds.). Photosynthesis andproduction in a Changing environment, A field and laboratory manual. London: Chapman & Hall, 1993, 168~180.
    Walker B H, Ann K, Jenny L. Plant attribute Diversity, resilience, and Ecosystem function: the nature and significance of Dominant and minor species. Ecosystems, 1999,2: 95~113.
    Walker B H. Functional types in no equilibrium systems. In: Smith TM, Shugart HH, Woodward F I, Eds. Plant functional types: their relevance to ecosystem properties and global change. (1997). Cambridge: Cambridge University Press (IGBP book series, I.).
    Walker B H. Biodiversity and ecological redundancy. Conservation Biology, 1992,6: 18~23.
    Walker BH. Conserving biological diversity through ecosystem resilience. Conservation Biology,1995,9: 747~752.
    Walker BH. Landscape to regional scale response of terrestrial ecosystems to global change. AMBIO, 1994, 23 (1): 67~73.
    Walters M B, Reich P B. Low 2ligh t carbon balance and shade to lerance in the seedlings of woody plants: do w inter deciduous and broadleaved evergreen species differ? New Phytologist, 1999, 143: 143~154.
    Walters MB, Kruger EL ,Reich PB. Relative growth-rate in relation to physiological and morphological traits for northern hardwood tree seedlings: Species ,light environment and ontogenic considerations. Oecologia , 1993, 96 :219~231.
    Wang G H, Ni J. Responses of plant functional types to an environmental gradient on the Northeast China Transect. Ecological Research, 2005, 20:563~572.
    Wang R Z, Liu X Q, BAI Y F. Photosynthetic and morphological functional types for native species from mixed prairie in Southern Saskatchewan. Photosynthetica, 2006,44 (1): 17~25.
    Wang R Z. Photosynthetic and morphological functional from different communities in the Inner Mongolia, north China. Photosynthetica, 2004, 42:493~503.
    Wang R Z. Photosynthetic pathway and morphological types in the steppe vegetation from Inner Mongolia, North China. Photosynthetica, 2003, 41:143~150.
    Wang R Z. Plant functional types and their ecological responses to salization in saline grasslands, Northeastern China. Photosynthetica, 2004, 42:511~519.
    Ward JS. et al. Long-term spatial dynamics in an old growth deciduous forest . Forest Ecology Manage, 1996,83:189~202.
    West,N.E. Biodiversity of rangelands. Journal of Rangeland Management,1993,46:2~13.
    Whittaker R H. Dominance and diversity in land plant communities. Science, 1965, 147: 250~260
    Whittaker R H. Evolution and measurement of species diversity. Taxon, 1972, 21: 213~251
    Wilsey, Potvin C. Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology, 2000,81: 887~892.
    Wilson J B. Guilds, functional types and ecological groups. Oikos, 1999, 86: 507~522.
    Woodward F Ian , Cramer W. Plant Functional types and climatic changes :Introduction. Journal of Vegetation Science ,1996 ,7 :306~308.
    Wu DR. Analyses of correlations between Phoebo bournei and dominant ferns at Lnoboyan Natural Reserve in Fujian. Journal Plant Resour Environment, 1997,6(1):15~19.
    Wu S F. Niche and interspecies competition between Chinese fir and its main associated species in altitude resource space in the natural mixed stand. Acta Agriculture Universitatis Jiangxiensis, 2003, 25(3): 269~373.
    Xu X H ,Yu MJ ,Hu Z H. The structure and dynamic of Castanopsis eyrei population in Gutian Mountain Nature Reserve in Zhejiang, East China. Acta Ecologica Sinica, 2005, 25(3):645~653.
    XuW H,Ouyang Z. Priority analysis on conserving China's terrestrial ecosystems. Acta Ecologica Sinica, 2006(1): 271~280.
    Yachi S.& M.Loreau. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the Natural A cademy of Sciences of USA, 1999, 96:1463~1468.
    YuanZ Z,Bao W K,He B H.Life table and survival analysis of Cupressus chengiana population in the western of Sichuan,China. Acta Botanica Yunnannica,2004,26:373~381.
    Zhang G F. Studies on age structure and Spatial pattern of dominant populations rom Tiantong shrub community in Zhejiang Province. Journal of Wuhan Botanical Research, 2001,19(3):233~240.
    Zhang YQ. Shanxi Forest. Beijing: China Forestry Press. 1989,66~67.
    Zhao Y H, Lei R D, He X Y, et al. Niche characteristics of plant population in Quercus aliena var. acuteserrata stands in Qinling Mountain. Chinese Journal of Applied Ecology, 2004,15(60):913~918.
    Zheng Y R. Main woody species niche of plant community in Dao Qing Gou. Acta Phytoecologica Sinica, 1999, 19(4): 158~169.
    Ziegenhagen B ,Kausch W. 1995. Productivity of young shaded oaks ( Quercus robur L. ) as corresponding to shoot morphology and leaf anatomy. Forest Ecology and Management, 72: 97~108.
    白永飞,李凌浩,黄建辉等.内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响.植物学报, 2001, 43 (3) : 280~287.
    白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响.植物生态学报, 2000, 24(6):641~647.
    白永飞,王文江,张振仁.内蒙古东南部大针茅草原群落波动性研究.中国草地,(4):1~5.
    白永飞,张丽霞,张焱等.内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究.植物生态学报,2002,26 (3) : 308~316.
    白永飞.降水量季节分配对克氏针茅草原群落初级生产力的影响.植物生态学报, 1999, 23: 155~160.
    蔡飞,宋永昌.武夷山木荷种群结构和动态的研究.植物生态学报,1997,21(2):138~148.
    曹凑贵.生态学概论.北京:高等教育出版社,2002.
    陈波,周兴民.三种蒿草群落中若干植物种的生态位宽度与重叠分析.植物生态学报, 1995.19(2):158~169.
    陈存及,陈新芳,刘金福等.人工-天然杉阔混交林种群生态位及竞争研究.林业科学, 2004,40 (1):78~83.
    陈灵芝等.北京人工刺槐林化学元素含量特征.植物生态与地植物学学报, 1988,12(4):245~254.
    陈世苹,白永飞,韩兴国.内蒙古锡林河流域植物功能群组成及其水分利用效率的变化--依水分生态类群划分.植物学报, 2003, 45 (10): 1251~1260.
    陈植.造林学原论.南京:国立编译馆,1949.
    丁圣彦,卢训令.伏牛山和鸡公山自然保护区植物区系比较.地理研究, 2006, 25(1): 62~70
    丁向阳.伏牛山自然保护区珍稀树种林分结构与综合保护.河南科学, 2007, 25(1): 63~65
    董怀军.几种树木光合特点研究.内蒙古林业科技, 1992, 2: 15~20.
    董鸣.缙云山马尾松种群年龄结构初步研究.植物生态学与地植物学学报,1987, 11(1):50~58.
    董全民等.牦牛放牧率对小嵩草高寒草甸暖季草场植物群落组成和植物多样性的影响.西北植物学报, 2005,25(1):0094~0102.
    杜道林,刘玉成,李睿.绪云山亚热带拷树林优势植物种群间联结性研究.植物生态学报, 1995,19(2):149~157.
    杜国祯,张大勇,王刚.草本植物群落种间联结测定技术研究.生态学杂志,1989,8(4):59~61.
    杜林方.光合作用研究的一些进展.世界科技研究与发展.1999,21(1):58~62.
    范晶.东北东部主要成林树种光合生理生态研究.东北林业大学学报,2002,12~13.
    冯玉龙,曹坤芳,冯志立.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应.生态学报,2002 ,22 (6) :901~910.
    傅焕光等.栓皮栎栽培与利用.北京:中国林业出版社,1986.
    关义新,代俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯.1995,31(4):293~297.
    郭全邦,刘玉成,李旭光.缙云山森林次生演替序列优势种群生态位.西南师范大学学报(自然科学版) ,1997, 22:73~78.
    郭晓荣,曹坤芳,许再富.热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应.应用生态学报,2004,15 (3) :377~381.
    郭正刚,刘慧霞,王根绪,等.人类工程对青藏高原北部草地群落β多样性的影响.生态学报, 2004, 24(2): 384~388.
    郭志华,卓正大,陈浩,吴梅凤.庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究.植物生态学报,1997,21(5):424~432.
    韩梅,杨利民.中国东北样带羊草群落C3和C4植物功能群生物量及其对环境变化的响应.生态学报,2006, 26(6): 1825~1832.
    韩有志,王政权.森林更新与空间异质性.应用生态学报,2002 ,13(5) :615~619.
    郝占庆,于德永,吴钢,等.长白山北坡植物群落β多样性分析.生态学报, 2001, 12 (12) : 2018~2022.
    何亚平等.不同龄级划分方法对种群存货分析的以共享—以水灾迹地油松和华山松种群生存分析为例.植物生态学报,2008,32(2)448~455.
    贺善安,郝日明.中国鹅掌楸自然种群动态及其致危生境的研究.植物生态学报,1999, 23(1):87~95.
    胡楠,谷艳芳,许会才等.河南省石人山自然保护区落叶阔叶林群落生态特征.河南大学学报(自然科学版):2007,37(1):61~66.
    胡理乐,闫伯前,刘琪璟,朱教君.南方丘陵人工林林下植物种间关系分析.应用生态学报, 2005,16(11):2019~2024.
    胡小兵,于明坚,陈玉宝.浙北青冈林群落结构与青冈种群数量特征.植物研究, 2002, 22(4): 432~438.
    黄金国.河南伏牛山植物多样性特点及其保护.国土与自然资源研究,2002(04):82~83.
    黄玉清,李先琨,苏宗明.元宝山南方红豆杉构件种群结构大小研究.广西植物, 1998,18(4):384~388.
    黄占斌,山仑.不同供水下作物水分利用效率和光合速率日变化的时段性及其机理研究.华北农学报,1999,1:47~52.
    基因公司最新LI-6400使用手册. http://www.licorcn.com/chanpin/ManualDetail.asp?ptID =1&pID=63&piID=357.
    纪建伟,解飞.LED辐照叶绿素荧光参数检测与控制系统.农业网络信息:2007(9):34~37.
    江爱良.论我国热带亚热带气候带的划分.地理学报, 1960, 26(2): 104~109
    姜恕.植物生理生态学的发展动态与任务,中国生态学发展战略研究(第一集).中国经济出版社,1992.
    蒋高明.当前植物生理生态学研究的几个热点问题.植物生态学报.2001,25(5):514~519.
    蒋高明主编.植物生理生态学.北京:高等教育出版社,2004.
    李德志,秦艾丽,杨茂林.天然次生林群落主要树木种间联结关系的研究.植物生态学报,1996,20(3):263~271.
    李育中.三种类型草地植物种间关联的测定与比较.生态学杂志,1991,10(6):6~10.
    粱士楚.贵阳喀斯特山地云贵鹅耳枥种群动态研究.生态学报, 1992,12(1):53~59.
    林华,曹敏.森林生态系统发展和植物种群变化的热力学过程.生态学报,2006,12,4250~4256.
    林开敏,郭玉硕,俞新妥,等.老龄杉木林下植物成分结构特征.福建林学院学报,1999,19 (2) :124~128.
    林开敏,洪伟,俞新妥.杉木人工林林下植物生物量的动态特征和预测模型.林业科学,2001, 37 (1) :99~105.
    林开敏,洪伟,俞新妥等.杉木成熟林林下植物生物量及其取样技术研究.福建林学院学报, 2001,21 (1) : 28~31.
    林开敏,马祥庆,范少辉等.杉木人工林林下植被的消长规律.福建林学院学报, 2000,20(3) :231~234.
    林开敏,张文富,谢国阳等.老龄杉木林下天然更新阔叶植被物种多样性研究.福建林学院学报, 1997, 17(4): 314~317.
    刘峰,陈伟烈,贺金生.神农架地区锐齿槲栎种群结构与更新的研究.植物生态学报,2000, 24(4):396~401.
    刘光崧主编.土壤理化分析与剖面描述.北京:中国标准出版社,1996.
    刘金福,洪伟.格氏栲群落生态学研究.生态学报,1999,19(3):347~352.
    刘慎谔.中国枯叶栎之研究.国立北平植物学研究丛刊,1936, 4(1):1~23.
    刘文海,高东升.不同光强处理对设施桃树光合及荧光特性的影响.中国农业科学:2006,39(10):2069~2075.
    刘志民,赵晓英,范世香.Grime的植物对策思想和生态学研究理念.地球科学进展,2003,8(4): 603~608.
    罗青红,郭志军.树木水分生理生态特性及抗旱性研究进展,塔里木大学学报,17:29~33
    马建华.试论伏牛山南坡土壤垂直分异规律——兼论亚热带北界的划分.地理学报, 2004, 59(6): 998–1011
    马姜明,李昆.森林生态系统稳定性研究的现状与趋势.世界林业研究, 2004, 2 (1) : 15~19.
    马克平,刘灿然,刘玉明.生物群落多样性的测度方法Ⅱβ多样性的测度方法.生物多样性, 1995, 3(1): 38~43
    马克平.生物群落多样性的测度方法Ⅰα多样性的测度方法(上).生物多样性, 1994, 2(3): 162~168.
    马克平,刘玉明.生物群落多样性的测度方法Ⅰα多样性的测度方法(下).生物多样性, 1994,2(4): 231~239.
    孟婷婷,倪健.植物功能特性与环境和生态系统功能.植物生态学报,2007 , 31 (1) 150~165.
    倪健.区域尺度的中国植物功能型与生物群区.植物学报,2001,43 (4):419~425.
    牛书丽,蒋高明.浑善达克沙地不同植物功能型光合作用和水分利用特征的比较.生态学报,2005 ,4,699~704.
    彭少麟,王伯荪.鼎湖山森林群落植物优势种群生态位宽度的研究.中山大学学报, 1989 (3) : 16~24.
    彭少麟,王伯荪.鼎湖山森林群落植物优势种群生态位重叠研究.热带亚热带森林生态系统研究, 1990, 6: 19~27.
    齐代华,王力,钟章成.九寨沟水生植物群落β多样性特征研究.水生生物学报, 2006, 30(4): 446~452
    钱莲文,吴承祯,洪伟.长苞铁杉林林隙内外更新层主要树种生态位.福建农林大学学报:自然科学版, 2005, 34(3): 330~333.
    阮成江,李代琼.半干旱黄土丘陵区沙棘的光合特性及其影响因子.植物资源与环境学报.2000,9(1):16~21.
    尚富德,王磐基,冯广平等.伏牛山南北自然过渡地带植物多样性的特征及其成因分析,河南大学学报(自然科学版),1998,28(1): 54~60.
    尚玉昌.现代生态学中的生态位理论.生态学进展, 1983, 5 (2): 77~84.
    沈允钢,李德耀,魏家绵等.改进半叶法测定光合作用的应用研究.植物生理学通讯,1980,2: 37~41.
    沈允钢,施耐全,许大全.动态光合作用[M].科学出版社,1998.
    沈泽昊,张新时.基于植物分布地形格局的植物功能型划分研究.植物学报,2000,42 (11) :1190~1196.
    史作民,程瑞梅,刘世荣,等.宝天曼植物群落物种多样性研究.林业科学, 2002, 38(6): 17~23
    史作民,刘世荣,王正用.河南宝天曼种子植物区系特征.西北植物学报, 1996, 16(3): 329~335.
    史作民,程瑞梅,刘世荣.宝天曼落叶阔叶林种群生态位特征.应用生态学报, 1999, 10(3):265~269.
    史作民,程瑞梅等.宝天曼植物群落物种多样性研究.林业科学:2002,38(6):17~23.
    宋朝枢.伏牛山自然保护区科学考察集.北京:中国林业出版社,1994
    宋会兴,苏智先,彭远英.山地土壤肥力与植物群落次生演替关系研究.生态学杂志,2005,24(12):1531~1533.
    孙国钧,张荣,周立.植物功能多样性与功能群研究进展.生态学报, 2003,23(7):1430~1435.
    万儒,许本彤.森林土壤定位研究方法.北京:中国林业出版社,1986,2~110.
    王伯荪,彭少麟.鼎湖山森林群落分析.中山大学学报(自然科学版),1983,4:27~35.
    王伯荪,彭少麟.鼎湖山森林优势种群数量动态.生态学报,1987,7(3):214~221.
    王伯荪,彭少麟.南亚热带常绿阔叶林种间联结测定技术研究——种间联结测试的探讨与修正.植物生态学与地植物学丛刊, 1985, 9 (4) : 274~285.
    王伯荪.植物群落学.高等教育出版社,1987.
    王德利,王正文等.羊草两个趋异类型的光合生理生态特性比较的初步研究.生态学报, 1999, 19(6): 838~843.
    王刚.植物群落学中生态位重叠的计测.植物生态学与地植物学丛刊, 1984, 8(4): 329~335.
    王国宏.再论生物多样性与生态系统的稳定性.生物多样性, 2002, 10 (1) : 314~321.
    王理顺,申洁梅,李华堂,等.伏牛山自然保护区珍稀濒危植物资源现状与保护对策.河南林业科技, 2003, 23(3): 42~44
    王理顺.河南省伏牛山自然保护区资源研究Ⅲ——森林资源分析与保护对策.河南林业科技, 2004, 24(2): 26~27
    王理顺.河南省伏牛山自然保护区植物资源研究(Ⅱ).山西林业科技:2004(3):10~13.
    王立龙,王广林,黄永杰,李晶,刘登义.黄山濒危植物小花木兰生态位与年龄结构研究.生态学报,2006,26(6):1862~1870.
    王巍,李庆康,马克平.东灵山地区辽东栎幼苗的建立和空间分布.植物生态学报,2000, 24(5):595~600.
    王旭,尹光彩,周国逸等.鼎湖山针阔混交林光合有效辐射的时空格局.北京林业大学学报. 2007,3:18~23.
    王政权,王庆成.森林土壤物理性质的空间异质性研究.生态学报,2000,20(6):945~950.
    魏林.栓皮栎林分布的初步调查.林业科学,1960, (1):70~71.
    温达志,孔国辉,林植芳.光强对四种亚热带树苗生长特征影响的比较.热带亚热带植物学报,1999 ,7 (2) :125~132.
    文建雷,刘志龙,王姝清.水分胁迫条件下元宝枫的光合特征及水分利用效率.西北林学院学报.2003,18(2):1~3.
    吴明作,刘玉萃等.河南省栓皮栎林主要种群的生态位研究.西北植物学报,1999, 19(3) : 511~518.
    吴明作.栓皮栎研究进展.陕西林业科技.1998,4:65~69.
    席一,陶建平,王永健等.岷江上游退化灌丛优势种的光合特性研究.西南大学学报(自然科学版),2007,4:96~100.
    谢会成,姜志林.栓皮栎对CO2增长的生理生态响应.西南林学院学报.2002,22(1):1~4.
    徐卫华,欧阳志.中国陆地优先保护生态系统分析.生态学报, 2006,1:271~280.
    许红梅,高琼,黄永梅等.黄土高原森林草原区6种植物光合特性研究.植物生态学报, 2004 , 28 (2) :157~163.
    闫淑君,洪伟,吴承祯等.万木林中亚热带常绿阔叶林林隙主要树种的高度生态位.应用与环境生物学报, 2002, 8(6):578~582.
    闫文德,田大伦,焦秀梅.会同第二代杉木人工林林下植被生物量分布及动态.林业科学研究, 2003, 16(3): 323~327.
    杨昆,管东生.林下植被的生物量分布特征及其作用.生态学杂志,2006 ,25 (10) :1252~1256.
    杨万勤,钟章成,陶建平等.缙云山森林土壤速效K的分布特征及其与物种多样性的关系.生态学杂志,2001,20(6):1~3.
    杨心兵,刘胜祥,杨福生.湖北省后河自然保护区光叶珙桐种群结构的研究.生物学杂志, 2000,17(1):15~17.
    杨一川,庄平,黎系荣.峨眉山峨眉栲、华木荷群落研究.植物生态学报,1994,18(2): 15~20.
    叶永忠,翁梅,杨修.伏牛山栎类群落多样性研究,植物学通报, 1995, 12(生态学专辑): 79~84.
    叶永忠,杨清培,翁梅,等.伏牛山森林群落物种多样性研究.群落垂直分布与物种丰富度.河南科学, 1999, 17: 61~64.
    尹春英,李春阳.杨树抗旱性研究进展.应用与环境生物学报,2003, 9 (6):662~668.
    游秀花,蒋尔可.不同森林类型土壤化学性质的比较研究.江西农业大学学报,2005,27(3): 357~360.
    岳明,周红霞.太白山北坡落叶阔叶林物种多样性特征.云南植物研究,19(2):171~176.
    岳天祥,马世骏.生态系统稳定性研究.生态学报, 1991, 11 (4): 361~366.
    张国钧,张荣,周立.植物功能多样性与功能群研究进展.生态学报,2003, 23(7):1430~1435.
    张继义,赵哈林,张铜会等.科尔沁沙地植物群落恢复演替系列种群生态位动态特征.生态学报, 2004, 23(12):2741~2746.75.
    张建伟,曾颖.伏牛山区植物的多样性及其保护.河南大学学报(自然科学版):2003(3):76~81.
    张全国,张大勇.生产力、可靠度与物种多样性:微宇宙试验研究.生物多样性,2002,10 (2) : 135~142.
    张文辉,卢志军等.秦岭北坡栓皮栎种群动态的研究.应用生态学报:2003,14(9):1427~1432.
    张文辉,卢志军等.陕西不同林区栓皮栎种群空间分布格局及动态的比较研究.西北植物学报.2002, 22(1):476~483
    张益民,吴立宏,赵体顺,等.河南宝天曼自然保护区主要植被类型及垂直分布的研究.河南农业大学学报, 1996, 30(2): 178~185.
    张治国,王仁卿.中国分布北界的山茶种群大小结构和空间格局分析.植物生态学报,2000, 24(1):118~122.
    张忠义,韩艳英,段绍光,等.宝天曼栎类天然林物种多样性海拔分布研究.河南科学, 2005, 23(6): 819~822.
    赵学农,曹敏,和爱军.望天树种群动态的初步研究.云南植物研究,1990,12(4):405~414.
    郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系.生态学报,2007, 27 (01) : 0171~0181.
    中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978.
    周先叶,王伯荪,李鸣光.广东黑石顶自然保护区森林次生演替过程中群落的种间分析.植物生态学报, 2000 , 24 (3): 332~339.
    朱春全.生态位理论及其在森林生态学研究中的应用.生态学杂志, 1993,12(4):41~46.
    朱春全.树木光合作用、呼吸作用生理生态学研究的历史及发展趋势.见周晓峰主编.森林生态系统定位研究:第一集.东北林业大学出版社,1991.87~104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700